
Generalized Asymmetric Partition Crossover (GAPX) for
the Asymmetric TSP

Renato Tinós
Department of Computing and

Mathematics
University of São Paulo

Ribeirão Preto, SP, Brazil
rtinos@ffclrp.usp.br

Darrell Whitley
Department of Computer

Science
Colorado State University

Fort Collins, CO, USA
whitley@cs.colostate.edu

Gabriela Ochoa
Department of Computing
Science and Mathematics

University of Stirling
Stirling, FK9 4LA, Scotland

gabriela.ochoa@cs.stir.ac.uk

ABSTRACT

The Generalized Partition Crossover (GPX) constructs new
solutions for the Traveling Salesman Problem (TSP) by find-
ing recombining partitions with one entry and one exit in
the graph composed by the union of two parent solutions. If
there are k recombining partitions in the union graph, 2k−2
solutions are simultaneously exploited by GPX. Generalized
Asymmetric Partition Crossover (GAPX) is introduced; it
finds more recombining partitions and can also find parti-
tions for the asymmetric TSP. GAPX does this by locating
partitions that cut vertices of degree 4 in the union graph
and by finding partitions with multiple entry and exit points,
both in O(n) time. GAPX can improve the quality of so-
lutions generated by the Lin-Kernighan-Helsgaun heuristic
and improve the state of the art for the asymmetric TSP.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: [Problem Solving, Control
Methods, and Search]

Keywords

Asymmetric Traveling Salesman Problem, Recombination
Operator, Evolutionary Combinatorial Optimization

1. INTRODUCTION
An instance of the Traveling Salesman Problem (TSP) can

be defined by a complete weighted graph G(V,E), where
V = {v1, v2, . . . , vn} is a set of n vertices (or cities) and
E contains edges between every pair of vertices in V . Each
edge ei,j ∈ E between vertices vi, vj ∈ V is associated with a
weight wi,j ∈ R

+, generally indicating the distance or travel
cost between the two cities. All candidate solutions for a
TSP are Hamiltonian circuits in G, and thus each solution
x ∈ X is typically represented as permutations over the
set of vertices in graph G. Considering the vertex vx1

as the
fixed start and end point, then the evaluation of a particular

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.

http://dx.doi.org/10.1145/2576768.2598245.

solution x = [x1, x2, . . . , xn]
T ∈ X, specifying a permutation

on n− 1 vertices, is given by:

f(x) = wxn,x1
+

n−1∑

i=1

wxi,xi+1
(1)

The objective of the optimization process is to find x ∈ X

with the minimum evaluation f(x). The TSP can be sym-
metric or asymmetric. For example, the distance between
two cities is typically a symmetric cost; however, the travel
time from city A to city B might be different from the travel
time from city B to city A depending on traffic patterns or
time of day.

An amazing number of optimization algorithms have been
proposed for the TSP. One of the best heuristics is the Lin-
Kernighan-Helsgaun (LKH) algorithm [5]. The core of LKH
is a variable depth local search (LK heuristic). In LKH, a
number of improvements have been added to the original
LK heuristic, like the use of sensitive analysis to estimate
the probability of an edge appearing in an optimal solution.
LKH is also a form of iterated local search which uses soft
restarts. In addition, LKH includes a recombination oper-
ator, called Iterative Partial Transcription (IPT) [7], which
is similar in effect to the Generalized Partition Crossover
(GPX) operator independently developed by Whitley et al.
[13] [12]. Both GPX and IPT are 1) respectful and 2) trans-
mits genes. Respectful operators transfer all common fea-
tures (edges) found in both parents to the offspring. Oper-
ators that “transmit genes” generate offspring that are com-
posed only of features (edges) contained in the parent so-
lutions. GPX has O(n) complexity while IPT as described
has O(n2) complexity.

Hains et al. [4] improved multi-trail LKH by using GPX.
However, due to the similarity of Helsgaun’s IPT recombi-
nation operator and GPX, the improvement was not a result
of using GPX, rather the improvement was a result of using
respectful recombination more frequently. Hains et al. re-
combined each new locally optimal solution with all of the
previously discovered local optima. LKH with IPT only re-
combined each new locally optimal solution with the current
best so far solution. By accumulating all of the local optima
encountered, Hains et al. incrementally constructed a popu-
lation on the fly which could be exploited by recombination.

In this paper, we add three enhancements to GPX. First,
GPX is adapted for use with the asymmetric TSP (ATSP).
The new operator is called GAPX: Generalized Asymmetric
Partition Crossover. This means that GAPX considers the
direction in which the tour (solution) is moving along each

edge during recombination. GAPX can still be applied to
the symmetric TSP. Second, GAPX exploits cuts that break
nodes of degree 4 of the union graph between two parent so-
lutions as a site for crossover. IPT also exploits “cuts” at
vertices of degree 4 during recombination. While IPT ap-
pears to haveO(n2) complexity in the worst case, Helsgaun’s
implementation of IPT is often efficient because recombina-
tion can only occur at common edges, or at vertices of degree
four. The third enhancement allows GAPX to identify par-
titions with multiple entries and exits, i.e., subgraphs with
more that two points connecting the partition to the rest of
the union graph. Both the original GPX operator and the
IPT operator exploit only subgraphs with 1 entry and 1 exit.
These three enhancements do not change the complexity of
the original GPX; the cost of recombination is O(n), where
n is the number of cities in the TSP. GAPX can find more
feasible recombinations than GPX or IPT, and thus, it can
exploit a larger number of possible offspring.

In Section 3, GAPX is evaluated in two ways: first, as
a recombination operator inside a Genetic Algorithm (GA)
using local search based on 3-opt moves; second, as a re-
combination operator used to improve solutions generated
by multi-trial LKH. The experimental results indicate that
the GAPX can be employed to produce very competitive al-
gorithms for the ATSP. This paper is concluded in Section
4 with a discussion of future work.

2. GAPX
Whitley et al. [13] presented the GPX operator for the

symmetric TSP. Both GPX and GAPX recombine solutions
by exchanging subpaths that contain edges not shared by
the parents. The subpaths are identified by removing the
common edges of the union graph Gu = G1 ∪ G2, where
G1 = (V,E1) and G2 = (V, E2) are the parent solutions,
and connected components are found using Breadth First
Search in the remaining graph. The solutions generated by
partition crossover (PX, GPX or GAPX) are always Hamil-
tonian circuits [12]. If there are k connected components
representing feasible partitions, then 2k − 2 offspring differ-
ent from the parents can be generated by crossover [13]. As
the evaluation of a Hamiltonian cycle length is the sum of
the subpaths inside and outside the recombining partitions
in the TSP, the best of the 2k−2 offspring solutions is found
by selecting the best partial solution for each subgraph par-
tition. In practice, the GPX operator has been observed to
exploit as much as 27 partitions, and the set of reachable
offspring contained more than 226 = 64 million local op-
tima. GPX, IPT, and GAPX all return the best of the 2k

offspring; GAPX is guaranteed to yield a larger value of k
than GPX or IPT.

Previous work has also shown that if the parent solutions
are local optima, the majority of the offspring are also local
optima [12]. This is due to the fact that no feasible partition
can be further improved by local search; if this is true for
the parents, it must also be true for the offspring. The only
local search move than can improve a solution after GAPX
(or GPX) is one that moves multiple cities distributed across
multiple partitions, and this type of improving move is rare.

Figure 1 illustrates two ideas: it illustrates how recom-
bination exploits partitions of the graph Gu and it also il-
lustrates how a graph can be divided at a vertex of degree
4. Let the red (dashed) lines represent parent one and blue
(solid) lines represent parent two. First consider the middle

graph. A partition exists which cuts only 2 common edges.
This creates a single entry and exit from each subgraph.
Given one entry and exit, a tour can be broken at these
“cuts” and recombination will always yield new distinct and
feasible offspring [12]. If there are multiple partitions that
cut 2 common edges, this process can be repeated (i.e., iter-
ated). The leftmost graph illustrates another idea: nodes of
degree 4 can be “split”. If vertex 6 in Figure 1 is broken into
vertices 6 and 6’, with a zero cost on the new edge, the graph
can again be partitioned by cutting common edges. We will
denote 6’ as a ghost vertex. Ghost vertices are removed after
recombination.

One possible challenge with creating ghost vertices is that
every vertex of degree 4 can be split in two ways, because the
ghost vertex might be inserted before or after the original
vertex. Thus, if there are O(n) vertices of degree 4, there are
potentially O(2n) different graphs that might be generated
by splitting vertices of degree 4. In practice, this problem
is resolved by recognizing that the desired graph is obtained
by doing the insertion consistently. All vertices of degree 4
are split by consistently inserting the ghost vertex immedi-
ately after the original vertex. In the ATSP this is sufficient
to correctly split all of the vertices of degree 4 because all
solutions are directional. In the symmetric TSP, each solu-
tion can be thought of as being bi-directional since the tour
can be navigated in a clockwise or counter-clockwise fashion.
Luckily, it does not matter which direction is chosen as long
as the insertion of ghost vertices is done consistently after
(or before) the original vertex.

We will refer to the direction of movement from one vertex
to the next as the “flow” of the Hamiltonian circuit. The
direction of “flow” is particularly important for the ATSP.
This process is captured in the following procedure.

Procedure 1: Create a ghost vertex in G1 and G2 for each
vertex with degree 4 in Gu. Determine the direction of flow.
Insert the ghost vertex immediately after the original vertex
of degree 4 in both G1 and G2. The common edge between
the original vertex and the ghost vertex is assigned weight 0.

After ghost vertices are inserted, we ask which common
edges partition the graph. If a partition yields a single en-
try and exit point, then recombination can occur and will
yield a new Hamiltonian circuit. The properties of GPX are
explained in more detail by Whitley et al. [12, 13]. Using
GAPX to split vertices of degree 4 is illustrated in the fol-
lowing example (see Figure 1). The * symbol illustrates the
(only) location where respectful recombination is feasible.

Parent 1: 11 * 1 2 3 4 5 6 * 6’ 7 8 9 10

Parent 2: 11 * 1 3 2 5 4 6 * 6’ 8 7 10 9

Offspring 1: 11 * 1 2 3 4 5 6 * 6’ 8 7 10 9

Offspring 2: 11 * 1 3 2 5 4 6 * 6’ 7 8 9 10

GAPX is illustrated on a more complex example in Figure
2. In this case, there are 3 partitions and thus there are
2k − 2 = 8− 2 = 6 possible offspring. It is not necessary to
generate all offspring; the best possible offspring is obtained
by selecting the best subpaths inside each subgraph [12].

Splitting a vertex of degree 4 does not necessarily divide
the graph into connected subgraphs. This can be seen by
considering the vertices 10, 10’, 13, 13’, 15 and 15’ in Figure
2. These nodes are also split but do not yield common edges
that can be used to divide graph Gu.

3 4

7

89

10

6’

6
1

1111

1

2 5
6

(a) (b) (c)

Figure 1: Recombination by breaking vertices of degree 4. a) The blue (solid) and red (dashed) solutions can
be recombined by breaking the graph into two subgraphs, where each subgraph has only one entry and exit
for both tours. b) Vertices of degree 4 (vertex 6 in this case) are split into two vertices (6 and 6’), with a
dummy (zero cost) edge between them. The graph is then cut or “partitioned” using common edges. c) One
of the offspring generated by recombination.

Figure 2: GAPX applied to an example with 15 vertices. a) Insertion of the ghost nodes after vertices with
degree 4 with nodes 9’, 10’, 13’, 14’ and 15’ being ghost nodes; b) After removing the common edges three
connected components are identified; c), d), e) Because the simplified graphs are equal for both solutions,
the three candidate partitions are feasible partitions for recombination.

2.1 GAPX for the ATSP
For the ATSP, GAPX considers an edge as a common

edge only if the respective edges in both parents have the
same flow direction, e.g., the union of edge (1,2) and (1,2)
is a common edge, while the union of edge (1,2) and (2,1) is
not a common edge. GAPX also recognizes more complex
partitions that can have multiple entries and exits.

GAPX generates offspring in the following way. 1) Gen-
erate graph Gu by merging the parents, G1 and G2. 2) Split
vertices of degree 4 by inserting ghost vertices after the orig-
inal vertex; denote the new graph as G′

u. 3) Delete the com-
mon edges from G′

u and identify the connected subgraphs;
copy the common edges to the offspring. 4) Determine if
the connected subgraphs are feasible partitions. 5) Copy the
edges from the shortest subpath for each feasible partition.

A feasible partition is one where both tours enter at the
same entry points, both tours visit all of the vertices of the
partition, and both tours exit at the same exit points. Both
IPT and the original GPX use only partitions with a single
entry and exit, with one exception: the “residual graph”
can have multiple entry and exit points. For example, in
Figure 2 there are two partitions with a single entry and exit.
After the feasible partitions are processed, the remainder
of the graph has multiple entries and exits. After feasible

partitions are identified, the remainder of the graph is also
considered a feasible partition for recombination.

GAPX can be applied to the symmetric TSP by arbitrarily
selecting the direction of flow. Thus, the label of entry or
exit is arbitrary (i.e. exchangable) but fixed.

2.2 Multiple Entries and Exits Partitions
The second major contribution of this paper is a proce-

dure to identify feasible partitions with multiple entries and
exists. After identifying the connected components in the
graph obtained from removing the common edges of G′

u,
the obtained partitions must be tested. Denote these as
candidate partitions. The candidate partitions are connected
components of G′

u after all of the common edges are deleted.
All of the vertices in a candidate partition must be reachable
by traversing single edges (not common edges). If a vertex
has only one edge that connects to another vertex in the
connected components, then it is a potential entry or exit.

If a partition subgraph is not a feasible partition for re-
combination, it cannot be used to generate a Hamiltonian
cycle. To test if a candidate partition is a feasible partition,
the following test is applied.

Procedure 2:

i) For each candidate partition, create a simplified di-
rected graph Gin for each Hamiltonian cycle (parent)

containing only the entry and exit vertices found in
each candidate partition. Replace the path inside the
candidate partition between each entry and respective
exit vertices by only one edge;

ii Verify if the simplified graphs inside the candidate par-
tition are equal for both parents. If the simplified graphs
are equal, the candidate partition is a feasible partition
under recombination.

The identification of the entry and exit vertices, as well the
edges connecting them, can be done by visiting each vertex
of G′

u following the paths given by G1 and G2. Therefore,
all simplified graphs Gin can be constructed in O(n) time.

Figure 3: GAPX applied to an example with par-
titions with multiple entries and exits. a) Assume
we know the direction of “flow”; b) Ghost vertices
are inserted after vertices with degree 4 (Procedure
1); c) After removing the common edges, the two
connected components are identified; d), e) Each
candidate partition generates two simplified graphs,
one for each solution. Because the simplified graphs
are equal, the two candidate partitions are feasible
partitions for recombination (Procedure 2). If the
paths inside one partition are exchanged, the off-
spring must be Hamiltonian cycles.

Examples of the application of procedures 1 and 2 are
given in figures 2 and 3. In Figure 2 GAPX identifies the 2
feasible cuts yielding 3 feasible partitions. In Figure 3, there
are two entry points and two exit points and two feasible
partitions. Note that vertices 1, 5, 7 and 10 are all connected
vertices reachable by single edges; similarly, 2, 4, 8 and 9 are
all connected vertices. Thus GAPX identifies a feasible cut
that cross 4 instead of 2 common edges. The implementation
of GAPX is described in Algorithm 1.

When compared to the original GPX, the following dif-
ferences can be observed: i) Step 1 is not present; ii) The
common edges are independent of the flow direction (Step

Algorithm 1 GAPX

Step 1. Insert a ghost vertex immediately after each vertex
with degree 4 in both Hamiltonian cycles. The common edge
between the original vertex and the ghost vertex has weight
0 (Procedure 1). The graphs G1 and G2 (parents) with the
added ghost vertices are respectively denoted G′

1
and G′

2
.

Step 2. Create a union graph G′

u = G′

1 ∪G′

2.
Step 3. Remove all common edges (with same flow direction)
of G′

u = G′

1
∪G′

2
.

Step 4. Use Breadth First Search to find the connected com-
ponents of Gu to identify the candidate partitions for recombi-
nation.
Step 5. Determine if the candidate recombining partitions are
feasible partitions for recombination. To test each candidate
partition, create 2 simplified graphs, one for each parent. The
simplified graphs should contain as vertices only the entry and
exit vertices of the candidate partition. Inside the partition,
replace the path between each entry and respective exit vertex
by a single edge. Verify if the two simplified graphs are equal
(Procedure 2). If the graphs are equal, the candidate partition
is a feasible partition for recombination.
Step 6. Apply crossover by finding the shortest path inside
each feasible partition.

3); iii) The identification of recombining partitions (Step 5)
is made by testing if the candidate partition has one entry
and one exit.

2.3 Analysis
In this section, we present a theorem stating that recombi-

nation using GAPX results in offspring that are Hamiltonian
circuits. Recall that GAPX cuts only common edges with
same flow direction for both parents. For the symmetric
TSP, the flow directions can be the same, or exactly the op-
posite. The following lemmas are about the identification of
the cutting points for the candidate partitions.

Lemma 2.1. The direction of flow across a common (cut)
edge separating feasible partitions is the same for both Hamil-
tonian cycles (parents) for the ATSP. In the case of the sym-
metric TSP, the direction of flow must be consistent across
cuts.

Proof. Edges must be copied to the offspring in the same
order that they appear in the parents. A cutting point that
is an entry for the path given by one parent and an exit for
the path given by the other parent would cause the inversion
of the paths in the offspring for an ATSP. For the symmet-
ric TSP, if all of the “cut” common edges consistently have
reversed flow, the flow direction of one of the parents (which
parent is arbitrary) can be reversed.

Lemma 2.2. A entry or exit of a recombining partition in
G′

u = G′

1 ∪ G′

2, where G′

1 and G′

2 are created from graphs
G1 and G2 using Procedure 1, can only be a common edge
of G′

1 and G′

2.

Proof. Entry and exit points must connect all of the
feasible partitions. The procedure that creates ghost vertices
removed all vertices with degree 4 in the union graph. Thus,
all cut points in the graph must cut both Hamiltonian cycles
in the same place, and this only happens when common
edges are cut.

Theorem 2.3. The candidate partitions identified using
Procedure 2 are feasible partitions for recombination. The
result of recombination using these feasible partitions yield
Hamiltonian circuits.

Proof. For the previous lemmas, one can observe that
the entry and exit vertices of a candidate partition are en-
tries or exits for both Hamiltonian cycles (parents). How-
ever, the order in which the entry/exit pairs are visited can
be different for the paths given by each parent.

Let G
p1
in = (Vs, E

p1
in) and G

p2
in = (Vs, E

p2
in) denote the

simplified graphs for the parents with edges representing
the paths inside the partition, where Vs contains the en-
try/exit vertices of the partition and E

pi
in are edges repre-

senting the paths inside the partition for parent pi. Let
G

p1
out = (Vs, E

p1
out) and G

p2
out = (Vs, E

p2
out) denote the sim-

plified graphs for the parents with the edges representing
paths outside the partition, where E

pi
out are edges repre-

senting the paths outside the partition for parent pi. Then
the combined simplified graphs in the two offspring oi are
Go1

s = (Vs, E
p1
in ∪ E

p2
out) and Go2

s = (Vs, E
p2
in ∪E

p1
out).

If Ep1
in = E

p2
in , then the combined graphs of the offspring

are equal to the simplified combined graphs for the par-
ents, i.e., Gp1

s = G
p1
in ∪ G

p1
out and Gp2

s = G
p2
in ∪ G

p2
out. Since

the simplified combined graphs for both parents are Hamil-
tonian cycles, the offspring generated in this way are also
Hamiltonian cycles. One can observe that the same proce-
dure cannot be adopted for testing if Gp1

out is equal to G
p2
out

because these simplified graphs can be changed by other re-
combining partitions.

Theorem 2.4. The time complexity of the GAPX opera-
tor is O(n).

Proof. Procedure 1 generates vectors with size equal to
the number of vertices of degree 4 (nv4) plus the number
of cities (n). As nv4 < n, the procedure is O(n). The
same complexity O(n) is observed in steps 2, 3, 4, and in
the procedure used to identify the entries and exits in the
partitions. When Procedure 2 is applied to test the i-th
candidate partition, two simplified graphs with size nio(i)
are built, where nio(i) is the number of entries and exits
in the i-th candidate partition. As the sum of nio(i) for
all candidate partitions is equal or less than the number of
nodes in the union graph, then the procedure is O(n).

2.3.1 Observations and Opportunities

Using GAPX, all feasible partitions for recombination in
graph Gu must cut an even number of common edges. How-
ever, one can prove that not all partitions that cut an even
number of common edges yields a feasible partition for re-
combination. In some cases there are connected subgraphs
that do not yield feasible partitions and cannot be combined
to yield feasible partitions. In other cases, two non-feasible
partitions can be unioned to create a feasible partition; we
ignore this in the current implementation because in the
worse case these unions appears to require O(n2) time. This
points to two lines of future research: 1) we have still not
exploited all of the ways in which respectful and transmit-
ting recombination can be used to find improved solutions
and 2) we continue to explore how to identify more of these
partitions in O(n) time.

3. EXPERIMENTS
The GAPX can be applied as a recombination operator

in different algorithms employed to generate improved so-
lutions for the ATSP. This section demonstrates the ability
of the GAPX to find superior solutions in two different ap-
proaches.

3.1 Genetic Algorithm with GAPX
We apply the GAPX as a recombining operator inside a

Genetic Algorithm (GA) that uses local search based on the
3-opt moves (ls3opt).

In Algorithm 2, ls3opt is applied to random solutions in
order to generate the initial population. Elitism is used to
preserve the current best solution, while tournament selec-
tion (where two individuals are randomly chosen and the
best is selected with probability 0.8) is used to select par-
ents for crossover. If crossover did not improve the best
solution, mutation is applied. In the mutation operator, the
solution is transformed, with same probability, by: a 2-opt
move, a double bridge move and ls3opt. While 3-opt and
double bridge moves keep the order between cities, 2-opt
moves allow the inversion of subpaths between two cities in
the solution. In order to reduce the computational time of
the local search procedure, the ls3opt employed here uses a
limited number of neighbor vertices in the 3-opt moves, and
“don’t look bits” and “first found solution” strategies (we
use the same procedure employed in [8]). In the GA, if the
best solution is not improved in the last 20 generations, the
neighborhood size employed by ls3opt is increased (starting
with 10 cities until a limit of 150 cities or n if it is smaller
than 150). Then, all solutions, with exception of the best so-
lution, are replaced by random solutions optimized by ls3opt
(immigration). The parameters employed here are: popula-
tion size equal to 300 individuals, number of runs equal to
25, and execution until the optimal solution is found or until
a maximum number of 1500 generations.

The GA with GAPX is here compared to 2 other ap-
proaches. All algorithms are exactly the same, except that
they use different crossover operators. This means that dif-
ferences in the results are due to the effectiveness of recom-
bination. The only difference between GPX and GAPX is
that GAPX finds more feasible partitions for recombination.
The three crossover operators were the following:

i) Same-site-copy-first crossover (SSCFX) [11]. SSCFX
was used in the evolutionary algorithm applied to the
ATSP by [14]. This operator has similarities to several
operators from the 1990s that emphasized the inheri-
tance of location and relative position.

ii) GPX adapted to the ATSP. Only partitions with 2 cut-
ting points are used, and vertices with degree 4 are not
considered as possible cutting points. To be applied to
the ATSP, the direction of flow of the common edges is
considered when determining if a connected subgraph
is a feasible partition for recombination.

iii) GAPX. The operator splits nodes of degree 4 and finds
partitions with multiple entries and exits.

Table 1 presents the obtained results for the asymmetric
instances of the TSPLIB [9] (the instances generated from
ftv170 were not employed here). Note that all instances of
the ATSP in the TSPLIB contain less than 500 cities. In
order to allow the comparison to the results obtained by
other algorithms (e.g., the results compiled in [8]), Table
1 presents the follow measures: success, that indicates the
percentage of runs where the global optimum was found;
a-err, that is the average percentage excess with respect
to the global optimum evaluation; a-T , that is the average
computation time for each run in seconds. The experiments
were performed on a Core 2 Quad 2.83 GHz processor.

Algorithm 2 GA with GAPX

P=popInit();
while termination condition is not satisfied do

Q(1)=bestSolution(P);
for i=2 to maxpop do

(p1,p2)=selection(P);
Q(i)=crossover(p1,p2);
if crossover did not improve the solutions then

Q(i)=mutation(Q(i));
end if

end for

if best solution did not improve in last 20 gen. then
increase the neighborhood size used in ls3opt;
Q=immigration();

end if

P=Q;
end while

Of the three operators, the GA with GAPX shows the
best performance; it is the only operator that resulted in
an optimal solution in every case. SSCFX is a disruptive
operator that will often introduce new edges during recom-
bination and there is little to ensure these edges are likely to
be found in competitive solutions. While it was the poorest
of the 3 operators, it did surprisingly well, solving 10 of the
24 test problems with 100 percent success. When we analyze
the final evaluation produced by the GA using SSCFX, we
found that the GA with SSCFX was sometimes trapped in
local optima from which it was not able to escape.

Table 1 shows that GAPX produced better results than
GPX adapted to the ATSP. We know the operators are do-
ing basically the same thing; the only difference is that the
new operator is able to find more feasible partitions for re-
combination. This means that GAPX is breaking the parent
solutions into more and smaller subgraphs; both operators
make greedy choices when selecting the best solutions from
each subgraph. In the worst case, i.e., when GAPX cannot
find any additional feasible partition for crossover, both op-
erators generate the same offspring. In the best case, the
new operator finds additional offspring that are guaranteed
to be as good or better than the offspring produced by GPX;
GAPX can generate all of the offspring found by GPX, plus
more offspring not found by GPX.

When compared to the results of state-of-art evolution-
ary computation approaches compiled in [8], the GA with
GAPX presents better performance for a-err (and success)
than the GA in [2], the Memetic Algorithm (MA) in [1], and
the MA in [14]. The GA with GAPX displays similar perfor-
mance to the GA using the edge assembly crossover (EAX)
of Nagata [8]. The GA with EAX had 100 percent success
on 23 of 24 instances, while the GA with GAPX displayed
100 percent success on all instances. However, the runtime
costs (labeled a-T in our Table 1) reported by Nagata et al.
[8] were significantly lower.

The GA with EAX uses the concept of AB-cycles to copy
the edges of the parents to the offspring and, in order to pro-
duce Hamiltonian cycles, introduces new edges not present
in the parents. The results presented in [8] are generated
by the consecutive application of the EAX crossover opera-
tor from a initial population of 300 individuals generated by
ls3opt. It would appear that the lower runtime cost is due
to the fact that ls3opt (which is costly) is not used by the
GA with EAX after the population is initialized.

EAX and GAPX should be viewed as being complemen-
tary rather than competitive. EAX is more explorative, and
generally exploration is costly. An application of the EAX
operator is more expensive that applying GAPX. However
EAX is less expensive that the ls3opt local search opera-
tions; the results of Nagata suggest that EAX could be used
instead of ls3opt to provide the exploration that is needed.
GAPX is more exploitative than EAX, because GAPX ag-
gressively finds the best local optima reachable from the
available set of solutions that are undergoing recombination.
But GAPX can only utilize the edges that are available in
the set of solutions that are undergoing recombination, it
does not create or destroy new edges.

In the next section, we illustrate other ways in which
GAPX can be used as a low cost exploitive operator.

3.2 Lin-Kernighan-Helsgaun (LKH)
and LKH using GAPX

While not initially developed for the ATSP, the LKH al-
gorithm is capable of yielding very impressive results for
the ATSP. This is accomplished by transforming the ATSP
into a symmetric TSP by doubling the size of the original
problem. Both LKH and the Concorde Branch and Bound
use this transformation. If city A appears in the symmetric
TSP, then two cities A1 and A2 created from A will appear
in the ATSP. A1 can only be a destination and A2 can only
be a point of origination, and the cost of going from A1 to
A2 is zero, while the cost of going from A2 to A1 is infinite
(or prohibitively large).

LHK [5] is able to find the optimal solution for all asym-
metric instances of the TSPLIB. As with the GA with EAX,
LHK results in an optimal solution with lower frequency
than the GA with GAPX (i.e., a-err and success are bet-
ter for GAPX compared to LKH), but LKH displays lower
runtime costs (as measured by a-T). The LKH results also
appear to be superior to EAX: EAX solved 121 out of the
126 instances [8] presented in [10] in at least one of 100 runs,
while LKH solved all 126 instances [6].

This section uses GAPX to improve solutions generated by
the multi-trial LKH using the default parameters [6]. Hains
et al. [4] describe two ways to do this for the symmetric
TSP: i) generate solutions from LKH across runs represent-
ing multiple runs of LKH, or ii) generating solutions from
LKH across restarts of the same run.

Applying GAPX “across runs” means that multiple runs
of LKH are being used, and as local optima are found by
the different runs, GAPX recombines the solutions to look
for better solutions. When using GAPX across runs, the
new solutions found by GAPX are not re-inserted into the
search process. This means that GAPX runs as an isolated
side process recombining the solutions found by LKH, but
it does not influence LKH in any way.

LKH is a form of iterated local search that uses a “kick”
operator to escape local optima. LKH already uses IPT
before applying the kick operator. In the version of LKH
we have investigated, IPT recombines the current local op-
timum with the previous best local optimum. Applying
GAPX “across restarts” means that when LKH would nor-
mally apply IPT, we apply GAPX instead; also, instead of
just recombining the current local optimum with the previ-
ous best local optimum, we save all of the previously dis-
covered local optima and recombine the best solution so far
with all of the other local optima.

Table 1: Results for the GA with: same-site-copy-first crossover (SSCFX) [11]; adapted GPX; GAPX.

Problem SSCFX [11] adapted GPX GAPX
success a-err a-T success a-err a-T success a-err a-T

br17 100 0.000 0.02 100 0.000 0.03 100 0.000 0.03
ftv33 100 0.000 0.36 100 0.000 0.34 100 0.000 0.21
ftv35 88 0.016 24.55 92 0.011 23.00 100 0.000 0.75
ftv38 52 0.063 57.87 92 0.010 45.05 100 0.000 1.83
p43 100 0.000 16.31 100 0.000 16.05 100 0.000 7.02
ftv44 100 0.000 4.34 100 0.000 1.42 100 0.000 1.08
ftv47 76 0.081 76.32 100 0.000 28.67 100 0.000 2.45
ry48p 52 0.265 114.08 100 0.000 29.79 100 0.000 2.82
ft53 100 0.000 33.15 100 0.000 27.83 100 0.000 3.57
ftv55 100 0.000 21.06 100 0.000 11.70 100 0.000 1.10
ftv64 92 0.065 70.72 100 0.000 57.66 100 0.000 3.19
ft70 64 0.032 242.90 92 0.004 169.61 100 0.000 16.26
ftv70 72 0.068 249.84 64 0.074 313.30 100 0.000 10.98

kro124p 56 0.124 954.02 92 0.002 606.14 100 0.000 34.84
ftv170 44 0.501 4600.13 40 0.672 5270.10 100 0.000 1243.55
rbg323 100 0.000 32.05 100 0.000 39.13 100 0.000 31.68
rbg358 100 0.000 390.60 100 0.000 432.25 100 0.000 301.12
rbg403 100 0.000 74.23 100 0.000 80.05 100 0.000 78.85
rbg443 100 0.000 31.83 100 0.000 26.97 100 0.000 29.97

success: % of successful runs; a-err: average % excess; a-T : average computation time (in sec.).

In the experiments presented here, we used LKH apply-
ing GAPX “across runs.” In this case, GAPX does not in-
terfere in the LKH heuristic. Also, GAPX can be applied to
the original ATSP without needing to transform it into the
(twice as large) symmetric TSP.

We again use the controlled experiments similar to those
used by Hains et al. [4]. The experiments were executed
25 times, each time with a different random seed for LKH.
For each execution, LKH was run with 10 hard restarts, and
each run was allowed 50 soft restarts; thus a total of 500
locally optimal solutions are generated for each execution.
Assume the 10 hard restarts are being executed as 10 parallel
runs. After the ith soft restart, we obtain 10 solutions from
each parallel run. After the first restart, we add the best
solution found so far by GAPX to this set. In this way, we
do not lose the best solution found by GAPX until the last
soft restart. This means there are 11 solutions at each soft
restart. The best of the 11 solutions is selected, and it is
recombined with the other 10 solutions. For each execution
of LKH, this process is repeated 50 times, once for each soft
restart. This means that the GAPX operator is applied 500
times for each execution of LKH. Thus, LKH will sample
500 locally optimal solutions, and GAPX will generate an
additional 500 locally optimal solutions. By adding GAPX
in this way, we can never do worse than multi-trial LKH,
but GAPX can potentially find better solutions.

Table 2 shows results over 25 executions for the best so-
lutions in 4 real ATSP instances with more than 800 cities
[3] and for instances generated by inserting random Gaus-
sian deviations (with standard deviation equal to 0.2wij) to
each weight wji in the symmetric TSPs generated from cities
randomly distributed according to uniform distribution (E1k
and E3k) or clusters of cities (C1k and C3k) [3]. Also, the
statistical comparison using the non-parametric Wilcoxon
signed-rank test with significance level 0.02 is presented.

GAPX presented better average results for 15 out of 16
instances, and improved the best solution found by LKH
12 times. In the multi-trial LKH, IPT is employed to re-
combine the solution found in the current trial to the best
solution found in the run and to recombine the final best

solutions between runs. Thus even after the application of
IPT, GAPX was still able to recombine the solutions and
generate improved solutions. It is important to observe that
GAPX is dependent on the quality and diversity of the so-
lutions produced in the different runs of LKH. When the
diversity of the solutions produced in different runs of LKH
is low, there is less diversity to exploit and GAPX generally
produces fewer improvement. In the experiments shown in
Table 2, the lowest diversity between the evaluations across
the runs (in each execution) was produced for the instance
td1000. For problems were LKH finds good solutions very
fast, GAPX is not capable to improve the results because
the diversity across the runs is low after a few trials of LKH.

4. CONCLUSIONS
In this paper, a new version of partition crossover is pre-

sented. The major contributions are mechanisms that allow
GAPX to: i) consider vertices of degree 4 as potential cut-
ting points for the feasible partitions for recombination; ii)
exploiting feasible partitions with any even number of cut-
ting points; iii) performing these operators in O(n) time.
The original GPX operator only recombined partitions with
one entry and exit point, and only cut common edges. The
IPT operator does recombination by exploiting vertices of
degree 4, but the description of the operator results in O(n2)
complexity. These properties result in a high probability of
generating locally optimal solutions if the parents are local
optima, which is very helpful in escaping from local optima.
Also, our search strategies apply recombination much more
frequently than does the LKH algorithm.

GAPX exploits and explores more solutions than GPX
or IPT. Given k feasible partitions, 2k − 2 solutions differ-
ent from the parent solutions are generated by any partition
crossover operator. This is true for GPX, IPT and GAPX.
Because GAPX finds more partitions, the number of solu-
tions explored by GAPX increases exponentially.

Very competitive results were generated using the GAPX
in the experiments performed here. The GAPX can be used
in combination with other search methods. This was demon-
strated by applying it in two different approaches: i) as a

Table 2: Results for LKH and LKH+GAPX. The last column shows the results of the statistical comparison
(+ indicates better performance for LKH+GAPX and = indicates similar performance).

Problem n LKH LKH+GAPX Statistical Test
mean+std best mean+std best

dc849 849 37570.8 ±10.5 37556 37569.7 ±10.7 37552 +
dc895 895 108247.0 ±53.2 108130 108217.2 ±59.1 108050 +
dc932 932 481413.6 ±115.7 481178 481340.9 ±119.0 481123 +
td1000 1001 1242210.6 ±108.2 1242183 1242210.6 ±108.2 1242183 =
C1k0a 1000 10114604.9 ±20532.7 10082973 10113136.2 ±20950.2 10080354 +
C1k1a 1000 10032272.4 ±12865.5 10018188 10031731.7 ±12922.4 10018188 +
C1k2a 1000 9475235.9 ±40639.6 9432171 9472372.2 ±41076.8 9427838 +
C3k0a 3162 17387429.6 ±27973.5 17337642 17386118.9 ±28121.6 17335639 +
C3k1a 3162 16977847.2 ±51494.6 16900660 16976991.4 ±51012.3 16900660 +
C3k2a 3162 17584664.4 ±60515.7 17459990 17584018.6 ±60703.9 17459508 +
E1k0a 1000 22107830.2 ±35056.4 22041858 22102500.2 ±34363.0 22041858 +
E1k1a 1000 21807800.6 ±34677.8 21760078 21803461.9 ±30111.9 21754715 +
E1k2a 1000 22002493.0 ±38596.9 21932612 21990489.1 ±40564.8 21924819 +
E3k0a 3162 39062713.8 ±66376.4 38945473 39030295.6 ±68831.6 38916452 +
E3k1a 3162 38859134.2 ±97705.1 38659539 38832147.1 ±98882.3 38647128 +
E3k2a 3162 38841077.8 ±65879.6 38705784 38803683.3 ±68168.7 38660737 +

recombination operator in a GA, it was able to find the
global optimum in all runs for instances in TSPLIB; ii) as
an external-improvement operator used to improve locally
optimal solutions produced by multi-trial LKH, GAPX was
able to improve solutions in 12 out of 16 instances with more
than 800 cities.

GAPX can be used to improve the results of any itera-
tive method that generates multiple local optima; it collects
these local optima into a population and then recombines
the best solution with the other solutions in the population.
This can also be done online or offline.

We know that GAPX still does not exploit all possible
partitions. We can prove that there exits non-feasible parti-
tions that can be merged or “fused” into a feasible partition
for recombination. In this worse case, this “fusion” could
have O(n2) cost, but it is possible this complexity can be
reduced by developing more efficient methods to recognize
which non-feasible partitions should be fused and which non-
feasible partition should not be fused. Finally, GAPX can
be used for other types of TSPs, including dynamic TSPs
and symmetric TSPs. Applying GAPX to the symmetric
TSP is a natural future step of this work.

5. ACKNOWLEDGMENTS
Renato Tinós was a visiting researcher in the Department

of Computer Science at CSU. The visit of the researcher was
made possible by the support provided by FAPESP (un-
der grant 2012/22200-9), USP, and CSU. This research was
sponsored by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF (under grant FA9550-11-
1-0088). The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

6. REFERENCES
[1] L. Buriol, P. M. França, and P. Moscato. A new

memetic algorithm for the asymmetric TSP. Journal
of Heuristics, 10(5):483–506, 2004.

[2] I.-C. Choi, S.-I. Kim, and H.-S. Kim. A genetic
algorithm with a mixed region search for the
asymmetric TSP. Comp. & Op. Res., 30(5):773–786,
2003.

[3] J. Cirasella, D. S. Johnson, L. A. McGeoch, and
W. Zhang. The asymmetric TSP: algorithms, instance
generators, and tests. In Alg. Eng. and
Experimentation, pages 32–59. Springer, 2001.

[4] D. Hains, D. Whitley, and A. Howe. Improving
Lin-Kernighan-Helsgaun with crossover on clustered
instances of the TSP. In Proc. of PPSN XII, pages
388–397. Springer, 2012.

[5] K. Helsgaun. An effective implementation of the
Lin-Kernighan traveling salesman heuristic. European
Journal of Oper. Res., 126(1):106–130, 2000.

[6] K. Helsgaun. LKH results for Soler’s ATSP instances.
http://www.akira.ruc.dk/ keld/research/LKH/, April
2012.

[7] A. Möbius, B. Freisleben, P. Merz, and M. Schreiber.
Combinatorial optimization by iterative partial
transcription. Phys. Rev. E, 59(4):4667, 1999.

[8] Y. Nagata and D. Soler. A new genetic algorithm for
the asymmetric TSP. Expert Syst. with Applications,
39(10):8947–8953, 2012.

[9] G. Reinelt. TSPLIB 95. http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/,
1995.

[10] D. Soler, E. Mart́ınez, and J. Micó. A transformation
for the mixed general routing problem with turn
penalties. Journal of the Oper. Res. Soc.,
59(4):540–547, 2007.

[11] H.-F. Wang and K.-Y. Wu. Hybrid genetic algorithm
for optimization problems with permutation property.
Comp. & Op. Res., 31(14):2453–2471, 2004.

[12] D. Whitley, D. Hains, and A. Howe. Tunneling
between optima: partition crossover for the TSP. In
Proc. of GECCO’09, pages 915–922, 2009.

[13] D. Whitley, D. Hains, and A. Howe. A hybrid genetic
algorithm for the TSP using generalized partition
crossover. In Proc. of PPSN XI. Springer, 2010.

[14] L.-N. Xing, Y.-W. Chen, K.-W. Yang, F. Hou, X.-S.
Shen, and H.-P. Cai. A hybrid approach combining an
improved genetic algorithm and optimization
strategies for the asymmetric TSP. Eng. Applications
of Art. Int., 21(8):1370–1380, 2008.

