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ABSTRACT
Decomposition is integral to most image processing algo-
rithms and often required in texture analysis. We present a
new approach using a recent 2-dimensional exponential anal-
ysis technique. Exponential analysis offers the advantage of
sparsity in the model and continuity in the parameters. This
results in a much more compact representation of textures
when compared to traditional Fourier or wavelet transform
techniques. Our experiments include synthetic as well as
real texture images from standard benchmark datasets. The
results outperform FFT in representing texture patterns with
significantly fewer terms while retaining RMSE values after
reconstruction. The underlying periodic complex exponential
model works best for texture patterns that are homogeneous.
We demonstrate the usefulness of the method in two com-
mon vision processing application examples, namely texture
classification and defect detection.

Index Terms— Exponential analysis, multivariate, image
decomposition, texture analysis.

1. INTRODUCTION

Frequency decomposition is a fundamental but challeng-
ing inverse problem to most image and signal processing
applications. Major approaches can be categorised into 1)
template based convolution methods, e.g., Fourier [1], co-
sine [2] or wavelet transforms [3] and 2) data driven adaptive
approaches, e.g., empirical mode decomposition (EMD) [4]
or empirical wavelet transform (EWT) [5]. Template based
transforms are considered to be rigid and rely on predeter-
mined basis functions or frames that are agnostic of the input
image. On the contrary, adaptive techniques are flexible
and often provide a better representation of the data. One
common challenge across all these methods is the model
cardinality of the frequency domain representation, which
is often dictated by the available data granularity. Also, the
mentioned techniques do not exploit in any way the structure
present in the available data, such as in texture data. This pa-
per proposes a new image decomposition technique using the

recent multivariate exponential analysis in [6], with the aim
to decompose texture images using a minimal representation.

In the past few years, multidimensional exponential anal-
ysis has attracted considerable attention in computational
mathematics as well as in signal processing. In the 1-
dimensional case, the Prony-like exponential analysis meth-
ods, such as matrix pencil [7], ESPRIT [8], TLS-Prony [9]
have all been successfully applied in solving many practi-
cal problems. At the same time, several multi-dimensional
versions of these Prony-like methods have been developed,
e.g., [10–15]. However, due to complexity issues, until re-
cently these methods were not very suitable to serve as a
general tool for higher-dimensional decomposition.

In [6], a d-dimensional exponential model of n terms
can be recovered from O((d + 1)n) regularly collected sam-
ples, which is substantially less than other multi-dimensional
Prony-like methods, where the sample usage and computa-
tional complexity explode exponentially. This opens a wealth
of possibilities, including certain image processing applica-
tions. Texture is a fundamental component of any image and
is encountered in most image analysis problems. Therefore, it
is no surprise that it is a very intensively researched area [16].

This paper explores the use of the multivariate exponen-
tial analysis presented in [6] as a new image decomposition
technique that can express regular texture patterns with sub-
stantially fewer parameters. The key focus of this work con-
stitutes the mathematical formulation of a new decomposition
technique validated on both synthetic and real images avail-
able from benchmark data sets. We also show usage scenarios
by applying our technique in texture classification and defect
detection. The main contributions of our work are:

• Formulation of multivariate exponential analysis as a
new image decomposition tool,

• Sparse image representation and reconstruction with a
limited number of terms, and

• Use of exponential analysis in texture classification and
defect detection.



2. EXPONENTIAL IMAGE ANALYSIS

We approach image decomposition as a two-dimensional ex-
ponential analysis problem. That is, we seek to determine n
and retrieve αj , φjx, φjy ∈ C from as few evaluations of

f(x, y) =

n∑
j=1

αj exp(φjxx+ φjyy), (1)

as possible, where (x, y) is the location of a pixel and f(x, y)
the value at the corresponding pixel. When f(x, y) is periodic
such as in some textures, and can be decomposed as a linear
combination of sine and cosine functions, then φjx and φjy

are purely imaginary.
The method we present is based on the new sparse algo-

rithms [6, 17] requiring only O(3n) samples to analyze (1).
We now summarize the 2-d idea explained in [6]. How to
combine this with the 1-d technique of [17] is further detailed
in [18].

Let ∆ = (∆x,∆y) 6= (0, 0) and δ = (δx, δy) 6= (0, 0) be
linearly independent, with

|=(φjx∆x + φjy∆y)| < π, j = 1, . . . , n,

|=(φjxδx + φjyδy)| < π, j = 1, . . . , n, (2)

where =(·) denotes the imaginary part, and let the values
exp(φjx∆x + φjy∆y), j = 1, . . . , n be mutually distinct.
How to deal with non-distinct values is discussed in [6]. We
sample f(x, y) at the equidistant points s∆ and some shifted
locations s∆ + δ:

fs := f(s∆x, s∆y), s = 0, . . . , 2n− 1,

Fs := f(s∆x + δx, s∆y + δy), s = 0, . . . , n− 1.

Then first, the expressions exp(φjx∆x + φjy∆y), j =
1, . . . , n are retrieved as the generalized eigenvalues λj of

f1 f2 · · · fn

f2 · · · fn+1

...
...

fn fn+1 · · · f2n�1

 vj =

λj


f0 f1 · · · fn�1

f1 · · · fn

...
...

fn�1 fn · · · f2n�2

 vj , (3)

where the vj denote the right eigenvectors. Several numerical
methods exist for the solution of this problem, among which
[7, 8, 17] used in Section 3. Because of (2) we can uniquely
retrieve the inner products

Φj := 〈φj ,∆〉, φj = (φjx, φjy), j = 1, . . . , n

from the computed λj = exp(Φj). We’re not yet able to
recover the individual φjx and φjy though.

Second, we rewrite the values Fs as

Fs =

n∑
j=1

αj exp(φjxδx + φjyδy) exp(sΦj)

=

n∑
j=1

Aj exps(Φj), Aj := αj exp(φjxδx + φjyδy)

and we introduce the notations α := (α1, . . . , αn)T , A :=
(A1, . . . , An). We solve the linear systems of interpolation
conditions

1 · · · 1
exp(Φ1) · · · exp(Φn)

...
...

exp2n�1(Φ1) · · · exp2n�1(Φn)

α =

 f0

...
f2n�1

 ,

(4)

and
1 · · · 1

exp(Φ1) · · · exp(Φn)
...

...
expn�1(Φ1) · · · expn�1(Φn)

A =

 F0

...
Fn�1


(5)

and define exp(Ψj) := Aj/αj = exp (〈φj , δ〉) , j = 1, . . . , n.
Note that we have no problem to pair the Ψj to the Φj , j =
1, . . . , n since the Aj are paired to the αj , j = 1, . . . , n
through the Vandermonde systems (4) and (5).

The fact that the vectors ∆ and δ are linearly independent
leads for each j = 1, . . . , n to the regular linear system(

∆x ∆y

δx δy

)(
φjx

φjy

)
=

(
Φj

Ψj

)
from which the individual φjx and φjy can be obtained.

So all unknown parameters in (1) can be retrieved at the
expense of 2n evaluations fs and n evaluations Fs, or a mere
total of 3n samples. In practice, when dealing with noisy real-
life data, the value of n is overestimated by η > n. Moreover,
the minimal number of 3η = 2η + η required samples for an
η-term model of the form (1) is often again overestimated by
N +n withN ≥ 2η and n ≥ η. The square n×n generalized
eigenvalue problem (3), the 2n× n Vandermonde system (4)
and the n×n Vandermonde system (5) then respectively take
the sizes (N − η)× η,N × η and n× η and are all solved in
the least squares sense.

As mentioned, we use a combination of the matrix pen-
cil method studied in [7] with the rank reduction step de-
scribed in [8]. We call this method the TLS-Prony method
(as in [9]), since the first numerical method to perform ex-
ponential analysis was published by the French nobleman de
Prony in 1795 [19].
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