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Abstract

Verification of programs requires reasoning about sets of
program states. In case of programs manipulating pointers,
program states are pointer graphs. Verification of such pro-
grams involves reasoning about unbounded sets of graphs.

Three-valued shape analysis (Sagiv et. al.) is an ap-
proach based on explicit manipulation of 3-valued shape
graphs, which abstract sets of pointer graphs. Other ap-
proaches use symbolic representations, e. g., by describing
(sets of) graphs as logical formulas. Unfortunately, many
resulting logics are either undecidable or cannot express
crucial properties like reachability and separation.

In this paper, we investigate an alternative approach.
We study well-known description logics as a framework
for symbolic shape analysis. We propose a predicate ab-
straction based shape analysis, parameterized by descrip-
tion logics to represent the abstraction predicates. Depend-
ing on the particular logic chosen sharing, reachability and
separation in pointer data structures are expressible.

1. Introduction

The goal of shape analysis [22] is to derive and re-establish
data structure invariants and identify alias relationship be-
tween access paths in the heap. Shape analysis has been
used for (partial) program verification. Its applications in-
clude static detection of memory and logical errors (deref-
erencing NULL pointers, dereferencing dangling pointers,
and memory leaks), establishing properties of dynamically
allocated data structures, code optimizations. It is challeng-
ing because the aliasing relationships are complex and there
is no bound on the size of run-time data structures.

Among the approaches that have been used to study
shape analysis, prominent are the symbolic ones. For in-
stance, symbolic shape analysis based on 3-valued logic
uses an over-approximation and has been studied in [17,
22, 28]. The semantics of statements and the invari-
ants are expressed in first-order logic with transitive clo-

sure. The logic is interpreted over 3-valued structures, ac-
cording to Kleene’s 3-valued interpretation of first-order
logic, and is undecidable in general. Other symbolic ap-
proaches for shape analysis do not use 3-valued interpreta-
tions [13, 14, 16, 21, 27]. However, the logics employed
are either undecidable or of severely restricted expressive
power; for instance, when augmented with transitive clo-
sure or fixpoint operators for modeling reachability, most
decidable first-order fragments become undecidable.

In this paper we focus on an alternative approach. We use
description logics (DL) which are extensively studied and
well-understood languages for graph structures. We study
the applications of the languages for symbolic representa-
tion of sets of shape graphs and shape analysis. We use
DLs to characterize the heap allocated data structures that a
program manipulates. The state of the heap in a pointer pro-
gram is modeled as a finite graph. For each pointer-valued
field in a data structure the graph has a corresponding edge
relation. Properties of such graphs can be described in DLs,
where the edge relations are represented as roles.

We express the properties of recursively defined data
structures such as lists (including singly and doubly linked
lists, cyclic lists, and lists with a pointer to the last el-
ement), binary trees, and DAGs in various fragments of
µALCQO−1, which is an extension of the basic DL ALC
with fixpoints, number restrictions, nominals, and inverse
roles. Two main issues arise: decidability of the logics and
expressive power.

The DL µALCQO−1 is undecidable [3]. We con-
sider weaker logics as sound approximations, e. g., the log-
ics µALCO−1 and µALCQ−1 both of which are decid-
able [4, 23]. Reasoning for and complexity of description
logics have been studied and well-understood. Tools for
reasoning with expressive and even undecidable description
logics exist, e. g., FaCT [12], Racer [10].

The structure of the paper is as follows. In Section 2 we
define the syntax and semantics of description logics. We
encode shape types in DL in Section 3. Shape analysis for
description logics is presented in Section 4. We comment
on related work in Section 5. Finally, Section 6 concludes.
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2. Description Logics

In this section we briefly introduce the conventional syntax
and semantics of description logics following [1].

For representation of shape graphs we use extensions of
the basic description logic ALC [24] with nominals, num-
ber restrictions, fixpoint concepts, universal role, functional
roles, and inverse roles. The syntax of such description
logics defines concept expressions (commonly denoted by
letters C and D) and role expressions (denoted by R and
S). Concept and role expressions are constructed induc-
tively from a finite set of atomic concepts and roles by ap-
plying the constructors as shown in table 1. Note that the
formation of fixpoint concepts µZ.C and νZ.C is restricted
to cases where the concept variable Z is positive in C (i. e.,
always occurs under an even number of negations). Besides
the Boolean concept constructors, we will also use concept
implication ⇒ and equivalence ⇔, which are defined in the
usual way.

In the remainder of this paper, a (description logic) for-
mula always means a concept expression. Given formulas
C and D, we call C v D a concept inclusion, C

.
= D a

concept equality. A TBox (T for terminological) is a finite
set of concept inclusions and equalities.

Semantically, concept and role expressions are inter-
preted as unary and binary relations in labeled graphs. For-
mally, an interpretation I consists of a non-empty set ∆I

and an interpretation function which assigns to every atomic
concept A a subset AI ⊆ ∆I and to every atomic role R a
binary relationRI ⊆ ∆I×∆I . The interpretation function
is extended to concept and role expressions as shown in ta-
ble 1. Note that this semantics is well-defined for fixpoint
concepts due to the polarity restriction on concept variables.

Let I be an interpretation. We say that I satisfies a
formula C if CI 6= ∅. I satisfies an inclusion C v D,
written I |= C v D, if CI ⊆ DI . Likewise, we define
I |= C

.
= D. I satisfies a TBox T , written I |= T , if it

satisfies every inclusion and every equality in T .

Let T be a TBox. We call a formula C satisfiable w. r. t.
T if there is an interpretation I satisfying both T and C.
We say that T implies an inclusion C v D, denoted by
T |= C v D, if for all interpretations I, I |= T implies
I |= C v D. We write T |=fin C v D, if I |= T implies
I |= C v D for all finite interpretations I. We define
T |= C

.
= D resp. T |=fin C

.
= D analogously.

Description logics are distinguished by the available con-
structors. Extending the basic logic ALC, which features
the Boolean concept constructors, value restriction, and
existential quantification, we obtain more expressive lan-
guages, see table 2. Note that we call a role R functional in
a given interpretation I if RI is a functional relation, i. e., if
I |= > v ≤1R.>.

Desc. logic Concept/Role constructors beyond ALC

ALCOU
f nominals, universal role, functional roles

ALCO−1,U
f + inverse roles

ALCQO−1,U + qualified number restrictions

µALCOf fixpoints, nominals, functional roles
µALCO−1

f + inverse roles

Table 2. Names of description logics.

3. Shape Types

In this section we introduce the notion of shape, defined in
terms of description logics and show that description logics
allow for the encoding of useful data structures.

Extensions of imperative languages, such as Shape-
C [6], in practice use only a subset of possible shape graphs,
corresponding to rooted pointer structures. The graphs are
characterized by the following properties: (i) Relations are
either unary or binary. (ii) Each unary relation is satisfied by
exactly one node in the graph. (iii) Binary relations are par-
tial functions. (iv) The whole graph can be traversed start-
ing from its roots. These conditions correspond to proper-
ties of rooted data structures expressible in description log-
ics; in particular, binary relations are represented by func-
tional roles due to (iii), whereas program variables are rep-
resented by nominals due to (ii). Examples of shape types
such as singly linked list, doubly linked list, linked list with
pointer to the last element, cyclic list, and binary tree are
given in figure 1.

In this section we study DLs with fixpoints and DLs
with transitive closure. More precisely, we consider exten-
sions of the description logic ALCOf with fixpoint opera-
tors (which can be used to express transitive closure). These
logics are related to the modal µ-calculus [15, 25], which
was originally introduced to describe program behavior.

Singly linked list. We view a singly linked list as a set
of heap cells in which each node is the terminating NULL

node or a structure with a pointer field next pointing to the
next node. For the purpose of shape analysis, we abstract
from data fields in the structure.

In terms of description logics, we can represent a singly
linked list as the concept of all nodes that can reach the
NULL concept INULL via the reflexive-transitive closure of
the functional role Rnext . A TBox expressing that program
variable x (modeled by the nominal Ix) points to a singly
linked list is

T1 = {List
.
= ∃R∗

next .INULL, Ix v List}

where ∃R∗
next .INULL is a shorthand for the fixpoint concept

µZ.(INULL t ∃Rnext .Z). The property that the variables
x and y point to separated lists (i. e., there is no heap cell
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Concept/Role constructor Syntax Semantics

Atomic concept A AI ⊆ ∆I

Nominal I II ⊆ ∆I with |II | = 1

Top > ∆I

Bottom ⊥ ∅
Intersection C u D CI ∩ DI

Union C t D CI ∪ DI

Complement ¬C ∆I \ CI

Value restriction ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI ⇒ b ∈ CI}
Existential quantification ∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
Qualified number restriction ≥n R.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≥ n}

≤n R.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| ≤ n}
=n R.C {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| = n}

Fixpoint µZ.C least fixpoint of λE ⊆ ∆I .C[E/Z]I

µZ.C greatest fixpoint of λE ⊆ ∆I .C[E/Z]I

Atomic role R RI ⊆ ∆I × ∆I

Universal role U ∆I × ∆I

Inverse role R− {(b, a) ∈ ∆I × ∆I | (a, b) ∈ RI}
Role union R t S RI ∪ SI

Transitive closure R∗, R+
S

n≥0
(RI)

n
,

S

n≥1
(RI)

n

Table 1. Syntax and semantics of description logic constructs.

(a) NULL
next next next

(b) NULL
next next next

prevprev

prev

(c) NULL
next next next

last
last last

(d) next next

next

(e)

NULL

left right

left right

left right

le
ft

ri
gh

t

le
ft

ri
g
h
t

le
ft

r
ig

h
t

left

right

Figure 1. Examples of shape types: (a) singly
linked list, (b) doubly linked list, (c) singly
linked list with pointer to the last element,
(d) cylic singly linked list, (e) binary tree.

except NULL that can reach bothx and y by traversing next
pointers backwards) can be expressed by the TBox:

T2 = {List
.
= ∃R∗

next .INULL, Ix v List , Iy v List ,

∃(R−
next)

∗
.Ix u ∃(R−

next)
∗
.Iy

.
= INULL}

Doubly linked list. We model that the program variable
x points to a doubly linked list with next and prev pointer
fields by the TBox:

T3 = {List
.
= ∃R∗

next .INULL, Ix v List ,

Ix v ∃Rprev .INULL, INULL v ∃R−
next .∃R∗

prev .Ix}

The first axiom states that NULL is reachable from x by fol-
lowing next pointers. The second axiom states that the prev

pointer from x points to NULL. The third axiom states that
x is reachable from NULL by following the next pointer
backward once (yielding the last element of the list) and
then following the prev pointers.

Singly linked list with pointer to the last element. A
TBox expressing that x points to a singly linked list with
pointer to the last element contains, in addition to the ax-
ioms for singly linked lists, two more axioms:

T4 = T1 ∪ {Last
.
= ∃Rnext .INULL, ∃Rlast .Last

.
= ¬INULL}

The first defines the last element of the list (i. e., the prede-
cessor of NULL), the second states that for all nodes except
NULL, there is a last pointer to the last element.
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Cyclic singly linked list. The property that x points to a
cyclic singly linked list is succinctly expressed by the TBox

T5 = {Ix v ∃R+
next .Ix}

where ∃R+
next .Ix is a shorthand for ∃Rnext .∃R∗

next .Ix. Al-
ternatively, we can express that y is on a cyclic list pointed
by x by the TBox:

T6 = {Reachx
.
= ∃R∗

next .Ix,

List
.
= νZ.∃R−

next .Reachx u Z, Iy v List}

Trees and DAGs. The property that a program variable
x points to a binary DAG with left and right pointers is
captured by the TBox:

T7 = {DAG
.
= ∀(Rleft t Rright )

∗.INULL, Ix v DAG ,

∃Rleft .> u ∃Rright .>
.
= ¬INULL}

Thereby, the defined concept DAG is the set of all heap
cells from which NULL is reachable regardless of the fol-
lowed path. Note that ∀(Rleft t Rright )

∗.INULL is again
expressible using fixpoints because

∀(R t S)∗.C ≡ µZ.C t ∀(R t S).Z

≡ µZ.C t ¬∃(R t S).¬Z

≡ µZ.C t ¬((∃R.¬Z) t (∃S.¬Z)).

To express that x points to a binary tree, we augment the
above TBox for DAGs with axioms that prohibit sharing:

T8 = T7 ∪ {≤1 R−
left .>

.
= ¬INULL, ≤1 R−

right .>
.
= ¬INULL,

(∃R−
left .>) u (∃R−

right .>)
.
= INULL}

Note that balanced tree data structures such as AVL trees,
2-3 trees, B trees, red-black trees cannot be expressed in
description logics, since their invariants involve comparing
properties (typically the height) of different subtrees.

4. Symbolic Shape Analysis

In this section, we sketch a symbolic shape analysis based
on predicate abstraction [9]. In terms of the abstract inter-
pretation framework [5], the essential ingredients for a pro-
gram analysis are the Galois connection between the con-
crete and the abstract domain and the state transformer (pro-
gram semantics) on the concrete domain. Our concrete do-
main are graphs that describe pointer structures in the heap,
and the semantics of programs that manipulate such pointer
graphs locally (in each computation step) is straightforward.

In predicate abstraction, the Galois connection is
uniquely determined by the abstract domain, which is a fi-
nite lattice of formulas constructed from a finite set of ab-
straction predicates. In our case, the abstraction predicates
are concept formulas in a description logic that can express
reachability, and the abstract domain is the Boolean algebra

of abstraction predicates. Instead of computing the best ab-
stract transformer in this domain, we follow the suggestion
of [2, 19, 27] and apply an additional Cartesian abstraction,
leading to a less precise transformer. Yet, this transformer
is efficiently computable provided that entailment between
conjunctions of abstraction predicates and weakest precon-
ditions of abstraction predicates is decidable efficiently.

4.1. Programs

We introduce the pointer programs that we want to analyze
and give their semantics. For simplicity, we abstract away
from data and we do not handle dynamic memory alloca-
tion and deallocation. I. e., our programs are control flow
graphs, whose edges are labeled by the following seven
types of statements.

Stmt ::= y = e? equality test
| y 6= e? disequality test
| x 6= NULL! non-NULL assertion
| x.f ! non-dangling assertion
| y := e assignment
| y := x.f pointer field dereference
| x.f := e pointer field update

Thereby, x and y denote pointer variables, e denotes a
pointer variable or NULL, and x.f means dereferencing x
and selecting field f of the pointed-to heap cell. To keep the
semantics simple, we assume that the statements x.f := y
and y := x.f are never executed when x is NULL or dan-
gling, respectively; this can be ensured by preceding asser-
tions x 6= NULL! and x.f !. Figure 5 shows a simple exam-
ple program (a piece of straight line code of 5 statements)
for inserting a node into a cyclic list.

Let P be a program given as a control flow graph. Infor-
mally, a state of P is the contents of the program variables
and the contents of the heap. We represent both by means of
a relational first-order structure, which interprets program
variables (and the special value NULL) by singleton sets
and the heap by an edge-labeled graph with functional edge
relations. Formally, P induces a relational vocabulary Ī∪R̄
consisting of sets Ī resp. R̄ of unary predicates Ie, where e
is a program variable or NULL, and binary predicates Rf ,
where f is a pointer field. A state of P is a relational struc-
ture A over Ī ∪ R̄ subject to the following restrictions:

1. The universe of A is finite.

2. For all Ie ∈ Ī , the set IAe is a singleton.

3. For all Rf ∈ R̄, the relation RA

f is functional.

4. NULL has no successors in A, i. e., for all Rf ∈ R̄,
A |= ∀u, v(INULL(u) ⇒ ¬Rf (u, v)).
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Statements transform program states, so their semantics
is a binary relation on the state space, in our case a binary
relation on first-order structures. We extend the vocabulary
with a primed copy Ī ′ ∪ R̄′, where Ī ′ = {I ′e | Ie ∈ Ī}
and R̄′ = {R′

f | Rf ∈ R̄}. The semantics of statements
s can now be expressed by first-order formulas JsK over
Ī∪Ī ′∪R̄∪R̄′. Note that we consider a relational structure A

over Ī∪Ī ′∪R̄∪R̄′ to be a model of JsK only if it satisfies the
above restrictions for program states both for the unprimed
and for the primed vocabulary. Figure 2 shows the seman-
tics of statements, where for subsets X ⊆ Ī resp. Y ⊆ R̄
of unary and binary predicates, the conjuncts nochange(X)
and nochange(Y ) specify that the predicates in X resp. Y
do not change, formally:

nochange(X) ≡
∧

Ie∈X

∀u
(

I ′e(u) ⇔ Ie(u)
)

nochange(Y ) ≡
∧

Rf∈Y

∀u, v
(

R′
f (u, v) ⇔ Rf (u, v)

)

Note that Jx 6= NULL!K = Jx 6= NULL?K, so we may view
non-NULL assertions as special cases of disequality tests.

4.2. Weakest Preconditions

For computing abstractions to Boolean programs, it is es-
sential to logically express the weakest (liberal) precondi-
tion wlps(S) of a set of states S w. r. t. a statement s, i. e.,
the set of program states that are transformed to states in
S upon execution of the (deterministic) statement s. Fig-
ure 3 presents a characterization of wlps(ϕ) in first-order
logic, where ϕ is a formula (which may have free vari-
ables) representing the set of states S. This characterization,
which is straightforward to derive from the semantics in fig-
ure 2, uses quantification over a unary predicate I as well as
substitutions1 ϕ[ψ($)/Ie($)] and ϕ[ξ($1, $2)/Rf ($1, $2)]
of unary and binary predicates by formulas; the counting
quantifier ∃=1 (exists exactly one) is just an abbreviation.

Note the three preconditions for dereference statements.
The first one is derived from the first-order semantics in the
standard way, whereas the other two are tailored to deriving
weakest preconditions in description logics. For proving
the three preconditions equivalent one has to assume that x
is not dangling (which can be ensured by a preceding as-
sertion x.f !) and take into account the semantic restrictions
on states saying that Ix is a singleton and Rf functional.
Large parts of the equivalence proofs can be carried out
automatically by modern first-order theorem provers like
SPASS [26].

Recall that we want to employ DL systems for reasoning
about weakest preconditions of certain concept formulas in

1ϕ[ψ($)/Ie($)] is obtained from ϕ by replacing all subformulas Ie(u)
with ψ(u). ϕ[ξ($1, $2)/Rf ($1, $2)] is defined analogously.

a DL. Therefore, we have to express the weakest precondi-
tion operator as a concept formula transformer. Note that
due to the semantic restrictions on states, we restrict to DL
formulas where all atomic concepts are nominals (model-
ing program variables or NULL) and all atomic roles are
functional (modeling pointer fields).

Figure 4 presents a characterization of the weakest pre-
conditions wlps(C) of a concept expression C w. r. t. a
statement s in a DL with nominals, functional roles, and
a universal role2 U . Additionally the DL may use fixpoint
concepts, inverse roles, and certain number restrictions.

For tests, assertions and assignments, it is easy to see
that the DL preconditions in figure 4 correspond to the FO
preconditions in figure 3 under the standard translation of
concept formulas into first-order logic. The same is true
for the preconditions of dereference statements, because the
second order quantification ∀I(∃=1u I(u) ⇒ . . . ) is equiv-
alent to introducing a new nominal I . Note that the two al-
ternative preconditions differ in that the first may introduce
inverse roles whereas the second does not. For update state-
ments, the weakest preconditions are computed by struc-
tural recursion over the concept formula C, modifying only
those subformulas of C that contain the role Rf . Note that
we only allow number restrictions on inverse roles (since all
atomic roles are functional anyway) of the form ≥2R−

f .D,

≤1R−

f .D and =1R−

f .D; for higher numbers the weakest
preconditions of update statements are no longer express-
ible as concept formulas in a simple way. Again, large parts
of the proof of correspondence between the weakest pre-
conditions in FO and DL can be done automatically by the
theorem prover SPASS. Figure 5 shows some examples of
weakest preconditions of non-trivial concept formulas.

Note that wlps(C) ∈ ALCOU
f if C ∈ ALCOU

f . The
same preservation holds for some more expressive DLs in-
cluding the ones listed in table 2.

4.3. Abstract State Transformer

We fix a set C = {C1, . . . , Cn} of concept formulas, which
we call abstraction predicates. The abstract domain of our
shape analysis is the free Boolean algebra generated by the
formulas in C. That is, an abstract state is a Boolean com-
bination of concept formulas, which is again a concept for-
mula. Similar to the Boolean heaps of [19], an abstract state
thus represents a set of heap graphs. More formally, the
concretization of an abstract state C is the set of all inter-
pretations I such that I |= > v C.

To represent abstract states succinctly, we use sets
of bitvectors, where a (3-valued) bitvector (b1, . . . , bn)
is a vector of values bi ∈ {0, 1, ∗}. Such a bitvec-
tor (b1, . . . , bn) can be interpreted as a conjunction

2Some DLs implicitly possess a universal role; e. g., in some fixpoint
logics it is expressible as a greatest fixpoint.
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Jy = e?K ≡ ∀u
`

Iy(u) ⇔ Ie(u)
´

∧ nochange(Ī) ∧ nochange(R̄)

Jy 6= e?K ≡ ¬∀u
`

Iy(u) ⇔ Ie(u)
´

∧ nochange(Ī) ∧ nochange(R̄)

Jx 6= NULL!K ≡ ¬∀u
`

Ix(u) ⇔ INULL(u)
´

∧ nochange(Ī) ∧ nochange(R̄)

Jx.f !K ≡ ∀u
`

Ix(u) ⇒ ∃v Rf (u, v)
´

∧ nochange(Ī) ∧ nochange(R̄)

Jy := eK ≡ ∀u
`

I ′
y(u) ⇔ Ie(u)

´

∧ nochange(Ī \ {Iy}) ∧ nochange(R̄)

Jy := x.fK ≡ ∀v
`

I ′
y(v) ⇔ ∃u(Ix(u) ∧ Rf (u, v))

´

∧ nochange(Ī \ {Iy}) ∧ nochange(R̄)

Jx.f := eK ≡ ∀u, v
`

R′
f (u, v) ⇔ Ix(u) ∧ Ie(v) ∨ ¬Ix(u) ∧ Rf (u, v)

´

∧ nochange(Ī) ∧ nochange(R̄ \ {Rf})

Figure 2. First-order logic semantics of statements.

wlpy=e?(ϕ) ≡ ∀u
`

Iy(u) ⇔ Ie(u)
´

∧ ϕ

wlpy 6=e?(ϕ) ≡ ¬∀u
`

Iy(u) ⇔ Ie(u)
´

∧ ϕ

wlpx.f !(ϕ) ≡ ∀u
`

Ix(u) ⇒ ∃v Rf (u, v)
´

∧ ϕ

wlpy:=e(ϕ) ≡ ϕ[Ie($)/Iy($)]

wlpy:=x.f (ϕ) ≡ ∃I
`

∀v
`

I(v) ⇔ ∃u(Ix(u) ∧ Rf (u, v))
´

∧ ϕ[I($)/Iy($)]
´

≡ ∀I
`

∃=1u I(u) ⇒ ∀v
`

I(v) ⇔ ∃u(Rf (u, v) ∧ Ix(u))
´

⇒ ϕ[I($)/Iy($)]
´

≡ ∀I
`

∃=1u I(u) ⇒ ∀u
`

Ix(u) ⇔ ∃v(Rf (u, v) ∧ I(v))
´

⇒ ϕ[I($)/Iy($)]
´

wlpx.f :=e(ϕ) ≡ ϕ[Ix($1) ∧ Ie($2) ∨ ¬Ix($1) ∧ Rf ($1, $2)/Rf ($1, $2)]

Figure 3. Weakest preconditions in first-order logic.

wlpy=e?(C) ≡ ∀U.(Iy ⇔ Ie) u C

wlpy 6=e?(C) ≡ ¬∀U.(Iy ⇔ Ie) u C

wlpx.f !(C) ≡ ∀U.(Ix ⇒ ∃Rf .>) u C

wlpy:=e(C) ≡ C[Ie/Iy]

wlpy:=x.f (C) ≡ ∀U.(I ⇔ ∃R−
f .Ix) ⇒ C[I/Iy] (I new nominal)

≡ ∀U.(Ix ⇔ ∃Rf .I) ⇒ C[I/Iy]

wlpx.f :=e(C) ≡

8
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>
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>
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>
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

`

Ix u ∃U.(Ie u wlpx.f :=e(D))
´

t
`

¬Ix u ∃Rf .wlpx.f :=e(D)
´

if C ≡ ∃Rf .D

wlpx.f :=e(¬∃Rf .¬D) if C ≡ ∀Rf .D
`

Ie u ∃U.(Ix u wlpx.f :=e(D))
´

t ∃R−
f .(¬Ix u wlpx.f :=e(D)) if C ≡ ∃R−

f .D

wlpx.f :=e(¬∃R−
f .¬D) if C ≡ ∀R−

f .D
`

Ie u ∃U.(Ix u wlpx.f :=e(D)) u ∃R−
f .(¬Ix u wlpx.f :=e(D))

´

t ≥2 R−
f .(¬Ix u wlpx.f :=e(D))

if C ≡ ≥2 R−
f .D

wlpx.f :=e(¬≥2 R−
f .D) if C ≡ ≤1 R−

f .D

wlpx.f :=e((∃R−
f .D) u (≤1 R−

f .D)) if C ≡ =1 R−
f .D

structural recursion over C otherwise

Figure 4. Weakest preconditions in description logic.
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C(b1, . . . , bn) of (possibly negated) predicates from C. For-
mally, a predicate Ci

• occurs positively in C(b1, . . . , bn) iff bi = 1,

• occurs negatively in C(b1, . . . , bn) iff bi = 0 and

• does not occur in C(b1, . . . , bn) iff bi = ∗.

A set V of bitvectors can be interpreted as the disjunction
of conjunctions C(b1, . . . , bn), for all (b1, . . . , bn) ∈ V .
As abstract states are Boolean combinations of abstraction
predicates, which can always be brought into disjunction
normal form, every abstract state can be represented by a
set of bitvectors. We end up with an abstract domain of size
doubly exponential and height singly exponential in n.

To compute the abstract state transformer post#
s (C) of

an abstract state C w. r. t. a statement s, we assume that C is
given as a set of bitvectors V . Since post# distributes over
disjunctions, it suffices to compute post#

s (C(b1, . . . , bn))
for each bitvector (b1, . . . , bn) ∈ V . However, instead
of computing the best post#

s (C(b1, . . . , bn)) we follow
[2, 19, 27]. i. e., we express the state transformer in terms
of the weakest preconditions (which is possible since the
statements s are deterministic) and then apply an additional
Cartesian abstraction. This leads to a less precise trans-
former, but can be computed by checking a linear number
of entailments. More precisely, it ensures that the result of
post#

s (C(b1, . . . , bn)) is a conjunction C(b′1, . . . , b
′
n) repre-

sented by a bitvector (b′1, . . . , b
′
n), where

b′i =







1 if C(b1, . . . , bn) entails wlps(Ci)
0 if C(b1, . . . , bn) entails wlps(¬Ci)
∗ otherwise

In our case, where abstraction predicates are concept for-
mulas, checking entailment means checking concept inclu-
sion w. r. t. to finite interpretations. Formally, the entailment
checks are queries of the form

T |=fin C(b1, . . . , bn) v wlps([¬]Ci) .

Thereby, T is a TBox asserting (at least) axioms of the form
> v ≤1Rf .>, ensuring that Rf is a functional relation,
and NULL v ∀Rf .⊥, ensuring that NULL does not have
successors. Moreover, Wies [27] suggests to increase the
precision of the analysis by checking entailment relative to
the current abstract state C, which amounts to adding the
inclusion > v C to T . Section 4.5 will show how the
analysis works on an example.

4.4. Abstraction Predicates

The properties of a predicate abstraction based analysis, in
terms of usefulness of the generated invariants, precision

DL abs. predicates purpose

ALCOU
f > all nodes

INULL, Ix prog. var. nodes
¬C, C1 t C2 boolean comb.
∃Rf .C direct predecessors

ALCO−1,U
f ∃R−

f .C direct successors
ALCQO−1,U ≥2 R−

f .C sharing nodes
µALCOf ∃R∗

f .C predecessors
µALCO−1

f ∃(R−
f )∗.C successors

νZ.(∃R−
f .C u Z) cyclic nodes

Table 3. Abstraction predicates.

and cost, crucially depend on the class of abstraction pred-
icates. If we stay within the logic ALCOU

f , only very sim-
ple abstraction predicates are expressible; more interesting
predicates (in particular, for reachability) require more ex-
pressive logics. Table 3 shows which common abstraction
predicates can be constructed in which logic. Note that
the transitive closure operators on roles are abbreviations
here, which can be eliminated in favor of fixpoints since
∃R∗.C ≡ µZ.(C t ∃R.Z) and ∃R+.C ≡ ∃R.(∃R∗.C).
As the table shows, depending on the logic we can construct
predicates expressing

• sharing like ≥2R−

f .>: all nodes with at least 2 incom-
ing pointers,

• reachability and cyclicity like νZ.(∃Rf .Z): all nodes
that can reach a cycle, and

• separation like ¬(∃(R−

f )∗.Ix u ∃(R−

f )∗.Iy): all nodes
that are not jointly reachable from both x and y.

4.5. Example

Figure 5 depicts the results of the shape analysis on an ex-
ample program for inserting a new node (pointed by e) into
a singly-linked cyclic list (pointed by x). The example uses
9 abstraction predicates, C1 for NULL, C2 to C4 for the
cells pointed by the program variables e, x and t, C5 for
cells which have a successor, C6 and C7 for the successors
of the cells pointed by x and e, C8 for cells that can reach
x, and C9 for cells that are on a cycle and can reach x.

The initial set of bitvectors V1 encodes a precondition
for the program: x points to a cyclic list of at least two
elements (the cell pointed by x and its successor), and e
points to a cell whose successor is NULL; in particular e is
not on the list. The analysis computes3 the sets V2 to V4.
From the final set V4, we can read off the postcondition of
the program: x points to a cyclic list, which includes e.

3By hand, for lack of a reasoner for the DL µALCO−1
f

.
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set of abstraction predicates C = {C1, . . . , C9}

C1 C2 C3 C4 C5 C6 C7 C8 C9

INULL Ie Ix It ∃Rnext .> ∃R−
next .Ix ∃R−

next .Ie µY.Ix t ∃Rnext .Y νZ.∃R−
next .C8 u Z

statements sets of bitvectors vectors correspond to

V1 = {(1, 0, 0, ∗, 0, 0, 1, 0, 0), NULL (= successor of e)
(0, 1, 0, ∗, 1, 0, 0, 0, 0), e

(0, 0, 1, ∗, 1, 0, 0, 1, 1), x

(0, 0, 0, ∗, 1, 1, 0, 1, 1), successor of x
(0, 0, 0, ∗, 1, 0, 0, 1, 1), other nodes on the list
(0, 0, 0, ∗, ∗, 0, 0, ∗, 0)} other nodes in the heap

x.next!

t := x.next

V2 = {(1, 0, 0, 0, 0, 0, 1, 0, 0), NULL (= successor of e)
(0, 1, 0, 0, 1, 0, 0, 0, 0), e

(0, 0, 1, 0, 1, 0, 0, 1, 1), x

(0, 0, 0, 1, 1, 1, 0, 1, 1), t (= successor of x)
(0, 0, 0, 0, 1, 0, 0, 1, 1), other nodes on the list
(0, 0, 0, 0, ∗, 0, 0, ∗, 0)} other nodes in the heap

e 6= NULL!

e.next := t

V3 = {(1, 0, 0, 0, 0, 0, 0, 0, 0), NULL

(0, 1, 0, 0, 1, 0, 0, 1, 0), e

(0, 0, 1, 0, 1, 0, 0, 1, 1), x

(0, 0, 0, 1, 1, 1, 1, 1, 1), t (= successor of x and e)
(0, 0, 0, 0, 1, 0, 0, 1, 1), other nodes on the list
(0, 0, 0, 0, ∗, 0, 0, ∗, 0)} other nodes in the heap

x.next := e

V4 = {(1, 0, 0, 0, 0, 0, 0, 0, 0), NULL

(0, 1, 0, 0, 1, 1, 0, 1, 1), e (= successor of x)
(0, 0, 1, 0, 1, 0, 0, 1, 1), x

(0, 0, 0, 1, 1, 0, 1, 1, 1), t (= successor of e)
(0, 0, 0, 0, 1, 0, 0, 1, 1), other nodes on the list
(0, 0, 0, 0, ∗, 0, 0, ∗, 0)} other nodes in the heap

Sample queries generated during the computation of the abstract
post (TBox Ti corresponds to bitvector set Vi):

T1 |= C(0, 0, 0, ∗, 1, 1, 0, 1, 1) v wlpx.next!;t:=x.next (C4)

T3 |= C(0, 1, 0, 0, 1, 0, 0, 1, 0) v wlpx.next:=e(C8)

T3 |= C(0, 1, 0, 0, 1, 0, 0, 1, 0) v wlpx.next:=e(C9)

Sample weakest preconditions:

wlpx.next!;x.next:=e(C4) ≡ wlpx.next!(wlpx.next:=e(It))

≡ wlpx.next!(∀U.I ⇔ ∃R−
next .Ix) ⇒ I)

≡ (∀U.Ix ⇒ ∃Rnext .>) u ((∀U.I ⇔ ∃R−
next .Ix) ⇒ I)

wlpx.next:=e(C8) ≡ wlpx.next:=e(µY.Ix t ∃Rnext .Y )

≡ µY.Ix t Ix u (∃U.Ie u Y ) t ¬Ix u ∃Rnext .Y

≡ µY.Ix t ¬Ix u ∃Rnext .Y

wlpx.next:=e(C9) ≡ wlpx.next:=e(νZ.∃R−
next .C8 u Z)

≡ νZ.Ie u (∃U.Ix u (µY.Ix t ¬Ix u ∃Rnext .Y ) u Z) t

(∃R−
next .¬Ix u (µY.Ix t ¬Ix u ∃Rnext .Y ) u Z)

Sample TBox: T1 = {INULL v ∀Rnext .⊥,
> v ≤1Rnext .>,
> v C(1, 0, 0, ∗, 0, 0, 1, 0, 0) t

C(0, 1, 0, ∗, 1, 0, 0, 0, 0) t
C(0, 0, 1, ∗, 1, 0, 0, 1, 1) t
C(0, 0, 0, ∗, 1, 1, 0, 1, 1) t
C(0, 0, 0, ∗, 1, 0, 0, 1, 1) t
C(0, 0, 0, ∗, ∗, 0, 0, ∗, 0)}

Figure 5. Example: Inserting a new element into a singly-linked cyclic list.
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4.6. Approximating Entailment

In the previous sections, we did advocate the use of very
expressive description logics in shape analysis. There are a
number of reasons why we may have to settle for less:

Decidability. Alternation-free µALCO−1
f was shown

undecidable in [3]; decidability of µALCOf is not known.
Finite decidability. Actually, we want decidability in

finite models, which does not necessarily coincide with
decidability, as many expressive description logics (e. g.,
µALCO−1

f ) lack the finite model property. Finite decid-

ability of µALCO−1
f and µALCOf is not known, however,

ALCOU
f and ALCQO−1,U are finitely decidable via em-

bedding into C 2, the 2-variable fragment of first-order logic
with counting quantifiers, for which finite decidability is in
NEXPTIME [20].

Availability. Currently, there are no systems that handle
fixpoints or at least transitive closure, so the ‘reachability’
logics µALCOf and µALCO−1

f are beyond today’s reach.

ALCOU
f and ALCQO−1,U can be handled by existing sys-

tems (e. g., by FaCT [12] as they are fragments of SHOQ
and SHIOQ, respectively).

Performance. Computing abstractions in one shape
analysis may trigger thousands of entailment tests. Even
if they exist, systems for fixpoint logics may not be perform
well enough to be of productive use.

There are different ways to relax these problems. If
the system at hand implements a calculus for an undecid-
able logic, non-terminating computations may be aborted
by timeouts, leading to a potential loss of precision in the
analysis. The same technique may help to mitigate (some-
times) poor performance.

If the logic does not have the finite model property and
no finite model reasoner is available, one may use an un-
restricted model reasoner. The latter may prove less en-
tailments, leading to a loss of precision, but all entailments
proven are sound, i. e., continue to hold in finite models.

If systems for expressive logics are not available, not
fast or not decidable enough, then one may also approxi-
mate using weaker logics, i. e., logics with less restrictions
on the class of models. For instance, from the undecidable
logic µALCO−1

f one can either drop the functional roles

and obtain the EXPTIME-complete DL µALCO−1 [23],
or one can drop the nominals and obtain a fragment of the
EXPTIME-complete DL µALCQ−1 [4]. In both cases, the
approximations are sound, i. e., if an entailment holds in the
weaker logic it will continue to hold in the stronger one.

5. Related Work

In this section we consider symbolic languages for shape
analysis among which are local shape logic [21], role

logic [16], and 3-valued logic [22], and discuss their rela-
tionship with description logics.

3-valued logic. In the framework for parametric 3-valued
shape analysis [22], concrete stores are represented by 2-
valued logical structures. First-order logic with transitive
closure, which is in general undecidable, is then used to
express properties of stores such as reachability, acyclicity,
sharing. The logic is interpreted over 3-valued structures,
according to Kleene’s 3-valued interpretation of first-order
logic. The use of instrumentation predicates in 3-valued
shape analysis is similar to our use of abstraction predicates
(which is inspired by [19, 27]).

Local shape logic and role logic. Local shape logic
(LSL) [21] is introduced in an attempt to describe shape
graphs, e. g., linked lists, circular buffers. Similar to de-
scription logics, formulas in LSL are interpreted over la-
beled directed graphs, where nodes are locations of objects
and edges represent references. LSL is a decidable fragment
of the undecidable shape logic [21], which is a typed first-
order logic. Decidability is gained by restricting the use of
first-order variables; more precisely, LSL can be strictly em-
bedded into C 2, the 2-variable fragment of first-order logic
with counting quantifiers.

Role logic RL is variable free logic which is equally ex-
pressive as first-order logic with transitive closure and con-
sequently undecidable. A subset of role logic, RL2, is de-
cidable and equally expressive as C 2. Thus, RL2 is decid-
able and as expressive as the most expressive DLs without
role composition, transitive closure and fixpoints.

A limitation of LSL and RL2 is their expressive power;
in contrast to DLs with fixpoints, neither logic can model
crucial properties such as reachability and separation.

Decidable extensions of first-order fragments. An al-
ternative approach to symbolic shape analysis [19, 27] uses
decidable extensions of fragments of first-order logic, e. g.,
guarded fixpoint logic µGF [8]. In µGF , one can express
reachability from specified points along specified paths, but
full transitive closure (i. e., reachability between a pair of
variables) is inexpressible. Moreover, µGF lacks the finite
model property [8] and becomes undecidable when func-
tionality restrictions are added [7].

Monadic second-order logic. An approach described
in [18] uses a special pointer assertion logic for the veri-
fication of user-supplied data structure invariants. The logic
is translated to formulae in monadic second order logic over
trees, which are tested for satisfiability with the MONA sys-
tem [11]. Note that this approach can only handle data
structures which implicitly have an underlying tree struc-
ture; in particular, DAGs cannot be handled.
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6. Conclusion

In this paper, we studied expressive description logics as
a framework for shape analysis. We expressed properties
of standard data structures, such as lists (including singly
and doubly linked lists and cyclic lists) DAGs and trees,
in DLs augmented with fixpoints. We sketched a symbolic
shape analysis based on predicate abstraction, parameter-
ized by description logics to represent the abstraction pred-
icates. Depending on the chosen logic sharing, reachability
and separation in pointer data structures are expressible.

Description logics have features which make them at-
tractive for shape analysis. They are expressive languages
which allow for the representation of complex descriptions
of data structures. Formal properties of DLs are extensively
studied and well-understood. Tools for reasoning with ex-
pressive and even undecidable description logics exist, e. g.,
FaCT [12], Racer [10].

To implement our analysis, we need reasoners that can
handle DLs with fixpoints (or transitive closure), number
restrictions, inverse roles and nominals. The existing tools
already support some of these constructs efficiently, yet sup-
port for fixpoints and nominals is lacking. Comparing this
situation to the state of the art in first-order theorem proving,
neither transitive closure nor fixpoints are supported. In the
light of the decidability results for some DLs with fixpoints,
we believe that there is more hope for a well-behaved DL
reasoner with fixpoints or transitive closure than for a first-
order theorem prover with the corresponding features.

Acknowledgements. We thank Thomas Wies and the
anonymous referees for discussions and suggestions.
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