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Abstract

Classical linear-time temporal logic (LTL) is capable of specifying of and
reasoning about infinite behaviors only. While this is appropriate for spec-
ifying non-terminating reactive systems, there are situations (e. g., assume-
guarantee reasoning, run-time verification) when it is desirable to be able to
reason about finite and infinite behaviors. We propose an interpretation of
the operators of LTL on finite and infinite behaviors, which defines an intu-
itionistic temporal logic (ILTL). We compare the expressive power of LTL
and ILTL. We demonstrate that ILTL is suitable for assume-guarantee rea-
soning and for expressing properties that relate finite and infinite behaviors.
In particular, ILTL admits an elegant logical characterization of safety and
liveness properties.
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1 Introduction

Linear-time temporal logic (LTL) [17] is a convenient specification language for
reactive systems. The underlying computational model is that of an infinite be-
havior, i. e., a non-terminating sequence of interactions between the system and
its environment, which makes LTL a specification language for infinite behaviors
only. In theory, this is not a problem because every reactive system with finite (and
infinite) behaviors can be transformed into one which exhibits only infinite be-
haviors. In practice, however, it is sometimes essential to reason about finite and
infinite behaviors simultaneously and, perhaps, to distinguish finite from infinite
behaviors. For example, in run-time verification one needs to relate observed (real)
finite behaviors to specified (ideal) infinite behaviors in order to determine whether
the observations violate the specification or not. Or, in modular verification, one
has to check that a component satisfies an assume-guarantee specification, which
amounts to checking that the component keeps satisfying the guarantee at least as
long an arbitrary environment satisfies the assumption. Here again, assumption and
guarantee are specified as sets of infinite behaviors whereas it is natural to view the
component as a prefix-closed set of finite (and possibly infinite) behaviors.

There are various suggestions as how to extend LTL to finite behaviors. For in-
stance, [12] extends the logic with weak and strong next operators whose interpre-
tations differ at the end of finite behaviors. Likewise, [7] interprets LTL formulas
by weak and strong semantics, which also differ on finite behaviors. In contrast,
we propose a semantics for LTL that treats finite and infinite behaviors uniformly.
Inspired from the above view of reactive systems as prefix-closed sets of finite and
infinite behaviors, our semantics is based on prefix-closed sets. This gives rise to
a Heyting algebra of prefix-closed sets rather than a Boolean algebra (because the
complement of a prefix-closed set need not be prefix-closed), so we end up with
ILTL, an intuitionistic variant of LTL. The idea of using the Heyting algebra of
prefix-closed sets of behaviors as the semantic basis for an intuitionistic logic can
also be found in [3], [2] and [13]. However, the interpretation of the temporal op-
erators of LTL in this Heyting algebra seems novel to this paper. Departing from
the semantic approach to temporal logic, [6] studies a fragment of ILTL, namely
the one generated by the temporal next-operator, using proof-theoretic methods.

In temporal verification, the classification of safety and liveness properties, in-
formally introduced by Lamport [11] and made precise by Alpern and Schnei-
der [4], plays an important role because many (deductive) verification methods are
applicable only to safety or liveness properties. Still, these methods are universal
thanks to the decomposition theorem [4] (and its effective version forω-regular
properties [5]) stating that every linear-time temporal property can be expressed as
a conjunction of a safety and a liveness property. Clearly, a similar classification of
safety and liveness properties and a decomposition theorem for our intuitionistic
logic ILTL would be desirable. We present a novel abstract classification of safety
and liveness properties in a Heyting algebra, which is immediately applicable to
all intuitionistic linear-time temporal logics including ILTL, and we prove a de-
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composition theorem. As the classification only uses the operators of the Heyting
algebras, we obtain a simple logical characterization of safety and liveness and an
effective decomposition theorem for free.

Over the years, there has been a body of work about safety and liveness. In
the direction of generalizing the topology-based results of Alpern and Schneider,
[9] proves a decomposition theorem for disjunctively complete Boolean algebras,
which [15] generalizes to modular complemented lattices. Our results subsume [9]
because every Boolean algebra is a Heyting algebra. However, a modular comple-
mented lattice need not be a Heyting algebra, and vice versa, so [15] is neither
subsumed nor does it subsume our results. Beyond linear-time, [14] proposes a
classification of safety and liveness for branching time. Concerning effective rea-
soning with safety and liveness properties, [12] gives syntactic characterizations
of safety and liveness properties in LTL with past operators; [18] does the same
without using past operators. Interestingly, in the introduction to [16], Plotkin and
Stirling shortly put forward some ideas about an intuitionistic linear-time tempo-
ral logic and a corresponding classification of safety and liveness properties. We
consider it likely that their ideas give rise to the same classification of safety and
liveness as ours.

Plan. Section 2 introduces some notation. Section 3 defines the intuitionistic tem-
poral logic ILTL, compares it to its classical companion LTL and illustrates the use
ILTL as a semantic basis for assume-guarantee specifications. Section 4 introduces
intuitionistic safety and liveness and compares these notions to the classical ones
proposed by Alpern and Schneider [4], and Section 5 presents a more abstract al-
gebraic view on intuitionistic safety and liveness. Section 6 concludes.

2 Preliminaries

Behaviors. We fix a non-empty setAP of atomic propositions. ByΣ, we denote
the power set ofAP . Givenp ∈ AP , we abbreviate the set of sets containingp
by Σp, i. e., Σp = {a ∈ Σ | p ∈ a}. By Σ∞, we denote the set of non-empty
words over the alphabetΣ. Words can be of finite or infinite length, soΣ∞ is
partitioned intoΣ+ andΣω, the sets of finite and infinite words, respectively. Here
in the context of discrete linear-time, a behavior is just a word inΣ∞.

Power set lattice of behaviors.By P(Σ∞) = 〈P(Σ∞),∩,∪〉, we denote the
power set lattice ofΣ∞, ordered by⊆. Frequently, we will refer to the elements of
this lattice as languages or properties.

We call a functionC : P(Σ∞) → P(Σ∞) a closure operator onΣ∞ if C is
inflationary, idempotent and monotone, i. e., for allL,L′ ⊆ Σ∞, L ⊆ C(L) and
C(C(L)) = C(L) andL ⊆ L′ impliesC(L) ⊆ C(L′). We callC a topological
closure operator onΣ∞ if C is a closure operator which distributes over finite joins,
i. e.,C(∅) = ∅ and for allL1, L2 ⊆ Σ∞, C(L1 ∪ L2) = C(L1) ∪ C(L2).
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Boolean algebra of sets of infinite behaviors.Let inf : P(Σ∞) → P(Σ∞) be
defined by mapping a languageL to inf(L) = L∩Σω, the set of infinite behaviors
in L. Note thatinf is an endomorphism of the complete latticeP(Σ∞), in par-
ticular inf preserves infinite joins and meets. ByINF , we denote the range ofinf,
i. e., INF = {inf(L) | L ⊆ Σ∞} = P(Σω). Due toinf being an endomorphism,
INF induces a sublattice ofP(Σ∞), which turns out to be a complete lattice of
sets. In fact,INF = 〈INF ,∩,∪,−,Σω, ∅〉 is a complete Boolean algebra, where
the unary operator− denotes complementation, i. e.,−L = {w ∈ Σω | w /∈ L}.

Heyting algebra of prefix-closed sets of behaviors.Let � be the prefix order
on Σ∞, and letpref(w) = {u ∈ Σ∞ | u � w} denote the set of all prefixes
of a behaviorw ∈ Σ∞. Thus,pref : Σ∞ → P(Σ∞) is a function from be-
haviors to languages. We extend the domain ofpref to languages in the usual
way, i. e., we definepref : P(Σ∞) → P(Σ∞) by pref(L) =

⋃
w∈L pref(w).

Note thatpref is a closure operator onΣ∞, which is why we call a language
in the range ofpref prefix-closed. Moreover,pref preserves infinite joins, yet in
general, it does not preserve meets, not even finite ones. ByPREF , we denote
the range ofpref, i. e., PREF = {pref(L) | L ⊆ Σ∞} is the set of prefix-
closed languages. Despitepref not preserving all meets,PREF induces a com-
plete sublattice ofP(Σ∞), which turns out to be a complete lattice of sets. In
fact,PREF = 〈PREF ,∩,∪,⇒,Σ∞, ∅〉 is a complete Heyting algebra, i. e., for
all languagesL1, L2 ∈ PREF there is a greatest languageL ∈ PREF , namely
L = {w ∈ Σ∞ | pref(w) ∩ L1 ⊆ L2}, such thatL1 ∩ L ⊆ L2. We callL the
relative pseudo-complement ofL1 andL2 and denote it byL1 ⇒ L2.

3 Linear-Time Temporal Logics

The set of formulasForm of the linear-time temporal logics considered in this
paper is defined by the following grammar, wherep ranges over the atomic propo-
sitionsAP , andϕ andψ range overForm.

Form ::= > | ⊥ | p | ϕ∧ψ | ϕ∨ψ | ϕ→ψ | ¬ϕ | Xϕ | Fϕ | Gϕ | ϕUψ | ϕWψ

Forϕ,ψ ∈ Form, we treatϕ↔ ψ as a shorthand for(ϕ→ ψ)∧ (ψ→ϕ). To save
on parenthesis, we adopt the convention that the unary operators¬ (negation),X
(next),F (eventually) andG (always) have the highest binding power, followed by
the binary operatorsU (until) andW (weak until). The remaining binary operators
follow with binding power decreasing in the usual order from∧ (conjunction) to∨
(disjunction) to→ (implication) to↔ (equivalence).

We say that a formula is in negation normal form (NNF) if it does not contain
implication nor equivalence and negation is applied only to atomic propositions.
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Modc(>) = Σω Modc(⊥) = ∅
Modc(ϕ ∧ ψ) = Modc(ϕ) ∩Modc(ψ) Modc(¬ϕ) = −Modc(ϕ)
Modc(ϕ ∨ ψ) = Modc(ϕ) ∪Modc(ψ) Modc(ϕ→ ψ) = Modc(¬ϕ ∨ ψ)

Modc(p) = ΣpΣω = {w ∈ Σω | ∃a ∈ Σp∃u ∈ Σω : w=au}
Modc(Xϕ) = nextc(Modc(ϕ))

Modc(ϕU ψ) =
⋃

n<ω untilnext[Modc(ϕ),Modc(ψ)]nc (∅)
Modc(ϕW ψ) =

⋂
n<ω untilnext[Modc(ϕ),Modc(ψ)]nc (Σω)

Modc(Fϕ) =
⋃

n<ω nextn
c (Modc(ϕ)) = Modc(>U ϕ)

Modc(Gϕ) =
⋂

n<ω nextn
c (Modc(ϕ)) = Modc(ϕW ⊥)

Figure 1: Classical interpretation of formulas.

3.1 Classical Semantics

By interpreting formulas over the Boolean algebraINF , we provide a semantical
definition of the classical linear-time temporal logicLTL1, where the classical in-
terpretation functionModc : Form → INF is defined recursively in figure 1. This
definition makes use of the monotone functionsnextc anduntilnext[L1, L2]c (with
parametersL1, L2 ∈ INF ) on INF , which map a languageL to nextc(L) = ΣL
anduntilnext[L1, L2]c(L) = L2 ∪ (L1 ∩ nextc(L)), respectively.

Given sets of formulasΦ andΨ, we say thatΦ classically entailsΨ, denoted
by Φ |=c Ψ, if

⋂
ϕ∈Φ Modc(ϕ) ⊆

⋂
ψ∈Ψ Modc(ψ). If Φ is a singleton set{ϕ},

we may omit set braces and writeϕ |=c Ψ in place of{ϕ} |=c Ψ; similarly for
Ψ = {ψ}. If Φ is the empty set, we may write|=c Ψ in place of∅ |=c Ψ. We call
ψ a classical tautology if|=c ψ.

3.2 Intuitionistic Semantics

Similar to the classical logicLTL above, we define an intuitionistic variant called
ILTL by interpreting formulas over the Heyting algebraPREF , where the intu-
itionistic interpretation functionModi : Form → PREF is defined recursively in
figure 2. This definition uses the monotone functionsnexti anduntilnext[L1, L2]i
(with parametersL1, L2 ∈ PREF ) onPREF , which map a languageL ∈ PREF
to nexti(L) = Σ ∪ ΣL anduntilnext[L1, L2]i(L) = L2 ∪ (L1 ∩ nexti(L)), re-
spectively.

Given sets of formulasΦ and Ψ, we say thatΦ intuitionistically entailsΨ,
denoted byΦ |=i Ψ, if

⋂
ϕ∈Φ Modi(ϕ) ⊆

⋂
ψ∈Ψ Modi(ψ). As in the classical

case, we may omit set braces around single formulas, and we may omit the empty
set on the left-hand side. We callψ an intuitionistic tautology if|=i ψ.

Proposition 1. For all formulasϕ andψ, ϕ |=i ψ if and only if|=i ϕ→ ψ.

1Although presented differently, this semantics agrees with the standard semantical definition of
LTL, cf. [17] or [8].
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Modi(>) = Σ∞ Modi(⊥) = ∅
Modi(ϕ ∧ ψ) = Modi(ϕ) ∩Modi(ψ) Modi(ϕ→ ψ) = Modi(ϕ)⇒Modi(ψ)
Modi(ϕ ∨ ψ) = Modi(ϕ) ∪Modi(ψ) Modi(¬ϕ) = Modi(ϕ→⊥)

Modi(p) = Σp ∪ ΣpΣ∞ = {w ∈ Σ∞ | ∃a ∈ Σp∃u ∈ Σ∞ : w=a orw=au}
Modi(Xϕ) = nexti(Modi(ϕ))

Modi(ϕU ψ) =
⋃

n<ω untilnext[Modi(ϕ),Modi(ψ)]ni (∅)
Modi(ϕW ψ) =

⋂
n<ω untilnext[Modi(ϕ),Modi(ψ)]ni (Σ∞)

Modi(Fϕ) =
⋃

n<ω nextn
i (Modi(ϕ)) = Modi(>U ϕ)

Modi(Gϕ) =
⋂

n<ω nextn
i (Modi(ϕ)) = Modi(ϕW ⊥)

Figure 2: Intuitionistic interpretation of formulas.

Proof. Letϕ,ψ ∈ Form. Thenϕ |=i ψ if and only if Modi(ϕ) ⊆ Modi(ψ) if and
only if Modi(ϕ)⇒Modi(ψ) = Σ∞ if and only if |=i ϕ→ ψ

In summary, the definition of the intuitionistic semantics is largely analogous to
the definition of the classical semantics, except for the intuitionistic interpretation
of implication and negation and a slight difference in the treatment of the next
operator. Note that these differences are forced by the carrierPREF of the Heyting
algebra, as the classical interpretations do not result in prefix-closed sets.

3.3 Expressive Power

Comparing the expressive power ofLTL andILTL amounts to comparing the sets
of behaviors that can be specified by formulas in these logics. Unfortunately,LTL
and ILTL interpret formulas over the two different algebrasINF andPREF ,
so we cannot directly compare their interpretations. However, using the defining
mappingsinf : P(Σ∞) → INF andpref : P(Σ∞) → PREF of these algebras,
we can map the carrier of each algebra to (a subset of) the carrier of the other and
thus compare.

Expressive power inINF . First, we compareLTL andILTL in the Boolean al-
gebra of sets of infinite behaviorsINF , i. e., we restrict the intuitionistic semantics
to infinite words viainf. The proposition below relates the semantics for formulas
in negation normal form. From this proposition follows that intuitionistic entail-
ment of formulas in NNF implies classical entailment and that inINF , ILTL is at
least as expressive asLTL.

Proposition 2. If ϕ is a formula in NNF thenModc(ϕ) = inf(Modi(ϕ)).

Proof. By induction onϕ.

• The base cases (the constant> and⊥, atomic propositions and negated
atomic propositions) are obvious.
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• Conjunction and disjunction are straightforward sinceinf distributes over
intersection and union.

• Note that for allL ∈ PREF ,

nextc(inf(L)) = Σ inf(L) = inf(Σ ∪ ΣL) = inf(nexti(L)) .

Therefore, for the next operator (second equality by induction hypothesis)

Modc(Xϕ) = nextc(Modc(ϕ))
= nextc(inf(Modi(ϕ)))
= inf(nexti(Modi(ϕ)))
= inf(Modi(Xϕ)) .

• Note that for allL,L1, L2 ∈ PREF ,

untilnext[inf(L1), inf(L2)]c(inf(L)) = inf(L2) ∪ (inf(L1) ∩ nextc(inf(L)))
= inf(L2) ∪ (inf(L1) ∩ inf(nexti(L)))
= inf(L2 ∪ (L1 ∩ nexti(L)))
= inf(untilnext[L1, L2]i(L)) .

Therefore, for the until operator (second equality by induction hypothesis)

Modc(ϕU ψ) =
⋃

n<ω untilnext[Modc(ϕ),Modc(ψ)]nc (∅)
=

⋃
n<ω untilnext[inf(Modi(ϕ)), inf(Modi(ψ))]nc (inf(∅))

=
⋃

n<ω inf(untilnext[Modi(ϕ),Modi(ψ)]nc (∅))
= inf(

⋃
n<ω untilnext[Modi(ϕ),Modi(ψ)]nc (∅))

= inf(Modi(ϕU ψ)) .

Similarly, for the weak until operator

Modc(ϕW ψ) =
⋂

n<ω untilnext[Modc(ϕ),Modc(ψ)]nc (Σω)
=

⋂
n<ω untilnext[inf(Modi(ϕ)), inf(Modi(ψ))]nc (inf(Σ∞))

=
⋂

n<ω inf(untilnext[Modi(ϕ),Modi(ψ)]nc (Σ∞))
= inf(

⋂
n<ω untilnext[Modi(ϕ),Modi(ψ)]nc (Σ∞))

= inf(Modi(ϕU ψ)) .

• The operatorsF andG can be reduced toU andW, respectively.

Corollary 3. LetΦ andΨ be sets of formulas in NNF. IfΦ |=i Ψ thenΦ |=c Ψ.

Proof. AssumeΦ |=i Ψ, i. e.,
⋂
ϕ∈Φ Modi(ϕ) ⊆

⋂
ψ∈Ψ Modi(ψ). Then⋂

ϕ∈Φ Modc(ϕ) =
⋂
ϕ∈Φ inf(Modi(ϕ))

= inf(
⋂
ϕ∈Φ Modi(ϕ))

⊆ inf(
⋂
ψ∈Ψ Modi(ψ))

=
⋂
ψ∈Ψ inf(Modi(ψ))

=
⋂
ψ∈Ψ Modc(ψ) ,

where the first and the last equality hold by Proposition 2. HenceΦ |=c Ψ.
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Corollary 4. In INF , ILTL is at least as expressive asLTL.

Proof. We have to show that for everyϕ ∈ Form there isψ ∈ Form such that
Modc(ϕ) = inf(Modi(ψ)). This is true because everyϕ can be transformed into
an equivalent formulaψ in NNF by replacing implications and pushing in nega-
tions. HenceModc(ϕ) = Modc(ψ) = inf(Modi(ψ)) by Proposition 2.

It is unknown whether the converse of Corollary 4 is also true, i. e., whether for
all formulasψ there exist formulasϕ such thatinf(Modi(ψ)) = Modc(ϕ). We
conjecture that this is the case. However, this seems difficult to prove since in in-
tuitionistic logics, we cannot use equivalence transformations to normal forms like
NNF.

Expressive power inPREF . Now, we compareLTL andILTL in the Heyting
algebra of prefix-closed sets of behaviorsPREF , i. e., we extend the classical
semantics into prefix-closed sets viapref. The proposition below shows that the
two logics cannot be equally expressive inPREF .

Proposition 5. There is no formulaϕ with pref(Modc(ϕ)) = Σ = Modi(X⊥).

Proof. Letϕ ∈ Form. If Modc(ϕ) = ∅ thenpref(Modc(ϕ)) = ∅ 6= Σ. Otherwise
there isw ∈ Modc(ϕ), sopref(Modc(ϕ)) 6= Σ becausew ∈ pref(Modc(ϕ)) and
w ∈ Σω.

This implies that either the two logics are incomparable orILTL is strictly more
expressive thanLTL, but it is not known which case holds true. We conjecture
thatILTL is more expressive thanLTL, yet proving this, i. e., proving that for all
formulasϕ there exist formulasψ such thatpref(Modc(ϕ)) = Modi(ψ), might
require a lemma similar to Proposition 2. However, such a lemma seems difficult
to obtain. In particular, the proof of Proposition 2 cannot be directly adapted since
it exploits the fact thatinf distributes over intersections, whichpref does not do.

3.4 Application: Assume-Guarantee Specifications

Modular verification naturally demands for so-called assume-guarantee specifica-
tions (A-G specs), which are pairs of formulas in some temporal logic. Informally,
a component of a system satisfies an A-G specϕ +→ ψ if the component satisfies
the guaranteeψ at least as long as its environment (including the other compo-
nents) meets the assumptionϕ. Once A-G specs are available for all components,
properties of the global system may be deduced from the composition (i. e., con-
junction) of these A-G specs instead of the (potentially large) parallel composition
of all components. Due to possibly circular dependencies between assumptions and
guarantees, composing A-G specs in a sound way requires non-trivial composition
rules, see for instance [1], [10] or [13].
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In the Heyting algebra of prefix-closed sets of finite behaviors, [3] demonstrates
that under a suitable notion of concurrency (shared variables and interleaving ex-
ecution) an A-G specϕ +→ ψ corresponds to an intuitionistic implicationϕ→ ψ,
which gave rise to composition rules based on conjunction of intuitionistic implica-
tion. Later, Abadi and Merz [2] found a more general interpretation of the operator
+→, which again can be reduced to intuitionistic implication. Here, we present their
interpretation of+→ in PREF , the Heyting algebra of prefix-closed sets of finite
and infinite behaviors. Forϕ,ψ ∈ Form, the semantics ofϕ +→ ψ is defined by

Modi(ϕ
+→ ψ)

= {w ∈ Σ∞ | ∀v ∈ pref(w) : pref!(v) ⊆ Modi(ϕ) impliesv ∈ Modi(ψ)} ,

wherepref! : Σ∞ → PREF maps behaviors to their sets of proper prefixes, i. e.,
pref!(v) = pref(v)\{v}. By well-founded induction on the prefix order, [2] proves
that for allϕ,ψ ∈ Form,

Modi(ϕ
+→ ψ) = Modi((ψ→ ϕ)→ ψ) .

Hence inPREF , A-G specs are merely short hands for intuitionistic implication.
This fact is exploited in [2] to develop concise soundness proofs of various proof
rules for conjoining circularly dependent A-G specs.

A general observation about composition rules for A-G specs is that they essen-
tially only admit circular dependencies on safety properties. In classical linear-time
temporal logics, this can be achieved by decomposing properties into their safety
and liveness parts — which is always possible thanks to the decomposition theo-
rems in [4] and [5] — and disallowing circular dependencies on the liveness parts.
Therefore, it is natural to ask for similar decomposition theorems for intuitionistic
temporal logics.

4 Safety and Liveness

In this section, we introduce notions of safety and liveness for the intuitionistic
temporal logicILTL and compare them to the corresponding notions forLTL as
proposed by Alpern and Schneider [4]. Actually, Alpern and Schneider did not
define safety and liveness forLTL but for the Boolean algebraINF of sets of infi-
nite behaviors, over whichLTL formulas are interpreted. Consequently, we define
safety and liveness for the Heyting algebraPREF of prefix-closed sets of finite
and infinite behaviors.

4.1 Safety and Liveness in Classical Logics

We start by reviewing the standard notions of safety and liveness for classical
linear-time temporal logics as introduced in [4]. There, safety and liveness are de-
fined in terms of a topology onΣω — in fact, the Cantor topology onΣω if Σ
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is finite — which is induced by the topological closure operatorCc on Σω with
Cc(L) = {w ∈ Σω | pref(w)∩Σ+ ⊆ pref(L)} for all L ⊆ Σω. We callL ∈ INF
a classical safety propertyif L is closed, i. e.,Cc(L) = L, and aclassical liveness
propertyif L is dense, i. e.,Cc(L) = Σω.

As closed sets of a topological space, classical safety properties are closed
under finitary disjunction and infinitary conjunction. And as dense sets, classical
liveness properties are closed under infinitary disjunction and under implication.

Proposition 6. Letw ∈ Σω, letL1, L2 ∈ INF and letL ⊆ INF .

1. Σω is a classical safety property.

2. ∅ is a classical safety property.

3. {w} is a classical safety property.

4. If L1 andL2 are classical safety properties then so isL1 ∪ L2.

5. If all L ∈ L are classical safety properties then so is
⋂
L∈L L.

Proposition 7. LetL1, L2 ∈ INF and letL ⊆ INF .

1. Σω is a classical liveness property.

2. If someL0 ∈ L is a classical liveness property then so is
⋃
L∈L L.

3. If L2 is a classical liveness property then so isL1 ⇒ L2 = −L1 ∪ L2.

It is instructive to see which logical operations do not preserve classical safety or
liveness properties. In the following examples, letp andq be atomic propositions.

• Neither safety nor liveness properties are closed under negation. For in-
stance,Modc(Gp) is a safety property butModc(¬Gp) = Modc(F¬p)
is a liveness property.

• Safety properties are not closed under implication. E. g.,Modc(Gp) and
Modc(Gq) are safety properties butModc(Gp→Gq) = Modc(F¬p∨Gq)
is a liveness property.

• Safety properties cannot be closed under infinitary disjunction. Otherwise,
everyL ∈ INF would be a safety property becauseL =

⋃
w∈L{w}.

• Liveness properties are not closed under intersection. E. g.,Modc(GFp) and
Modc(FG¬p) both are liveness properties butModc(GFp ∧ FG¬p) =
Modc(GFp ∧ ¬GFp) is not.

The (trivial) propertyΣω is the only one which is both a safety and liveness prop-
erty, but there are many properties which are neither. E. g.,L = Modc(p U q) is
such a property becauseCc(L) = Modc(pUq∨Gp) 6= L andCc(L) 6= Σω. How-
ever, [4] at least proves that all properties in classical linear-time temporal logics
can be decomposed into their safety and liveness parts.
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Proposition 8. EveryL ∈ INF is the conjunction of a classical safety and a
classical liveness property. More precisely,L = Cc(L) ∩ (−Cc(L) ∪ L).

4.2 Safety and Liveness in Intuitionistic Logics

To transfer the notions of safety and liveness to the Heyting algebraPREF , we
generalize the closure operatorCc : P(Σω) → P(Σω) to Ci : P(Σ∞) → P(Σ∞)
by definingCi(L) = {w ∈ Σ∞ | pref(w) ∩ Σ+ ⊆ pref(L)}. It turns out that
Ci is a topological closure operator onΣ∞ and hence induces a topology — in
fact, it induces the Scott topology onΣ∞ (ordered by the prefix order) ifΣ is
countable. Thus, we can reuse the topological definitions of safety and liveness and
callL ∈ PREF an intuitionistic safety propertyif Ci(L) = L and anintuitionistic
liveness propertyif Ci(L) = Σ∞.

Note thatCi is algebraically definable inPREF because for allL ∈ PREF ,
Ci(L) = {w ∈ Σ∞ | pref(w) ∩ Σ+ ⊆ L} = Σ+ ⇒ L. Therefore,L is an
intuitionistic safety property iffΣ+ ⇒ L = L iff Σ+ ⇒ L ⊆ L, andL is an
intuitionistic liveness property iffΣ+ ⇒ L = Σ∞ iff Σ+ ⊆ L iff Σ+ ∪ L = L.
For comprehending these algebraic definitions, the following intuition might help.
Safety and liveness properties differ fundamentally in the way they constrain finite
and infinite behaviors. If a safety property is refuted then it can always be refuted
by a finite behavior, whereas a liveness property can never be refuted by a finite
behavior. So one could say that a safety propertyL essentially only constrains
finite behaviors in the sense that whenever all finite prefixes of an infinite behavior
w satisfyL (i. e.,w ∈ Σ+ ⇒ L) thenw satisfiesL. Likewise, a liveness property
L essentially only constrains infinite behaviors in the sense that all finite behaviors
satisfyL.

Intuitionistic safety and liveness properties are closed under essentially the
same logical operations as their classical counterparts. Moreover, intuitionistic
safety properties are closed under (intuitionistic) implication and negation, and
intuitionistic liveness properties are closed under infinitary conjunction.

Proposition 9. Letw ∈ Σ∞, letL,L1, L2 ∈ PREF and letL ⊆ PREF .

1. Σ∞ is an intuitionistic safety property.

2. ∅ is an intuitionistic safety property.

3. pref(w) is an intuitionistic safety property.

4. If L1 andL2 are intuitionistic safety properties then so isL1 ∪ L2.

5. If all L ∈ L are intuitionistic safety properties then so is
⋂
L∈L L.

6. If L2 is an intuitionistic safety property then so isL1 ⇒ L2.

7. If L is an intuitionistic safety property then so is−L = L⇒∅.

10



Proof. Claims 2 and 3 follow from the definition of safety becauseΣ+ ⇒ ∅ = ∅
andΣ+⇒pref(w) = {v ∈ Σ∞ | pref(v)∩Σ+ ⊆ pref(w)} = pref(w). All other
claims follow from Propositions 15 and 17 and Corollary 16, see next section.

Proposition 10. LetL1, L2 ∈ PREF and letL ⊆ PREF .

1. Σ∞ is an intuitionistic liveness property.

2. If someL0 ∈ L is an intuitionistic liveness property then so is
⋃
L∈L L.

3. If L2 is a intuitionistic liveness property then so isL1 ⇒ L2.

4. If all L ∈ L are intuitionistic liveness properties then so is
⋂
L∈L L.

Proof. Follows from Proposition 18, see next section.

We notice that intuitionistic safety properties are not closed under infinitary dis-
junction, for the same reason as in the classical case. And intuitionistic liveness
properties are not closed under (intuitionistic) negation. E. g.,Modi(Fp) is a live-
ness property butModi(¬Fp) = Modi(⊥) is not.

Similar to the classical case,Σ∞ is the only property which is both an intu-
itionistic safety and liveness property, cf. Proposition 20. Again, there are many
properties which are neither; this follows from Proposition 13 below. Yet, there is
also the following decomposition theorem.

Proposition 11. EveryL ∈ PREF is the conjunction of an intuitionistic safety
and an intuitionistic liveness property. More precisely,L = (Σ+⇒L)∩ (Σ+∪L).

Proof. Follows from Proposition 19, see next section.

So far, our approach to safety and liveness was purely semantical, relying only
on the operators of the Heyting algebraPREF and the constantΣ+. However,
these operators correspond to the intuitionistic connectives ofILTL, andΣ+ is ex-
pressible inILTL, namelyΣ+ = Modi(F⊥). Immediately, this gives us a simple
logical characterization of intuitionistic safety and liveness and a logical formula-
tion of the decomposition theorem.

Corollary 12. Letϕ be a formula.

1. ϕ is an intuitionistic safety property if and only if|=i (F⊥→ ϕ)→ ϕ.

2. ϕ is an intuitionistic liveness property if and only if|=i F⊥→ ϕ.

3. |=i ϕ↔ (F⊥→ ϕ) ∧ (F⊥ ∨ ϕ).

Proof. The claims 1 and 2 follow from the definitions of safety and liveness, re-
spectively, and from Proposition 1. Claim 3 follows from Proposition 11, Propo-
sition 1 (twice) and the fact that|=i ψ1 ↔ ψ2 follows from |=i ψ1 → ψ2 and
|=i ψ2 → ψ1 for all ψ1, ψ2 ∈ Form.

11



4.3 Classical versus Intuitionistic Safety and Liveness

In Section 3, the mappingsinf : P(Σ∞) → INF andpref : P(Σ∞) → PREF
were used to compare the expressive power of the logicsLTL andILTL. Now, we
will use the same mappings to investigate the relationship between the classical
notions of safety and liveness and their intuitionistic counterparts.

It turns out that the intuitionistic notions of safety and liveness subsume the
classical ones because every classical safety resp. liveness property is mapped to a
corresponding intuitionistic property viapref. However, only the classical notion
of safety subsumes the intuitionistic one in the sense that every intuitionistic safety
property is mapped to a corresponding classical property viainf. For liveness this
is not the case. For instance,Σ+ is an intuitionistic liveness property to which no
corresponding classical property exists, in particularinf(Σ+) = ∅ is not a classical
liveness property.

Proposition 13. LetL ∈ INF .

1. L is a classical safety property iffpref(L) is an intuitionistic one.

2. L is a classical liveness property iffpref(L) is an intuitionistic one.

Proof. The first claim holds becauseL is a classical safety property
iff ∀w ∈ Σω : pref(w) ∩ Σ+ ⊆ pref(L) impliesw ∈ L
iff ∀w ∈ Σ∞ : pref(w) ∩ Σ+ ⊆ pref(L) impliesw ∈ pref(L)
iff ∀w ∈ Σ∞ : w ∈ Σ+ ⇒ pref(L) impliesw ∈ pref(L)
iff Σ+ ⇒ pref(L) ⊆ pref(L)
iff pref(L) is an intuitionistic safety property.

The second claim holds becauseL is a classical liveness property if and only if
∀w ∈ Σω : pref(w) ∩ Σ+ ⊆ pref(L) if and only if Σ+ ⊆ pref(L) if and only if
pref(L) is an intuitionistic liveness property.

Proposition 14. LetL ∈ PREF .

1. If L is an intuitionistic safety property theninf(L) is a classical one.

2. If inf(L) is a classical liveness property thenL is an intuitionistic one.

Proof. To show the first claim assume thatΣ+ ⇒ L ⊆ L. To showCc(inf(L)) =
inf(L), letw ∈ Σω with pref(w)∩Σ+ ⊆ pref(inf(L)) and prove thatw ∈ inf(L),
i. e.,w ∈ L. We havepref(w) ∩ Σ+ ⊆ pref(inf(L)) ⊆ pref(L) = L. Hence
pref(w) ⊆ Σ+ ⇒ L ⊆ L, which impliesw ∈ L.

To show the second claim assume thatCc(inf(L)) = Σω. Thus, we haveΣ+ ⊆
pref(inf(L)) ⊆ pref(L) = L, i. e.,Σ+ ⊆ L.

Note that the statements of Proposition 14 cannot be reversed. To see this letL =
Modi(F⊥ ∨Gp), wherep is an atomic proposition. Theninf(L) = Modc(Gp).
Thus,inf(L) is a classical safety property butΣ+ ⇒ L = Σ∞ 6= L, soL is not an
intuitionistic safety property. However,Σ+ ⊆ L, soL is an intuitionistic liveness
property butinf(L) is not a classical one.
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5 Algebraic Characterization of Safety and Liveness

In this section, we develop notions of safety and liveness and prove a decompo-
sition theorem for arbitrary Heyting algebras. Thus, we provide abstract algebraic
proofs for the claims of the previous section about safety and liveness in the con-
crete Heyting algebra of prefix-closed sets of behaviorsPREF .

Let H = 〈H,u,t,⇒,>,⊥〉 be a Heyting algebra. We denote the order rela-
tion on this algebra byv. Recall that〈H,u,t〉 is a distributive lattice with> and
⊥ and for allx, y, z ∈ H, z v x⇒ y if and only if x u z v y. This equivalence
can be seen as the definition ofx ⇒ y, the pseudo-complement ofx relative to
y. For x ∈ H, we denote by−x the pseudo-complement ofx, which is defined
as−x = x ⇒ ⊥. Note that if the law of excluded middle holds inH (i. e., if
x t −x = > for all x ∈ H) thenx⇒ y = −x t y.

By J (H), we denote the join-irreducible elements inH, wherej ∈ H is join-
irreducible iff j 6= ⊥ and for allx, y ∈ H, j = xt y impliesj = x or j = y. Note
that forj ∈ J (H) andx, y ∈ H, j v x t y impliesj v x or j v y becauseH
is distributive. We call a subsetS ⊆ H join-dense inH iff for every x ∈ H there
existsT ⊆ S such thatx =

⊔
T . We call a subsetS ⊆ H a forest iff for each

x ∈ S, the setT = {y ∈ S | y v x} induces a linear suborder ofH, i. e., for all
u, v ∈ T , u v v or v v u.

Throughout this section, we fix an arbitrary elementa ∈ H, relative to which
we will define safety and liveness. InH, thisa plays the role ofΣ+ in PREF , i. e.,
it separates the ‘finite’ from the ‘infinite’ behaviors. Remarkably, the closure prop-
erties (except for closure under negation) and the decomposition theorem below
hold independent of the choice ofa. Thus inPREF , we may well choose non-
standard separating elements, for instanceΣ, to define interesting non-standard
notions of safety and liveness.

5.1 Safe Elements

We define the functionsafea : H → H by safea(x) = a⇒ x. The functionsafea
is a closure operator, hence we callsafea the safety closure. We call an element
x ∈ H a-safeif x is a fixpoint of this closure, i. e.,safea(x) = x.

We investigate whether safe elements are closed under the operations of the
Heyting algebra and hence under the corresponding intuitionistic connectives. It
turns out that safe elements are closed under implication and conjunction, even
under infinitary conjunction. Whether safe elements are closed under negation de-
pends on⊥ being safe.

Proposition 15. Letx, y ∈ H, and letS ⊆ H such that
d
S exists.

1. > is a-safe.

2. If y is a-safe thenx⇒ y is a-safe.

3. If all s ∈ S area-safe then
d
S is a-safe.
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Figure 3: A Heyting algebra wherea-safe elements are not closed under join.

Proof. Assume thaty and alls ∈ S area-safe.

1. safea(>) = a⇒> = >.

2. safea(x⇒y) = a⇒(x⇒y) = (aux)⇒y = (xua)⇒y = x⇒(a⇒y) =
x⇒ y, where the last equality holds becausey is a-safe.

3. safea(
d
S) = a ⇒

d
S =

d
s∈S(a ⇒ s) =

d
s∈S s =

d
S, where the

second equality holds because⇒ completely distributes over meets on the
right-hand side, and the third equality holds because alls area-safe.

Corollary 16. The following statements are equivalent:

1. For all x ∈ H, if x is a-safe then−x is a-safe.

2. ⊥ is a-safe.

Proof. 1 implies 2 because> is a-safe. 2 implies 1 because−x = x⇒⊥.

In general, safe elements are not closed under disjunction. For instance, in the
Heyting algebra in figure 3,b andc area-safe becausea⇒ b = b anda⇒ c = c,
but a⇒ (b t c) = a⇒ a = >, sob t c is nota-safe. Yet, if the Heyting algebra
H satisfies a natural condition, namely that the join-irreducible elements form a
join-dense forest, then safe elements are closed under finite disjunction.

Proposition 17. LetJ (H) be a forest, which is join-dense inH. Letx, y ∈ H. If
x andy area-safe thenx t y is a-safe.

Proof. Let x andy bea-safe, i. e.,a⇒ x v x anda⇒ y v y. We have to show
thatx t y is a-safe, i. e.,a⇒ (x t y) v x t y.

As the join-irreducibles are join-dense, there isJ ⊆ J (H) such that
⊔
J =

a⇒ (xt y). For eachj ∈ J , we know thatj v a⇒ (xt y), soj u a v xt y, and
we have to show thatj v x t y.

We claim thatj v a⇒ x or j v a⇒ y. This claim implies thatj v x t y.
To see this note that in the first case,j v a⇒ x v x v x t y holds becausex is
a-safe, and in the second casej v a⇒ y v y v x t y holds becausey is a-safe.

Now, we prove the above claim by contradiction, i. e., we assume thatj 6v a⇒x
andj 6v a⇒ y. This impliesj u a 6v x andj u a 6v y.

14



As the join-irreducibles are join-dense, there isJ ′ ⊆ J (H) such that
⊔
J ′ =

j ua. As j ua 6v x andj ua 6v y, there existk, l ∈ J ′ with k 6v x andl 6v y. Note
thatk, l v j u a v j.

As J (H) is a forest, the set{i ∈ J (H) | i v j} is linearly ordered, in
particulark v l or l v k.

If k v l thenl 6v x andl 6v y, sol 6v xt y becausel is join-irreducible, which
contradictsl v j u a v x t y. And if l v k thenk 6v x andk 6v y, sok 6v x t y,
which contradictsk v j u a v x t y.

Note that in the Heyting algebra in figure 3, safe elements fail to be closed un-
der disjunction because the join-irreduciblesb, c and> do not form a forest.
However, in the Heyting algebraPREF of prefix-closed sets of behaviors, the
join-irreducibles are the prefix-closures of single behaviors, i. e.,J (PREF ) =
{pref(w) | w ∈ Σ∞}. Obviously,J (PREF ) forms a forest, which is join-dense
in PREF . Hence, safety properties inPREF are closed under finite disjunction.

5.2 Live Elements

We define the functionlivea : H → H by livea(x) = a t x. The functionlivea
is a closure operator, hence we calllivea the liveness closure. We call an element
x ∈ H a-live if x is a fixpoint of this closure, i. e.,livea(x) = x.

Similar to the case for safe elements, we investigate whether live elements are
closed under the operations of the Heyting algebra and hence under the corre-
sponding intuitionistic connectives. It turns out that live elements are closed under
implication and under finitary and infinitary conjunction and disjunction.

Proposition 18. Letx, y ∈ H, and letS, T ⊆ H such that
d
S and

⊔
T exist.

1. > is a-live.

2. If y is a-live thenx⇒ y is a-live.

3. If all s ∈ S area-live then
d
S is a-live.

4. If somet0 ∈ T is a-live then
⊔
T is a-live.

Proof. Assume thaty and alls ∈ S area-live, and lett0 ∈ T bea-live.

1. livea(>) = a t > = >.

2. As livea(y) = a t y = y, we havea v y = y u (x⇒ y) v x⇒ y. Hence
livea(x⇒ y) = a t (x⇒ y) = x⇒ y.

3. As livea(s) = a t s = s for all s ∈ S, we havea v s for all s ∈ S, so
a v

d
S. Hencelivea(

d
S) = a t

d
S =

d
S.

4. livea(
⊔
T ) = a t

⊔
T = a t t0 t

⊔
T = t0 t

⊔
T =

⊔
T , where the third

equality holds becauset0 is a-live.
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5.3 Decomposition Theorem

With the above notions of safety and liveness, just simple reasoning with the laws
of Heyting algebras proves that every element of the algebra can be decomposed
into a conjunction of a safe and a live part.

Proposition 19. Everyx ∈ H is the meet of ana-safe and ana-live element. More
precisely,x = safea(x) u livea(x).

Proof. safea(x)u livea(x) = (a⇒x)u(atx) =
(
(a⇒x)ua

)
t

(
(a⇒x)ux

)
=

(aux)tx = x, where the third equality holds due to the cancellation laws for the
relative pseudo-complement in Heyting algebras, which say thatyu(y⇒z) = yuz
and(y⇒ z) u z = z for all y, z ∈ H.

The above decomposition might be trivial, for instance in the case thatx is both
safe and live. However, the following proposition shows that this cannot happen
for non-trivialx because safe and live elements are separated.

Proposition 20. No non-trivial element inH is botha-safe anda-live. More pre-
cisely, ifx ∈ H is a-safe anda-live thenx = >.

Proof. Let x ∈ H bea-safe anda-live. Thenx = safea(x) = safea(livea(x)) =
a⇒(atx) = >, where the last equality holds becausey⇒z = > for all y, z ∈ H
with y v z.

Whether there are elements which are neither safe nor live (so that the above de-
composition is really non-trivial) depends on the Heyting algebra. For example, all
elements in figure 3 area-safe (⊥, b, c,>) ora-live (a,>). However as shown in the
previous section, in the Heyting algebraPREF of prefix-closed sets of behaviors,
there are elements which are neitherΣ+-safe norΣ+-live.

Finally, we note that when the Heyting algebraH happens to be a Boolean
algebra, the definition of the liveness closure can be reduced to the safety closure,
as it is the case in most decomposition theorems, see for instance [4] or [15].

Proposition 21. If the law of excluded middle holds inH then for all x ∈ H,
livea(x) = safea(x)⇒ x.

Proof. safea(x) ⇒ x = x t −safea(x) = x t −(a⇒ x) = x t −(−a t x) =
x t (a u −x) = (x t a) u (x t −x) = (x t a) u > = x t a = livea(x).

6 Conclusion

We have presentedILTL, an intuitionistic variant of the linear-time temporal logic
LTL, which is capable of specifying sets of finite and infinite behaviors simulta-
neously. The intuitionistic nature ofILTL comes in handy when doing assume-
guarantee reasoning, because special temporal operators that have been introduced
to reason about assume-guarantee specifications are definable via the intuitionistic
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implication. Furthermore, we have given an abstract algebraic definition of notions
of safety and liveness suitable for intuitionistic temporal logics. These intuition-
istic notions are similar to the classical ones, yet they are more compatible with
the logical connectives; in particular, intuitionistic liveness properties are closed
under conjunction. The logicILTL admits an elegant logical characterization of
intuitionistic safety and liveness. It remains to be investigated whether our abstract
algebraic definition of safety and liveness also applies to other intuitionistic tem-
poral logics, e. g., to intuitionistic variants of CTL.

There are a still number of unresolved questions concerning the logicILTL.
The exact expressive power should be determined, one should give an axiomatiza-
tion, and one should address decidability and complexity of the satisfiability and
model checking problems. WhetherILTL can be considered a useful specification
language depends on the answers to these questions.
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