
YewPar: Skeletons for Exact Combinatorial Search
Blair Archibald

University of Glasgow
Blair.Archibald@glasgow.ac.uk

Patrick Maier
University of Stirling

Patrick.Maier@stir.ac.uk

Robert Stewart
Heriot-Watt University
R.Stewart@hw.ac.uk

Phil Trinder
University of Glasgow

Phil.Trinder@glasgow.ac.uk

Abstract
Combinatorial search is central to many applications, yet the
huge irregular search trees and the need to respect search
heuristics make it hard to parallelise. We aim to improve the
reuse of intricate parallel search implementations by provid-
ing the first general purpose scalable parallel framework for
exact combinatorial search, YewPar.
We make the following contributions. (1) We present a

novel formal model of parallel backtracking search, covering
enumeration, decision, and optimisation search. (2) We intro-
duce Lazy Node Generators as a uniform API for search tree
generation. (3) We present the design and implementation of
12 widely applicable algorithmic skeletons for tree search on
shared and distributed memory architectures. (4) Uniquely in
the field we demonstrate how a wide range of parallel search
applications can easily be constructed by composing Lazy
Node Generators and the search skeletons. (5) We report a
systematic performance analysis of all 12 YewPar skeletons
on standard instances of 7 search applications, investigating
skeleton overheads and scalability up to 255 workers on 17
distributed locations.

CCS Concepts •Computingmethodologies→Combi-
natorial algorithms; Parallel programming languages;

Keywords Combinatorial Search, Algorithmic Skeletons,
Distributed Memory Parallelism, HPX

1 Introduction
Exact combinatorial search is essential to a wide range of ap-
plications including constraint programming, graph match-
ing, and computational algebra. Combinatorial problems are
solved by systematically exploring a search space, and doing
so is computationally hard both in theory and in practice,
encouraging the use of approximate algorithms that quickly
provide answers yet with no guarantee of optimality. Al-
ternatively, exact search explores the entire search space

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’20), February 22–26, 2020, San Diego, CA, USA, https:
//doi.org/10.1145/3332466.3374537.

and delivers provably optimal answers. Conceptually exact
combinatorial search proceeds by generating and traversing
a (huge) tree representing alternative options. Combining
parallelism, on-demand tree generation, search heuristics,
and pruning can reduce the execution time of exact search.

There are three main types of search: enumeration, which
searches for all solutions matching some property, e.g. all
maximal cliques in a graph; decision, which looks for a spe-
cific solution, e.g. a clique of size k ; and optimisation, which
looks for a solution that minimises/maximises an objective
function, e.g. finding a maximum clique.

Parallelising exact combinatorial search is extremely chal-
lenging due to huge and highly irregular search trees, the
need to preserve search order heuristics that bias search
towards likely solutions, and pruning heuristics that dynam-
ically alter the workload to avoid unnecessary search. State-
of-the-art parallel searches (1) are single purpose, i.e. for
a specific search application, e.g. Embarrassingly Parallel
Search [24] supports constraint programming only; (2) use
hand crafted parallelism, e.g. parallel MaxClique [28], with
almost no reuse of sophisticated parallel coordination be-
tween search applications; and (3) target a single scale of
parallelism, often shared memory multicores. Hence typi-
cally an application is parallelised just once, on a specific
architecture, in a heroic effort.
In contrast this paper presents YewPar, the first scalable

parallel framework for exact combinatorial search. YewPar is
designed to allow non-expert users to benefit from paral-
lelism; to reuse parallel search patterns encoded as algorith-
mic skeletons; and to run on multiple parallel architectures.
The paper makes the following contributions.

Anew formalmodel of parallel backtracking search
uniformly characterising enumeration, decision and optimi-
sation searches as a fold of the search tree into a monoid (Sec-
tion 3). The formal model combines an encoding of search
trees and a nondeterministic small-step semantics. We prove
that the semantics correctly models parallel search, i.e. re-
ductions terminate and yield correct/optimal results, regard-
less of the interleaving of parallel reductions. Correctness is
far from obvious because pruning reductions may alter the
shape of the search tree nondeterministically. We use the
model to derive a programming interface for the skeletons

https://doi.org/10.1145/3332466.3374537
https://doi.org/10.1145/3332466.3374537

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

(Section 4.1) and to succinctly describe the work generation
behaviours of the skeletons (Section 4.2).

A widely applicable API for search tree generation
(Section 4.1). We introduce Lazy Node Generators as a uni-
form abstraction for application developers to specify how
the search trees for a specific application are created. The
generators are based on a formalisation of backtracking tree
traversal and implicitly encode application-specific search
order heuristics. Search tree nodes are constructed lazily to
avoid materialising the entire (huge) tree, such that pruning
removes redundant search by eliminating subtrees before
they are materialised.

12widely applicable algorithmic skeletons for back-
tracking search (Section 4). The skeletons use sophisticated
parallel search coordinations inspired by the literature, cur-
rently: Sequential, Depth-Bounded, Stack-Stealing and Budget
(Section 4.2). The 12 skeletons are parametric combinations
of the 3 search types, and the 4 search coordinations. To
scale on both shared and distributed memory architectures,
YewPar builds on the HPX C++ distributed execution frame-
work [22], and features custom work-stealing schedulers
that handle search irregularity and carefully manage search
order heuristics and knowledge exchange.

A demonstration of the easy construction of paral-
lel search applications using Lazy Node Generators and
search skeletons (Sections 4.4, 5.1 and A.3). We show how to
parallelise exact combinatorial search applications by com-
posing a Lazy Node Generator (to create the search tree),
with an appropriate skeleton to traverse the tree (Fig. 3). The
generality of YewPar is shown with 7 search applications
covering the 3 search types. Prior implementations like [1,
34, 40] support just one search type, and most provide only
one search coordination, the exception being Muesli [33]
which supports two for optimisation search. Most paral-
lel implementations demonstrate performance for a single
search application, a minority do two applications, and very
few [16, 23] do more.

A systematic performance analysis of the skeletons
and YewPar (Section 5). The evaluation is entirely novel
and measures the performance of the 12 skeletons across
7 search applications. The applications are evaluated on a
set of approximately 30 standard challenge search instances,
e.g. from the DIMACS benchmark suite [21]. To evaluate
the performance overheads of the general purpose skeletons
we compare YewPar with a state-of-the-art hand-coded C++
implementation on 18 instances. We demonstrate YewPar
execution on a multicore and a Beowulf cluster, showing
good scaling and efficiency up to 255 workers on 17 localities
(physical machines). We show that YewPar allows users to
easily explore alternate parallelisations, and compare the
performance of each search application with every skeleton.
This paper focuses on the YewPar programming model

and formalisation. For in-depth performance analyses of the

implementation, including workload management, see [3, 5].
YewPar is available as an evaluated artifact (Appendix A).

2 Background
To illustrate combinatorial search, consider the problem of
finding cliques within a graph such as the tiny graph shown
in Fig. 1. A clique is a set of vertices C such that all vertices
in C are pairwise adjacent. Example cliques in Fig. 1 are {a}
and {a,b, c}, but {a,b, c,д} is not a clique as there is no edge
between c and д.
The search space is huge, the powerset of the set of ver-

tices, but we can minimise the space to be explored by gener-
ating only valid cliques. So given a clique, extend it by adding
any vertex that is adjacent to all elements of the clique. This
leads naturally to backtracking search: extend the clique
until no more additions are possible; thereafter remove the
most recently added element and try a different vertex.
We can view the search space as a tree where each node

corresponds to a clique, e.g. level 1 of the tree for the graph in
Fig. 1 represents the cliques {c}, { f }, {д} etc, and the direct
descendants of clique {c} are {c,a}, {c,b} and {c, e}.
It is not always necessary to traverse the entire search

tree. For example, to check whether the graph has a 3-clique,
a decision search, we only need to generate nodes {c}, {c,a}
and {c,a,b}. Likewise we can use bounding to prune the
search space, i.e. we do not need to explore a branch if we
can prove that a solution cannot exist in that branch.

The search order determines the sequence in which nodes
in the search tree are explored, and is extremely important
as finding a solution quickly allows early termination in
decision searches and improved pruning for optimisation
searches. Like most search frameworks YewPar primarily
uses depth-first search as it requires less memory than other
search strategies such as breadth-first.

Search spaces are often huge and grow exponentially, e.g.
378 × 1012 nodes at depth 67 with a growth rate of 1.62
between successive depths in [17]. In practise YewPar ma-
terialises only small fragments of the tree during search,
saving both memory and runtime. Search problems are hard
in both theory, usually NP-hard [38], and in practice, with
instances often taking hours, or longer, to solve. They may be
solved using approximate methods like simulated annealing
or ant colony optimisation [9] that quickly provide non-exact
answers. In contrast exact methods explore the entire search
space and provide proofs of optimality or infeasibility. Yew-
Par aims to provide the benefits of exact search while using
parallelism to reduce runtime.

2.1 Parallel Combinatorial Search
Parallelising search solves existing instances faster and al-
lows larger instances to be practically solved, e.g. reducing
runtimes from hours to minutes. Parallel tree searches can
be classified [18] as follows: (1) Parallel Node Processing

YewPar: Skeletons for Exact Combinatorial Search PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

a b

c

d

ef

g

h
{c} [a,b,e]

{c,b} [] {c,e} []{c,a} [b]

{c,a,b} []

{f} [a,g,d]

{f,a} [g,d]

{f,a,g} [d]

{f,a,g,d} []

{f,a,d} []

{f,g} [d]

{f,g,d} []

{f,d} []

{} [c,f,g,h,d,b,a,e]

{g,a} [d,b]

{g,a,b} []{g,a,d} []

{g,d} [] {g,b} []

{g} [a,d,b]

{h,a} [] {h,e} []

{h} [a,e] {e} []. . .

Figure 1. Maximum clique instance. Input graph with clique {a,d, f ,д} to the left and corresponding search tree to the right.
Each tree node displays the current clique and a list of candidate vertices (in heuristic order) to extend that clique.

that parallelises the branching/bounding, e.g. computing the
bounds for a Flowshop problem on a GPU [20]. (2) Space-
Splitting where parallel workers speculatively explore sub-
trees of the search tree. While the subtrees are explored
independently, knowledge such as improved bounds is of-
ten shared between workers to improve performance. (3)
Portfolio approaches run competing searches in parallel, of-
ten with different heuristics or bounding methods. Hybrid
approaches combining these approaches are also used.
Both parallel node processing and portfolio approaches

require domain-specific knowledge, e.g. to vary bounding
functions. YewPar uses space-splitting as it is independent
of specific search domains, and hence suitable for general-
purpose search skeletons.
While space-splitting maps naturally to task parallelism,

it poses some very significant challenges. Search trees are
highly irregular and the time required to search a particu-
lar subtree is both unpredictable and highly variable [31].
Careful choice of an initial work distribution, or methods
to dynamically generate more work, are essential to keep
workers busy. Knowledge transfer further complicates mat-
ters. (1) New knowledge dynamically changes the shape of
the search tree: tasks that were predicted to be long running
(often those near the root of the tree) may become trivial,
and many tasks may be invalidated simultaneously, requir-
ing work redistribution. (2) Gaining new knowledge early
on greatly reduces search time by reducing the search space.
Heuristics guide search to promising areas and essentially
impose an ordering on tasks that should be preserved as far
as possible. (3) Knowledge is shared globally which can be
expensive on large (distributed memory) systems, although
[5] shows that in many important searches there are few
global knowledge updates.

Performance Anomalies. Search algorithms rely on or-
dering heuristics to find useful nodes as early as possible, e.g.
the target node in a decision problem, or one with a strong
bound for a branch and bound optimisation problem. To take
advantage of these heuristics, search proceeds in a left-to-
right order (at all depths of the tree). Hence a sequential
search visiting a node has full information about the search

tree, e.g. incumbents, from all nodes to-the-left of it, and the
search is deterministic.
Parallel searches speculatively search subtrees without

full information to-the-left, and may benefit from informa-
tion flowing right-to-left. However the speculation means
that the parallel search may perform significantly more work
than an equivalent sequential search. For this reason, parallel
search is notorious for performance anomalies [14]. Detri-
mental Anomalies occur when the runtime onw workers is
more than forw − 1 workers. Here the additional work may
outweigh the benefit of the additional compute resource,
or the additional compute resource may disrupt the search
heuristic. Acceleration Anomalies are superlinear speedups,
typically due to knowledge flowing right-to-left, reducing
overall work by enabling more pruning than in a sequential
search.
The presence of anomalies makes it difficult to reason

about the parallel performance of search applications. Yew-
Par aims to avoid detrimental anomalies while allowing ac-
celeration anomalies; [4] reports a specialised search skele-
ton that carefully controls anomalies to provide replicable
performance guarantees.

2.2 Existing Parallel Space-Splitting Searches
While reviews of parallel search often focus on a particular
search domain e.g. [19], a multi-domain survey can be found
in [3]. Space-splitting searches are classified by synchronic-
ity, workpool layout, and load-balancing [3, 18, 37].
Static approaches e.g. EPS [35] or MapReduce [39] par-

tially explore the search tree, usually breadth first, to gen-
erate a set of search tasks. They are simple, use minimal
communication (often to/from a single leader node), and
scale well on distributed architectures e.g. to 512 workers
for EPS [35]. Many static searches rely on domain-specific
heuristics to determine how many tasks to generate.

Dynamic approaches divide the search space during search,
adapting to the search state to avoid starvation. Hence they
may effectively parallelise searches that cannot be statically
partitioned. Their implementations are more complex, and
using techniques like work-stealing means that the searches

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

are no longer deterministic. Dynamic approaches are classi-
fied by their load-balancing strategy: (1) centralised strate-
gies as in the BOB framework [29] are common; (2) decen-
tralised strategies as in ZRAM [11] and [1] often use work-
stealing; (3) periodic strategies redistribute work at inter-
vals during the search as in mts [8]. YewPar also provides
dynamic work generation, with general purpose search co-
ordinations that use random distributed work-stealing and
on-demand tree splitting, and coordinations that periodically
repartition work based on a backtracking budget similar to
mts [8].

2.3 Why a New Parallel Search Framework?
As implementing parallel tree search is so intricate, it would
be a huge saving to reuse effective implementations. Unfor-
tunately while general purpose task parallel frameworks like
Cilk [10] or X10 [12] provide features like work-stealing,
they use techniques inappropriate for search, e.g. standard
deque-based work-stealing breaks heuristic search orders.
Moreover a search-specific framework makes it easier to ful-
fil parallel search requirements, e.g. dynamically splitting the
search tree, and sharing knowledge between search tasks.
A careful analysis of 31 parallel tree search implemen-

tations (Table 2.1 in [3]) reveals that most are application
specific like [34, 40], and there are just two generic frame-
works: Muesli [13] and MaLLBa [2]. Both are designed for
branch and bound optimisation and, unlike YewPar, do not
currently support decision or enumeration searches.

3 Formalising Parallel Tree Search
At an abstract level tree search can be viewed as an un-
fold/map/fold computation. The unfold generates the search
tree, and the map and fold operate on a monoid that accumu-
lates search information. That is, the map applies an objective
function to turn each search tree node into a monoid value,
and the fold reduces the resulting tree to a single monoid
value, e.g. an optimal search result.

However, such an abstract formulation cannot readily
describe the nondeterminism and pruning that are crucial
for efficient optimisation and decision searches. Hence we
construct a more concrete semantics as follows. Section 3.1
specifies the unfold, i.e. search tree generation and traversal.
Section 3.2 specifies the monoids used to accumulate infor-
mation in enumeration, optimisation and decision searches.
Section 3.3 defines a new parallel operational semantics for
multi-threaded tree traversal. This semantics generalises the
semantics in [3] by classifying search types by their monoids,
and by providing correctness proofs (Section 3.7).

3.1 Trees
To represent search trees, we formalise trees and tree traver-
sals. Let X be a non-empty alphabet. X ∗ denotes the set of
finite words over X , and ⪯ denotes the prefix order on X ∗.

A tree T is a non-empty finite prefix-closed subset of X ∗.
We call words w ∈ T nodes of T . A node w is a parent of
a node u, and u is a child of w , if there is a ∈ X such that
u = wa. Nodes u and v are siblings if they share the same
parent. The root ofT is the empty word ϵ , and the depth of a
nodew in T is the length of wordw , denoted by |w |.
We assume that a tree T is ordered, i.e. equipped with a

partial order ⋖T that linearly orders siblings; we call ⋖T a
sibling order. We define the traversal order ≪T for T as a
linear extension of the prefix order ≺ and the sibling order
⋖T as follows.

u ≪T v iff

u ≺ v or
∃w,u ′,v ′ ∈ X ∗ ∃a,b ∈ X such that
u = wau ′ and v = wbv ′ andwa ⋖T wb

Weomit the subscript if the treeT is obvious from the context.
Traversing T in≪ order is a depth-first traversal that visits
the children of each node in sibling order.
A subset S of X ∗ is a subtree if S has a least element w.r.t.

the prefix order, the root u, and is prefix-closed above the
root, i.e. whenever u ⪯ v ⪯ w andw ∈ S then v ∈ S ; we call
S a subtree rooted at u. If a subtree S is a subset of a tree T
then S inherits T ’s sibling order ⋖T and traversal order≪T .
Let S be a subtree rooted at u, and let v ∈ S . We define

children(S,v) as the set of nodes in S that are children of v .
We define subtree(S,v) = {w | w ∈ S and v ⪯ w} as the sub-
tree of S rooted atv . Ifv , u then S \subtree(S,v) is a subtree
rooted at u. We define succ(S,v) = {w | w ∈ S and v ≪ w}
to be the set of nodes in S that followv in traversal order. We
define next(S,v) = min≪ succ(S,v) as the node in S that im-
mediately followsv in traversal order, writing next(S,v) = ⊥
if no such node exists.

We write lowest(S,v) for the subset of nodes in succ(S,v)
at minimum depth, that is closest to the root of S . We define
nextLowest(S,v) = min≪ lowest(S,v) as the “first” (in traver-
sal order) of the minimum depth nodes in succ(S,v), writing
nextLowest(S,v) = ⊥ if there is no such node.

Tree generators.While the semantics models a fully ma-
terialised search tree, any realistic implementation must gen-
erate the search tree on demand as in Section 4.1. We call a
function д : X ∗ → X ∗ an ordered tree generator if all images
of д are isograms, i.e. have no repeating letters. We defineTд ,
the tree generated by such a д as the smallest subset of X ∗
that contains ϵ and is closed under д, that is, if u ∈ Tд and
д(u) = a1 . . . an , ai ∈ X , then all uai ∈ Tд . We equip Tд with
the sibling order ⋖Tд induced by д, defined as uai ⋖Tд uaj
iff д(u) = a1 . . . an and i < j. This defines a total order on
siblings because images of д are isograms.

3.2 Search types
YewPar supports enumeration, optimisation and decision
searches. All three search types can be characterised by a
commutative monoid M for accumulating information and

YewPar: Skeletons for Exact Combinatorial Search PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

an objective function h for mapping search tree nodes into
the monoid.

Enumeration search traverses the entire search tree and
gathers information by summing the values of the objec-
tive function. Such a search is defined by a commutative
monoid ⟨M,+, 0⟩ and an objective function h : X ∗ → M , and
searching an initial tree S0 amounts to computing the sum∑
{h(v) | v ∈ S0}.
Examples. To count the nodes in a search tree the monoid

M is the natural numbers with addition and the objective
function h is h(v) = 1. To count the nodes at a given depth d
requires the same monoidM but a different objective func-
tion: h(v) = 1 if the depth of v is d , i.e. |v | = d , and h(v) = 0
otherwise.

Optimisation search computes the maximal value of the
objective function across the search tree. This requires the
commutative monoid ⟨M,+, 0⟩ to induce a total order ⟨M,⊑⟩
with least element 0, and with + acting as the max operator.
Optimisation search typically returns not the maximal value
but a search tree node witnessing that value. (There may be
many such witnesses; optimisation search may pick one non-
deterministically.) This requires the tracking of incumbents,
and also provides opportunities for pruning the search tree
(Section 3.5).

Example. A simple optimisation search computes tree
depth. The monoid M is the natural numbers with maxi-
mum, which induces the usual total order, and the objective
function h maps each node to its depth, i.e. h(v) = |v |.
Decision search, like optimisation search, computes the

maximum of the objective function while traversing the
search tree. (Like optimisation search, decision search typi-
cally returns a nondeterministically chosen node witnessing
that maximum.) However, decision search requires the total
order ⟨M,⊑⟩ to be bounded, and terminates as soon as the
objective function reaches the greatest element.

Example. A simple decision search decides whether a tree
is at least k levels deep. The bounded total order is the set
{0, . . . ,k} with the usual order, i.e. k is the greatest element.
The objective function h maps each node to its depth, cut off
at level k , i.e. h(v) = min{|v |,k}

3.3 Configurations
The semantics captures the current state of a parallel search
in a configuration of the form ⟨σ , Tasks,θ1, . . . ,θn⟩, where
n ≥ 1 is the fixed number of parallel threads. The compo-
nents of a configuration are as follows.
θi is the state of the ith thread. It is either ⊥ to denote

an idle thread, or ⟨S,v⟩k to denote an active thread that is
executing task S , i.e. searching subtree S in traversal order.
The node currently being explored is v , and the superscript
k records how often the search of S has backtracked (k may
be omitted if not relevant).

Tasks is a queue of pending tasks, i.e. subtrees yet to be
searched. We use list notation, so [] is an empty queue, [S]

is a singleton queue, S :Tasks is a queue with S at the head,
and Tasks:S is a queue with S at the tail.
σ is the current global knowledge, and is either of the form
⟨x⟩ or {u}. For enumeration searches, the accumulator ⟨x⟩
is an element of a commutative monoidM that sums the cur-
rent knowledge. For optimisation and decision searches, the
incumbent {u} is a search tree node that currently maximises
the objective function h.

Search begins with all threads idle, a singleton task queue
and global knowledge being either the root node incumbent
or the zero accumulator. That is, an initial configuration
takes the form ⟨σ0, [S0],⊥, . . . ,⊥⟩, where S0 is the entire
search tree and σ0 is either {ϵ} or ⟨0⟩. Search ends when
the task queue is empty and all threads are idle, i.e. a final
configuration is ⟨σ , [],⊥, . . . ,⊥⟩, where σ is a search result.

3.4 Reduction rules
Figure 2 lists the reduction rules of the multi-threaded se-
mantics. The rules are divided into four categories and define
reduction relations→T

i ,→
N
i ,→P

i and→S
i for tree traversal,

node processing, pruning and spawning respectively. The
subscript i indicates the active thread performing a reduction
step. The per-thread and overall reduction relations→i and
→ are defined as follows.

→i = (→
T
i ◦→

N
i) ∪→

P
i ∪→

S
i

→ =→1 ∪ · · · ∪→n

Every→ reduction is a per-thread reduction for some thread
i , which is either a spawn reduction, a prune reduction, or a
traversal reduction followed immediately by a node process-
ing reduction.

The traversal rules encode standard backtracking, search-
ing a subtree S in traversal order, starting at the root of
S (schedule), expanding the current branch (expand), back-
tracking to another branch (backtrack), and terminating once
S is explored (terminate). The search type determines which
node processing rules are applicable. Enumeration searches
accumulate the value of the objective function using the
monoid addition + (accumulate). Optimisation and decision
searches update the incumbent after comparing its objective
value to the current node using the total order ⊑ (strength-
en/skip). The (noop) rule prevents node processing getting
stuck after (terminate).

3.5 Pruning
Optimisation and decision searches admit pruning the search
tree, i.e. removing subtrees that can never improve the cur-
rent incumbent. Semantically, this is reflected by the (prune)
rule. What to prune is decided by search-specific heuristics.
The semantics abstracts the heuristics as a binary relation ▷
on search tree nodes, where u ▷ v states that u justifies prun-
ing v . The ▷ relation must satisfy the following admissibility
conditions w.r.t. the objective function h and the total order
⟨M,⊑⟩.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

(schedulei)
v = root of S

⟨σ , S :Tasks, . . . , ⊥, . . .⟩ →T
i ⟨σ , Tasks, . . . , ⟨S, v ⟩

0, . . .⟩

(expandi)
v ′ = next(S, v) v ′ , ⊥ v ⪯ v ′

⟨σ , Tasks, . . . , ⟨S, v ⟩k , . . .⟩ →T
i ⟨σ , Tasks, . . . , ⟨S, v

′⟩k , . . .⟩

(backtracki)
v ′ = next(S, v) v ′ , ⊥ v ̸⪯ v ′

⟨σ , Tasks, . . . , ⟨S, v ⟩k , . . .⟩ →T
i ⟨σ , Tasks, . . . , ⟨S, v

′⟩k+1, . . .⟩

(terminatei)
next(S, v) = ⊥

⟨σ , Tasks, . . . , ⟨S, v ⟩k , . . .⟩ →T
i ⟨σ , Tasks, . . . , ⊥, . . .⟩

(accumulatei)
⟨⟨x ⟩, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →N

i ⟨⟨x + h(v)⟩, Tasks, . . . , ⟨S, v ⟩, . . .⟩

(strengtheni)
h(v) ⊐ h(u)

⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →N
i ⟨{v }, Tasks, . . . , ⟨S, v ⟩, . . .⟩

(skipi)
h(v) ⊑ h(u)

⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →N
i ⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩

(noopi)
⟨σ , Tasks, . . . , ⊥, . . .⟩ →N

i ⟨σ , Tasks, . . . , ⊥, . . .⟩

(prunei)
u ▷ v S ′ = subtree(S, v) \ {v } S ′ , ∅

⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →P
i ⟨{u }, Tasks, . . . , ⟨S \ S

′, v ⟩, . . .⟩
(shortcircuiti)

h(u) is greatest element
⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →P

i ⟨{u }, [], ⊥, . . . , ⊥⟩

(spawni)
u ∈ S v ≪ u Su = subtree(S, u)

⟨σ , Tasks, . . . , ⟨S, v ⟩, . . .⟩ →S
i ⟨σ , Tasks:Su , . . . , ⟨S \ Su , v ⟩, . . .⟩

(spawn-depthi)
|v | < dcutoff {u1, . . . , um } = children(S, v) , ∅ u1 ≪ · · · ≪ um S1 = subtree(S, u1) . . . Sm = subtree(S, um)

⟨σ , Tasks, . . . , ⟨S, v ⟩, . . .⟩ →S
i ⟨σ , Tasks:S1: . . . :Sm, . . . , ⟨S \ S1 \ · · · \ Sm, v ⟩, . . .⟩

(spawn-budgeti)
k ≥ kbudget {u1, . . . , um } = lowest(S, v) , ∅ u1 ≪ · · · ≪ um S1 = subtree(S, u1) . . . Sm = subtree(S, um)

⟨σ , Tasks, . . . , ⟨S, v ⟩k , . . .⟩ →S
i ⟨σ , Tasks:S1: . . . :Sm, . . . , ⟨S \ S1 \ · · · \ Sm, v ⟩0, . . .⟩

(spawn-stacki)
u = nextLowest(S, v) , ⊥ Su = subtree(S, u)

⟨σ , [], . . . , ⟨S, v ⟩, . . .⟩ →S
i ⟨σ , [Su], . . . , ⟨S \ Su , v ⟩, . . .⟩

Figure 2. Reduction rules of the operational semantics.

1. For all u and v , if u ▷ v then h(u) ⊒ h(v).
2. For allu ′,u andv , if h(u ′) ⊒ h(u) andu ▷ v thenu ′ ▷ v .
3. For all u,v and v ′, if u ▷ v and v ⪯ v ′ then u ▷ v ′.

Condition 1 states correctness of pruning w.r.t. maximising
the objective function: if u justifies pruningv then h(u) dom-
inates h(v). Condition 2 allows strengthening of incumbents:
if u justifies pruning v then any stronger incumbent u ′ also
will. Condition 3 allows pruning entire subtrees: if u justifies
pruning v then any descendent of v can also be pruned.

3.6 Spawning
The semantics includes a (spawn) rule to model space-split-
ting parallel search. A (spawn) reduction hives off some
subtree Su of the current thread ⟨S,v⟩ into a new task Su
that is added to the task queue. Su must be unexplored, i.e. its
root u is visited after the current node v in traversal order.
The search coordinations used in YewPar skeletons (Sec-

tion 4.2) implementmore complex space-splitting behaviours,
selecting specific groups of subtrees to spawn as tasks, in
a specific order. We model these coordination behaviours
as derived spawn rules. Semantically, these rules are redun-
dant; they are included to faithfully model the coordination
behaviour of particular YewPar skeletons.

The (spawn-depth) rule models Depth-Bounded search
coordination. The rule fires if the depth of the current nodev
is less than thedcutoff parameter. The rule spawns all subtrees
of S rooted at children of v and queues them in traversal
order. The rule causes the eager spawning of the top dcutoff
levels of the search tree, queued in heuristic search order.

The (spawn-budget) rule models Budget search coordi-
nation. The rule fires if the backtrack counter k of the current

thread exceeds the kbudget parameter. The rule spawns all un-
explored subtrees of the current thread ⟨S,v⟩ at lowest depth,
i.e. closest to the root of S . New tasks are queued in traversal
order, and the backtrack counter of the current thread is reset
to 0. The rule periodically generates new tasks from threads
that contain significant amounts of work since search has
not completed within the backtrack budget.

The (spawn-stack) rule models Stack-Stealing search
coordination. It differs from the other rules in that it only fires
when the task queue is empty, and only spawns one new task.
That task is the first (in traversal order) of the unexplored
lowest-depth subtrees of the current thread ⟨S,v⟩. The rule
is designed to split the search space on demand, generating
a task to be stolen by an idle thread.

The YewPar implementation of Stack-Stealing lets a thief
steal directly from the victim. Semantically, this behaviour
corresponds to a (spawn-stacki) reduction followed by a
(schedulej) reduction, modelling idle thread j stealing from
victim thread i , with the task queue acting as a transit buffer
for the stolen task.

3.7 Correctness
The semantics is correct if every sequence of reductions on
a search tree eventually computes the same sum or maxi-
mum of the objective function, independent of the particular
reduction sequence. For enumeration searches, correctness
amounts to termination and confluence of the reduction
relation, but optimisation and decision searches may nonde-
terministically return any optimal witness, hence the reduc-
tion relation cannot be confluent in general. The following
theorems formalise this statement of correctness.

YewPar: Skeletons for Exact Combinatorial Search PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Theorem 3.1. Let S0 be a search tree for an enumeration
search. If ⟨⟨0⟩, [S0],⊥, . . . ,⊥⟩ →∗ ⟨⟨x⟩, [],⊥, . . . ,⊥⟩ then
x =

∑
{h(v) | v ∈ S0}.

Proof sketch. All rules except (terminate) keep the total set
of nodes in a configuration invariant. The traversal order
ensures that nodes removed by (terminate) have been visited
and processed by (accumulate) exactly once. The claim fol-
lows as every node is eventually removed by (terminate). □

Theorem3.2. Let S0 be a search tree for an optimisation or de-
cision search. If ⟨{ϵ}, [S0],⊥, . . . ,⊥⟩ →∗ ⟨{û}, [],⊥, . . . ,⊥⟩
then h(û) = max{h(v) | v ∈ S0}.

Proof sketch. The claim is obvious if h(û) is the greatest ele-
ment and the (shortcircuit) rule fires. Otherwise, arguments
similar to the proof of Theorem 3.1 show that any nodes
removed by rules (terminate) and (prune) cannot beat the
current incumbent, let alone the final incumbent û, hence
the claim follows. □

Theorem 3.3. The reduction relation→ is terminating.

Proof sketch.Wemap each configuration to ameasure, namely
a multiset containing the number of nodes of each task and
the number of unexplored nodes of each thread. The claim
holds as each→ step strictly decreases themeasure w.r.t. Der-
showitz and Manna’s well-founded multiset order [15]. □

4 Composing Tree Searches

Sequential
Depth-Bounded
Stack-Stealing

Budget
. . .

Enumeration
Decision

Optimisation

Search Skeleton = Search Coordination + Search Type
SequentialDecision
BudgetDecision

DepthBoundedEnumeration
DepthBoundedOptimisation

. . .

Knapsack
Travelling Salesperson

Clique Search
. . .

Search Application = Search Skeleton + Lazy Node Generator

Figure 3. Structure of Search Skeletons and Applications.

YewPar search applications are constructed by combining
a search skeleton with a Lazy Node Generator, as shown in
Fig. 3. Skeletons in turn comprise a search type, e.g Decision,
and a search coordination, e.g. Depth-Bounded (Section 4.2).
Most of the search is parameterised generic code. Notable
exceptions are the Lazy Node Generator that is application-
specific, and is provided by the user to specify how to gen-
erate the search tree (on demand) and in which order to
traverse the tree. Likewise the bounding functions or prun-
ing predicates are application-specific, and must be specified.
The decomposition of a search application into a Lazy

Node Generator, search coordination and search type re-
flects how the reduction rules in Figure 2 are factored into

groups for traversal, node processing, pruning and work gen-
eration. The traversal rules are implemented by all search
coordination methods and call the node generator. The node
processing and pruning rules are determined by the search
type. Each work generation rule is implemented by a specific
search coordination. The search skeleton library is extensible,
allowing the addition of new search coordination methods.
For example, new coordination methods may provide best-
first search or random task creation.

4.1 Lazy Node Generators
Let Tд be a search tree generated by ordered tree gener-
ator д (Section 3.1). Given a parent node u ∈ Tд , the list
[ua1, . . . ,uan] enumerates the children of u in traversal or-
der, where д(u) = a1 . . . an .
A Lazy Node Generator for u is a data structure that pro-

vides iteration over the list [ua1, . . . ,uan]. Lazy Node Gen-
erators implement the following interface, parameterised by
types for the search space and the search tree nodes.

1 template <typename SearchSpace , typename Node >
2 struct NodeGenerator {
3 // Returns true if there are more children
4 virtual bool hasNext ();
5
6 // Returns the next child , provided hasNext () == true
7 virtual Node next();
8
9 // Constructs a NodeGenerator for a given parent node
10 NodeGenerator(const SearchSpace & space ,
11 const Node & node);
12 };

Node generators only generate the children of a node,
in the order in which they are to be traversed. They do
not determine how and when the search tree is constructed;
these are specified by the skeleton implementations (Section
4.2). In particular, depth-first backtracking tree traversal is
implemented by maintaining a stack of node generators, as
exemplified by the Sequential search coordination (Listing 2).
In each iteration, the node generator at the top of the stack is
advanced and a new node generator for the child is pushed
onto the stack, corresponding to the (expand) rule. When
the node generator at the top of the stack is empty, the
search coordination pops the empty generator off the stack
and advances the generator below, corresponding to the
(backtrack) rule.

Besides backtracking, the generator stack is also helpful
for identifying which subtrees to spawn as tasks, as exempli-
fied by the Budget and Stack-Stealing search coordinations.
A Lazy Node Generator does not compute the entire list

of children of a node upfront. Instead, the children are mate-
rialised lazily as the node generator is advanced using the
next method, rather like a Python generator. This has two
advantages: (1) A stack of Lazy Node Generators typically
uses less memory than a stack of fully materialised lists of
children. (2) Often the full list of children is not required, e.g.
it is possible to prune all “future” children “to-the-right” once

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

Listing 1. Lazy Node Generator for maximum clique.
1 typedef std::bitset <N> VertexSet;
2 typedef std::vector <VertexSet > Graph;
3
4 // Greedily colours the subgraph induced by vertex set p.
5 // On return , array p_vertex enumerates the set p, and
6 // p_colour[i] is the number of colours used to colour
7 // the set of vertices p_vertex [0], ..., p_vertex[i].
8 void greedy_colour(const Graph & graph ,
9 const VertexSet & p,
10 std::array <int ,N> & p_vertex ,
11 std::array <int ,N> & p_colour);
12
13 // Search tree node
14 struct Node {
15 VertexSet clique; // current clique
16 int size; // size of current clique
17 VertexSet candidates; // candidates to extend clique
18 int bound; // bound on clique extensions
19
20 // Objective function (to be maximized)
21 int getObj () const { return size; }
22
23 // Not shown: Node constructor , serialisation
24 };
25
26 // Upper bound function (determines when to prune)
27 int upperBound(const Graph & graph , const Node & node) {
28 return node.getObj () + node.bound;
29 }
30
31 // Lazy node generator
32 struct Gen : NodeGenerator <Graph , Node > {
33 std:: reference_wrapper <const Graph > graph;
34 std:: reference_wrapper <const Node > parent;
35 std::array <int ,N> p_vertex; // candidates (ordered)
36 std::array <int ,N> p_colour; // number of colours used
37 VertexSet remaining; // set of remaining candidates
38 int k; // current index into array p_vertex
39
40 // Constructor
41 Gen(const Graph & graph , const Node & parent) :
42 graph(std::cref(graph)), parent(std::cref(parent))
43 {
44 remaining = parent.candidates;
45 greedy_colour(graph , remaining , p_vertex , p_colour);
46 k = remaining.count();
47 }
48
49 bool hasNext () override { return k > 0; }
50
51 Node next() override {
52 k--;
53 int v = p_vertex[k]; // candidate to be added
54 remaining.reset(v);
55 VertexSet clique = parent.get().clique;
56 clique.set(v) ;
57 int size = parent.get().size + 1;
58 VertexSet candidates = remaining;
59 candidates &= graph.get()[v];
60 int bound = p_colour[k];
61 return Node(clique , size , candidates , bound);
62 }
63 };

a bounds check establishes that the current node cannot beat
the incumbent.

Lazy Node Generator Example. Listing 1 demonstrates
a Lazy Node Generator implementing a state-of-the-art Max-
imum Clique algorithm [26]. Graphs (of up to N vertices)
are represented as vectors mapping vertices to sets of adja-
cent vertices, and vertex sets are represented as fixed-size
bitsets. The bitset representation enables vectorisation of set

operations, which is known to speed up Maximum Clique
implementations up to 20-fold [36]. The Maximum Clique
algorithm relies on a standard greedy colouring heuristic for
pruning; the prototype is declared on line 8, see [26] for the
specific algorithm.
The Node struct (line 14) represents a search tree node.

It stores the current clique (including its size), a set of can-
didate vertices that may extend the clique, and an upper
bound on the number of vertices that can yet be added to
the current clique. Node also provides the getObj method
(line 21) which returns the current objective value of the
node, and which is maximised by optimisation and decision
searches. Branch-and-bound pruning decisions are taken by
comparing the best objective value found so far with the
result of the upperBound function (line 27).
The Lazy Node Generator, struct Gen, starts at line 32. It

stores a reference to the graph (i.e. the search space) and
to its parent node. The constructor (line 41) copies the par-
ent’s set of candidates and calls a greedy heuristic to colour
the subgraph induced by these candidates. On return, ar-
ray p_vertex stores the candidates in reverse heuristic or-
der, and p_colour[i] stores the number of colours used to
colour the set of vertices {p_vertex[0], . . . , p_vertex[i]},
which is an upper bound on the number of vertices that can
be added to the parent’s clique. Finally, the constructor ini-
tialises the iterator index k to the end of array p_vertex, i.e.
k points to the heuristically best candidate.

The lazy node generator implements the NodeGenerator
interface by iterating over array p_vertex in reverse order.
The hasNext method (line 49) simply checks the iterator in-
dex. The next method (line 51) advances the iterator index,
removes the current candidate v from the remaining candi-
dates (line 54), and adds it to a copy of the parent’s clique
(line 56). Then, it intersects a copy of the set of remaining
vertices with the vertices that are adjacent to the current
candidate v (line 59), forming a new set of candidates for
extending the extended clique. Finally, next returns a new
Node (line 61) containing the extended clique, the new set of
candidates, and an upper bound on the number of vertices
that can yet be added to the extended clique.

4.2 Search Coordination Methods
During a search potentially any node in the search tree may
be converted to a task, but to minimise search time it is criti-
cal to choose heuristically a good node. We follow prior work
e.g. [32], and use both application heuristics (as encoded in
the Lazy Node Generator), and select large subtrees (to min-
imise communication and scheduling overheads) that we
expect to find close to the root of the search tree.

Sequential search coordination corresponds to a seman-
tics without spawn rules, i.e. it executes in a single thread that
performs a depth-first search from the root node. The pseu-
docode is given in Listing 2, where the effect of processNode

YewPar: Skeletons for Exact Combinatorial Search PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Listing 2. Sequential Search Coordination Pseudocode.
1 function Sequential(SearchType stype , SearchSpace space ,
2 Node root):
3 processNode(stype , root)
4 genStack.push(NodeGenerator(space , root))
5 while not genStack.empty() do
6 gen ← genStack.top()
7 if gen.hasNext () then
8 child ← gen.next()
9 processNode(stype , child)
10 genStack.push(NodeGenerator(space , child))
11 else
12 genStack.pop() // Backtrack

Listing 3. Stack-Stealing Search Coordination Pseudocode.
1 function StackStealing(SearchType stype , SearchSpace

space , Node root):
2 steal ← getWorkerStealChannel ()
3 processNode(stype , root)
4 genStack.push(NodeGenerator(space , root))
5 while not genStack.empty() do
6 if response = steal.non_blocking_get () then
7 for gen ← genStack.bottom () to genStack.top() do
8 if gen.hasNext () then
9 tRoot ← gen.next()
10 t ← StackStealing(stype , space , tRoot)
11 response.put(t)
12 break
13 response.put(Nothing)
14 else // Continue Seq. Search
15 gen ← genStack.top()
16 if gen.hasNext () then
17 child ← gen.next()
18 processNode(stype , child)
19 genStack.push(NodeGenerator(space , child))
20 else
21 genStack.pop() // Backtrack

Listing 4. Budget Search Coordination Pseudocode.
1 function Budget(SearchType stype , SearchSpace space ,
2 Node root , int btBudget):
3 backtracks ← 0
4 processNode(stype , root)
5 genStack.push(NodeGenerator(space , root))
6 while not genStack.empty() do
7 if backtracks ≥ btBudget then
8 for gen ← genStack.bottom () to genStack.top() do
9 if gen.hasNext () then
10 while gen.hasNext () do
11 tRoot ← gen.next()
12 t ← Budget(stype , space , tRoot , btBudget)
13 spawn(t)
14 break
15 backtracks ← 0
16 else // Continue Seq. Search
17 gen ← genStack.top()
18 if gen.hasNext () then
19 child ← gen.next()
20 processNode(stype , child)
21 genStack.push(NodeGenerator(space , child))
22 else
23 genStack.pop() // Backtrack
24 backtracks ← backtracks + 1

function (lines 3 and 9) is determined by the particular type
of search, e.g. optimisation.

Depth-Bounded search coordination converts all nodes
below a cut-off depth dcutoff into tasks. The YewPar imple-
mentation is similar to sequential, except that it tracks the
current search depth, and, up until the cutoff depth, spawns

tasks for each child node. These spawns occur as tasks exe-
cute rather than generating all work upfront. Depth-Bounded
is a direct implementation of the (spawn-depth) rule, except
that it uses a distributed workpool to achieve scalability.

Stack-Stealing search coordination is a dynamic work
generation approach that splits the search tree on receipt
of a work-stealing request. YewPar implements the (spawn-
stack) rule and the pseudocode is given in Listing 3. It checks
for a stealRequest on every search expansion step (line 6).
If a steal is requested the generator stack is searched from
bottom to top (line 7), i.e. nodes (one node, or all at the
lowest depth if the chunked flag is set) closest to the root
first. Either work is returned to the thief (line 11), or the steal
fails (line 13). Steal requests are sent via atomic channels
between thieves and victims.
The YewPar implementation combines work pushing to

initially distribute search tasks to workers, and once these are
exhausted theworkers switch towork (stack) stealing. Victim
selection is random, although in a distributed environment
remote workers are only selected if there are no active local
workers. As workers communicate directly, no work pool is
required, and the implementation is similar to [1].

Budget search coordination is a dynamic approach with
asynchronous periodic load-balancing. Each worker has a
period based on the number of backtracks performed. Work-
ers search subtrees until the task is complete or the task has
backtracked as many times as specified in a user-defined bud-
get, btBudget in the Listing 4 pseudocode. If the budget is
exhausted (line 7), all nodes at the lowest depth are spawned
and the budget is reset (lines 8–15). YewPar implements the
(spawn-budget) rule, except for using a distributed workpool
to achieve scalability.

4.3 YewPar Realisation
The YewPar parallel C++ search framework1 not only imple-
ments the Lazy Node Generators and search skeletons, but
also provides low-level components such as search specific
work-stealing schedulers and workpools with which new
skeletons can be created. To support distributed memory
parallelism, YewPar builds on the HPX [22] task parallelism
library and runtime system. HPX is routinely deployed on
HPC and Cloud architectures, and YewPar can readily exploit
this portability at scale. Complete descriptions of the YewPar
design and implementation are available in [3, 5]; it has the
following primary components.

Search Specific Schedulers. YewPar layers the search
coordination methods as custom schedulers on top of the
existing HPX scheduler. That is, the HPX scheduler manages
several lightweight YewPar scheduler threads that perform
the search. The (local) thread to core mapping is handled
transparently by HPX. We divide operating system threads
into two types: worker threads that continuously seek and

1https://github.com/BlairArchibald/YewPar

https://github.com/BlairArchibald/YewPar

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

Listing 5. Composing a YewPar Search Application for a
Maximising Search, using Stack-Stealing and Optimisation.

1 Node maximal_solution =
2 YewPar :: Skeletons :: StackStealing < // search coord
3 Gen , // lazy node gen
4 Optimisation , // search type
5 BoundFunction <upperBound > // bound for pruning
6 >::search(space , root);

execute search tasks, and manager threads (one per locality)
that are managed entirely by HPX and manage aspects like
messages and termination. Where workers look for work
is determined by the skeleton being executed. Work may
come directly from other workers, as in the Stack-Stealing
skeleton, or from a distributed workpool, where steals are
sent to remote nodes if no work is available locally. The
schedulers seek to preserve search order heuristics, e.g. by
using a bespoke order-preserving workpool [3, 5].

Knowledge Management. The sharing of solutions and
bounds relies on HPX’s partitioned global address space
(PGAS). To minimise distributed queries, bounds are broad-
cast to localities that keep track of the last received bound.
The local bound does not need to be up-to-date to main-
tain correctness, hence YewPar can tolerate communication
delays at the cost of missing pruning opportunities.

Skeletons API. C++ templates are used to statically spe-
cialise the generic skeletons into efficient application-specific
implementations. Compile time type information allows
stack based memory allocation and compile time elimination
of unused branches, e.g. if branch and bound is disabled then
all pruning code is removed.
The return type of the skeletons is derived from the tem-

plate parameters, for example a skeleton implementation
called with an Optimisation parameter will return the opti-
mal search tree node.

The skeleton APIs expose parameters like depth cutoff or
backtracking budget that control the parallel search. These
parameters determine the amount and location of work in the
system, and poor parameter choices can starve or overload
the system (Section 5.5).

4.4 Composing YewPar Search Applications
Listing 5 illustrates how a YewPar search application is com-
posed following the model outlined in Figure 3; see Appen-
dix A.3 for further, more detailed examples.

The search in Listing 5 returns the maximal node in some
space. A YewPar user simply selects the search coordina-
tion, in this case StackStealing, provides the application-
specific Lazy Node Generator Gen to generate the space,
and chooses the type of search, here Optimisation. The
listing also illustrates how YewPar implements the (prune)
rule from Figure 2. The user provides an application-specific
BoundFunction that is called on each search tree node and
prunes if the bound cannot beat the current objective. For

efficiency the BoundFunction pointer is lifted to template
level so that the upperBound function can be inlined.

5 Evaluation
5.1 Search Applications
We evaluate YewPar on a representative sample of 7 ex-
act combinatorial search applications covering the 3 search
types, as follows.

Enumeration:Unbalanced Tree Search (UTS) dynamically
constructs synthetic irregular tree workloads based on a
given branching factor, depth, and random seed [30]. Numeri-
cal Semigroups (NS) counts how many numerical semigroups
there are of a particular genus [17]. A numerical semigroup
S is a cofinite set of natural numbers containing 0 and closed
under addition; the genus of S is the size of its complement.

Optimisation: Maximum Clique (MaxClique) finds the
largest clique, i.e. largest set of pairwise adjacent vertices, in
a given graph. 0/1 Knapsack determines the optimal set of
items, each with profit and weight, to place in a container
such that profit is maximised subject to a given weight limit.
Travelling Salesperson (TSP) finds a shortest circular tour of
N cities.
Decision: The Subgraph Isomorphism Problem (SIP) deter-

mines whether a copy of a given pattern graph is present
in a target graph. The k-Clique variant of Maximum Clique
finds a clique of k vertices if one exists in the graph.

The baseline implementations forMaxClique [26], SIP [27],
NS [17], and UTS [30] use published state-of-the-art algo-
rithms. The sequential C++ implementations were provided
by the domain experts, and not written by the authors. A
full description of the applications and instances is in [3].
Data underpinning the analysis in this section is openly
available [7].

5.2 Experimental Setup
We report measurements on up to 17 machines, each with
a dual 8-core Intel Xeon E5-2640v2 2GHz CPU (no hyper-
threading), 64GB RAM, running Ubuntu 14.04.3 LTS. We
reserve one core for HPX (Version 1.0, commit 51d3d0) for
task management, i.e. on 16 cores we use 15 workers.

Caveat. Performance analysis of parallel searches is no-
toriously difficult as nondeterminism caused by pruning,
finding alternate valid solutions, and random work-stealing,
can lead to performance anomalies (Section 2.1), manifested
as superlinear speedups/slowdowns. We control for this by
investigating 7 search applications, running each experiment
multiple times, and reporting cumulative statistics.

5.3 YewPar Overheads
Lazy Node Generators incur some overheads compared
to search specific implementations as they decouple search
tree generation and traversal. For example, they copy search
tree nodes instead of updating in-place. We evaluate these

YewPar: Skeletons for Exact Combinatorial Search PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Table 1. Comparing YewPar runtimes (s) with Hand-written
Maximum Clique Implementations: Sequential and OpenMP
(15 workers). Mean parallel slowdown computed for in-
stances with runtimes over 1.5s (in bold).

Instance Seq
C++

Seq
YewPar

Slow-
down (%)

OpenMP
C++

Depth-
Bounded
YewPar

Slow-
down (%)

MANN_a45 169.90 160.49 −5.54 42.69 42.25 −1.02
brock400_1 285.32 340.59 19.37 28.91 29.99 3.73
brock400_2 213.89 249.49 16.64 11.34 12.57 10.86
brock400_3 163.72 197.42 20.58 6.16 7.97 29.50
brock400_4 79.82 95.33 19.43 1.82 3.44 89.50
brock800_4 1,433.26 1,572.94 9.75 115.84 147.36 27.21
p_hat1000-2 127.77 140.43 9.91 9.94 11.68 17.43
p_hat1500-1 2.86 2.76 −3.29 0.44 1.15 161.02
p_hat300-3 1.13 1.29 13.35 0.12 0.12 7.97
p_hat500-3 115.12 123.71 7.46 9.57 10.97 14.68
p_hat700-2 2.44 2.60 6.61 0.25 0.26 4.09
p_hat700-3 1,278.03 1,312.76 2.72 98.96 118.93 20.18
san1000 1.70 1.58 −7.08 0.21 1.09 413.38
san400_0.7_2 2.04 2.27 11.48 0.14 0.15 6.98
san400_0.7_3 1.26 1.35 7.50 0.06 0.12 113.84
san400_0.9_1 24.81 25.08 1.08 0.17 0.53 221.39
sanr200_0.9 26.17 29.30 11.93 2.66 3.01 13.14
sanr400_0.7 74.95 91.44 22.00 7.87 8.01 1.70
Geo. Mean 8.76 16.56

overheads on Maximum Clique as a competitive sequential
implementation is available [25, 26].
The first 4 columns of Table 1 show the mean sequen-

tial runtimes (over 5 runs) for the 18 DIMACS clique in-
stances [21] that take between 1 second and 1 hour to run
sequentially. The results show a limited cost of generality,
i.e. a maximum overhead of 22.0%, a minimum overhead of
-5.5%, and geometric mean overhead of just 8.8%.

Parallel Execution adds additional overheads, e.g. the
YewPar skeletons are parametric rather than specialised,
and a distributed memory execution framework is relatively
heavyweight. To evaluate the scale of these overheads we
compare with a search-specific OpenMP version of the maxi-
mum clique implementation. It is imperative that the parallel
search algorithm and coordination are almost identical, as
otherwise performance anomalies will disrupt the compar-
ison. Hence the lazy node generator is carefully crafted to
mimic the Maximum Clique implementation [26], and the
OpenMP implementation uses the task pragma to construct
a set of tasks for each node at depth 1, closely analogous to
the Depth-Bounded skeleton in the YewPar implementation.

Columns 5-7 of Table 1 compare the runtimes of the Yew-
Par and OpenMP versions for the DIMACS search instances
on a single location, i.e. with 15 workers. Instances with
very short runtimes can exhibit large relative performance
differences, e.g. an increase of only 0.36s in runtime for
san400_0.9_1 is a 221% slowdown. To avoid skewing the
summative performance comparison, we compute the mean
slowdown on instances with a runtime of over 1.5s. The geo-
metric mean slowdown is 16.6%, with a maximum slowdown
of 89.5% (brock400_4, absolute slowdown 1.6s). We conclude
that for these instances the parallel overheads of YewPar
remain moderate.

1 2 4 8 16 17

0

1,000

2,000

3,000

4,000

Localities

Ru
nt
im

e
(s
)

1 2 4 8 16 17

1
2

4

8

12

17

Localities

Sp
ee
du

p
(R
el
1
Lo

ca
lit
y)

Depth-Bounded (dcutoff = 2) Stack-Stealing (chunked) Budget (budдet = 107)

Figure 4. Scaling for k-clique: 255 workers, 17 locations.
Speedups for 18 additional applications are in Table 2.

However, the YewPar parallelisation is more flexible than
using OpenMP. For a start, OpenMP is restricted to shared
memory multicores whereas YewPar scales on distributed
memory clusters (Section 5.4). Moreover, experimentingwith
alternate parallelisations in YewPar entails changing a single
line of code (Section 5.5). In contrast, it is far from trivial to
engineer performant implementations of advanced search
coordinations like Stack-Stealing or Budget in OpenMP.

5.4 YewPar Scalability
To demonstrate scalability Fig. 4 shows the runtime and
relative speedups achieved by three skeletons for a large
instance (sequential runtimes around 1 hour) of the k-clique
benchmark – searching for a spread inH(4, 4) [6] – using 255
workers across 17 localities. Speedup is relative to a single
locality with 15 workers.

This example also illustrates YewPar running on multiple
architectures, i.e. a single 16-core shared memory machine,
and on a cluster of such machines.

These good scalability results are typical, for example Ta-
ble 2 in the following section reports 18 further scaling re-
sults, and others are reported in Chapter 6 of [3]. YewPar
commonly achieves a parallel efficiency of >50% even for
these highly irregular computations, e.g. the best scaling re-
sults for 5 of the 6 benchmarks in Table 2 exceed 60x speedup
with 120 workers.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

Table 2. Comparing 18 Alternate Application Parallelisa-
tions: Mean Speedup on 120 workers

Application Skeleton Worst
Speedup

Random
Speedup

Best
Speedup

MaxClique
Depth-Bounded 0.89 14.04 91.74
Stack-Stealing 21.27 28.43 37.67
Budget 1.38 7.58 17.84

TSP
Depth-Bounded 3.99 38.86 68.19
Stack-Stealing 18.01 20.79 26.27
Budget 1.25 4.89 39.52

Knapsack
Depth-Bounded 0.81 0.87 0.92
Stack-Stealing 5.84 5.84 19.17
Budget 1.06 8.75 36.85

SIP
Depth-Bounded 3.92 33.15 68.04
Stack-Stealing 101.92 105.54 109.61
Budget 1.42 7.70 45.05

NS
Depth-Bounded 0.87 0.87 1.47
Stack-Stealing 26.37 30.95 30.95
Budget 3.12 3.12 59.48

UTS
Depth-Bounded 1.48 8.72 9.56
Stack-Stealing 52.68 57.52 57.52
Budget 29.81 85.85 85.85

All
Depth-Bounded 1.67 8.69 26.51
Stack-Stealing 27.99 34.21 43.51
Budget 1.87 8.99 35.11

5.5 Exploring Search Parallelisations
In the literature different parallelisations are commonly ap-
plied to different search applications, if for example there
are many tasks near the root (e.g., Maximum Clique), Depth-
Bounded often works well. Those that initially have a narrow
tree (e.g., NS) require more dynamic parallelism with associ-
ated overheads.

In contrast the parametric YewPar skeletons allow users to
readily experiment with, and select, an appropriate skeleton
parallelisation for a given application. Table 2 illustrates this
by reporting cumulative speedups for the three coordinations
on each search application. For each application we report
the geometric mean speedup for all instances (around 20 in
total) on 120 workers (8 physical localities) relative to the
Sequential skeleton.
Most YewPar skeletons have parameters like dcutoff and

kbudget that must be tuned for each search application. To
account for this, we run a parameter sweep, e.g. dcutoff =
{0 . . . 8}, and kbudget = {104, 105, 106, 107} [3]. Table 2 reports
the worst, best and random scaling, corresponding to worst,
best and some random choice of parameters.
No one skeleton performs best for all applications, with

Depth-Bounded coming tops for two applications, Stack-
Stealing for one, and Budget for three. Parameter tuning is
tricky, and the consequences of getting it wrong are severe,
e.g., a slowdown (0.89x) versus a big speedup (91.74x) for
MaxClique with Depth-Bounded. Stack-Stealing, with few
parameters, minimises runtime variation and is a good choice
if good parameters are not known.

6 Conclusion
We aim to improve the reuse of intricate parallel search im-
plementations by providing the first general purpose scalable
parallel framework for exact combinatorial search, YewPar.
The semantics of YewPar backtracking search are defined by,
and proved correct in, a novel parallel operational seman-
tics (Section 3), which models parallel combinatorial search
as a fold of the search tree into a monoid. The formalisa-
tion informs the YewPar design and implementation, and
many elements recur: the three search types, search tree
construction by ordered tree generator (i.e. lazy node genera-
tor), spawn rules specifying the behaviour of corresponding
search coordinations.
We define Lazy Node Generators as a uniform API for

search tree generation (Section 4.1). Uniquely in the field we
demonstrate the ready composition of parallel search appli-
cations using Lazy Node Generators and a library of search
skeletons, exhibiting 7 search applications (Section 5.1) cov-
ering the 3 search types.
We have designed and implemented 12 widely applica-

ble algorithmic skeletons for tree search, and undertaken a
systematic performance analysis of the skeletons on stan-
dard instances of 7 search applications. We show that the
generic YewPar framework has low overheads (8.8% sequen-
tial slowdown on average), and that its parallel performance
on big instances is similar to a specialised state-of-the-art
implementation (Section 5.3). We report results for YewPar
on two architectures: a multicore, and a cluster of multicores.
Despite the high levels of irregularity, YewPar scales well, e.g.
delivering maximal relative speedups of 195 on 255 workers
(17 localities) for k-clique, and 110 on 120 workers (8 local-
ities) for SIP (Section 5.4). Comparing the performance of
the skeletons across search applications demonstrates the
suitability of different skeletons for particular applications,
illustrates the challenges of parameter selection, and shows
that a skeleton approach makes it easy to explore alternative
parallelisations (Section 5.5).
In ongoing work we are applying YewPar to new areas,

and specifically to solving large bigraph matching problems.

Acknowledgments
This work is supported by the UK Engineering and Phys-
ical Sciences Research Council, under grants EP/N007565,
EP/L000687, EP/M022641, and EP/N028201 We gratefully ac-
knowledge the constructive feedback from Hans-Wolfgang
Loidl, Michel Steuwer, and from our anonymous paper and
artefact reviewers.

References
[1] Faisal N. Abu-Khzam, Khuzaima Daudjee, Amer E. Mouawad, and

Naomi Nishimura. 2015. On scalable parallel recursive backtracking.
J. Parallel and Distrib. Comput. 84 (2015), 65–75. https://doi.org/10.
1016/j.jpdc.2015.07.006

https://doi.org/10.1016/j.jpdc.2015.07.006
https://doi.org/10.1016/j.jpdc.2015.07.006

YewPar: Skeletons for Exact Combinatorial Search PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

[2] Enrique Alba, Francisco Almeida, Maria J. Blesa, J. Cabeza, Carlos
Cotta, Manuel Díaz, Isabel Dorta, Joaquim Gabarró, Coromoto León, J.
Luna, Luz Marina Moreno, C. Pablos, Jordi Petit, Angélica Rojas, and
Fatos Xhafa. 2002. MALLBA: A Library of Skeletons for Combinatorial
Optimisation (Research Note). In Euro-Par 2002, Parallel Processing, 8th

International Euro-Par Conference Paderborn, Germany, August 27-30,
2002, Proceedings. 927–932. https://doi.org/10.1007/3-540-45706-2_132

[3] Blair Archibald. 2018. Skeletons for Exact Combinatorial Search at Scale.
Ph.D. Dissertation. University of Glasgow. http://theses.gla.ac.uk/id/
eprint/31000

[4] Blair Archibald, Patrick Maier, Ciaran McCreesh, Robert J. Stewart,
and Phil Trinder. 2018. Replicable parallel branch and bound search.
J. Parallel Distrib. Comput. 113 (2018), 92–114. https://doi.org/10.1016/
j.jpdc.2017.10.010

[5] Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder. 2019.
Implementing YewPar: A Framework for Parallel Tree Search [To Ap-
pear]. EuroPar 19 (2019). https://doi.org/10.1007/978-3-030-29400-7_
14

[6] Blair Archibald, Patrick Maier, Robert Stewart, Phil Trinder, and Jan
De Beule. 2017. Towards Generic Scalable Parallel Combinatorial
Search. In Proceedings of PASCO 2017 (PASCO ’17). ACM, New York,
NY, USA. https://doi.org/10.1145/3115936.3115942

[7] Blair Archibald, Patrick Maier, Phil Trinder, and Robert Stewart. 2019.
YewPar: Skeletons for Exact Combinatorial Search [Data Collection].
(2019). https://doi.org/10.5525/gla.researchdata.935

[8] David Avis and Charles Jordan. 2017. mts: a light framework for
parallelizing tree search codes. CoRR abs/1709.07605 (2017). http:
//arxiv.org/abs/1709.07605

[9] Christian Blum and Andrea Roli. 2003. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison. ACM Comput.
Surv. 35, 3 (2003), 268–308. https://doi.org/10.1145/937503.937505

[10] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. 1996. Cilk:
An Efficient Multithreaded Runtime System. J. Parallel Distrib. Com-
put. 37, 1 (1996), 55–69. https://doi.org/10.1006/jpdc.1996.0107

[11] Adrian Brüngger, Ambros Marzetta, K. Fukuda, and Jürg Nievergelt.
1999. The parallel search bench ZRAM and its applications. Annals
OR 90 (1999), 45–63. https://doi.org/10.1023/A3A1018972901171

[12] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. 2005. X10: an object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA.
519–538. https://doi.org/10.1145/1094811.1094852

[13] Philipp Ciechanowicz, Michael Poldner, and Herbert Kuchen. 2009.
The Münster Skeleton Library Muesli: A comprehensive overview. Tech-
nical Report. Working Papers, ERCIS-European Research Center for
Information Systems.

[14] A. de Bruin, G.A.P. Kindervater, and H.W.J.M. Trienekens. 1995. Asyn-
chronous parallel branch and bound and anomalies. In Parallel Algo-
rithms for Irregularly Structured Problems, Afonso Ferreira and José
Rolim (Eds.). Lecture Notes in Computer Science, Vol. 980. Springer
Berlin Heidelberg, 363–377. https://doi.org/10.1007/3-540-60321-2_29

[15] Nachum Dershowitz and Zohar Manna. 1979. Proving Termination
with Multiset Orderings. Comm. ACM 22, 8 (1979), 465–476. https:
//doi.org/10.1145/359138.359142

[16] Raphael A. Finkel and Udi Manber. 1987. DIB - A Distributed Im-
plementation of Backtracking. ACM Trans. Program. Lang. Syst. 9, 2
(1987), 235–256. https://doi.org/10.1145/22719.24067

[17] Jean Fromentin and Florent Hivert. 2016. Exploring the tree of nu-
merical semigroups. Math. Comp. 85, 301 (2016), 2553–2568. https:
//doi.org/10.1090/mcom/3075

[18] Bernard Gendron and Teodor Gabriel Crainic. 1994. Parallel Branch-
and-Branch Algorithms: Survey and Synthesis. Operations Research
42, 6 (1994), 1042–1066. https://doi.org/10.1287/opre.42.6.1042

[19] Ian P. Gent, Ciaran McCreesh, Ian Miguel, Neil C. A. Moore, Peter
Nightingale, Patrick Prosser, and Chris Unsworth. 2018. A Review of
Literature on Parallel Constraint Solving. CoRR abs/1803.10981 (2018).

[20] Jan Gmys, Rudi Leroy, Mohand Mezmaz, Nouredine Melab, and Daniel
Tuyttens. 2016. Work stealing with private integer-vector-matrix data
structure for multi-core branch-and-bound algorithms. Concurrency
and Computation: Practice and Experience 28, 18 (2016), 4463–4484.
https://doi.org/10.1002/cpe.3771

[21] David J. Johnson and Michael A. Trick (Eds.). 1996. Cliques, Coloring,
and Satisfiability: Second DIMACS Implementation Challenge, Workshop,
October 11-13, 1993. American Mathematical Society.

[22] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio,
and Dietmar Fey. 2014. HPX: A Task Based Programming Model in a
Global Address Space. In Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models, PGAS 2014,
Eugene, OR, USA, October 6-10, 2014. 6:1–6:11. https://doi.org/10.1145/
2676870.2676883

[23] Reinhard Lüling, Burkhard Monien, Alexander Reinefeld, and Ste-
fan Tschöke. 1996. Mapping tree-structured combinatorial optimiza-
tion problems onto parallel computers. In Solving Combinatorial Op-
timization Problems in Parallel - Methods and Techniques. 115–144.
https://doi.org/10.1007/BFb0027120

[24] Arnaud Malapert, Jean-Charles Régin, and Mohamed Rezgui. 2016.
Embarrassingly Parallel Search in Constraint Programming. J. Artif.
Intell. Res. 57 (2016), 421–464.

[25] Ciaran McCreesh. 2018. Sequential MCsa1 Max-
imum Clique Implementation. (2018). https:
//github.com/ciaranm/sicsa-multicore-challenge-iii/
blob/324abebfc3a9144af0bf628077bfb6e5af02444e/c++/
voodoo-template-haxx/max_clique.cc Accessed: 04-07-2018.

[26] Ciaran McCreesh and Patrick Prosser. 2013. Multi-threading a state-of-
the-art maximum clique algorithm. Algorithms 6, 4 (2013), 618–635.

[27] Ciaran McCreesh and Patrick Prosser. 2015. A parallel, backjumping
subgraph isomorphism algorithm using supplemental graphs. In Inter-
national conference on principles and practice of constraint programming.
Springer, 295–312.

[28] Ciaran McCreesh and Patrick Prosser. 2015. The Shape of the Search
Tree for theMaximumClique Problem and the Implications for Parallel
Branch and Bound. TOPC 2, 1 (2015), 8:1–8:27. https://doi.org/10.
1145/2742359

[29] Tarek Menouer. 2018. Solving combinatorial problems using a parallel
framework. J. Parallel Distrib. Comput. 112 (2018), 140–153. https:
//doi.org/10.1016/j.jpdc.2017.05.019

[30] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P Sa-
dayappan, and Chau-Wen Tseng. 2006. UTS: An unbalanced tree search
benchmark. In International Workshop on Languages and Compilers for
Parallel Computing. Springer, 235–250.

[31] Lars Otten and Rina Dechter. 2017. AND/OR Branch-and-Bound on
a Computational Grid. J. Artif. Intell. Res. 59 (2017), 351–435. https:
//doi.org/10.1613/jair.5456

[32] Andrea Pietracaprina, Geppino Pucci, Francesco Silvestri, and Fabio
Vandin. 2015. Space-efficient parallel algorithms for combinatorial
search problems. J. Parallel Distrib. Comput. 76 (2015), 58–65. https:
//doi.org/10.1016/j.jpdc.2014.09.007

[33] Michael Poldner and Herbert Kuchen. 2006. Algorithmic skeletons
for branch & bound. In ICSOFT 2006, First International Conference
on Software and Data Technologies, Setúbal, Portugal, September 11-14,
2006. 291–300. https://doi.org/10.1007/978-3-540-70621-2_17

[34] Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. 2013.
Embarrassingly Parallel Search. In Principles and Practice of Constraint
Programming - 19th International Conference, CP 2013, Uppsala, Sweden,

https://doi.org/10.1007/3-540-45706-2_132
http://theses.gla.ac.uk/id/eprint/31000
http://theses.gla.ac.uk/id/eprint/31000
https://doi.org/10.1016/j.jpdc.2017.10.010
https://doi.org/10.1016/j.jpdc.2017.10.010
https://doi.org/10.1007/978-3-030-29400-7_14
https://doi.org/10.1007/978-3-030-29400-7_14
https://doi.org/10.1145/3115936.3115942
https://doi.org/10.5525/gla.researchdata.935
http://arxiv.org/abs/1709.07605
http://arxiv.org/abs/1709.07605
https://doi.org/10.1145/937503.937505
https://doi.org/10.1006/jpdc.1996.0107
https://doi.org/10.1023/A3A1018972901171
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1145/359138.359142
https://doi.org/10.1145/359138.359142
https://doi.org/10.1145/22719.24067
https://doi.org/10.1090/mcom/3075
https://doi.org/10.1090/mcom/3075
https://doi.org/10.1287/opre.42.6.1042
https://doi.org/10.1002/cpe.3771
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1007/BFb0027120
https://github.com/ciaranm/sicsa-multicore-challenge-iii/ blob/324abebfc3a9144af0bf628077bfb6e5af02444e/c++/voodoo- template-haxx/max_clique.cc
https://github.com/ciaranm/sicsa-multicore-challenge-iii/ blob/324abebfc3a9144af0bf628077bfb6e5af02444e/c++/voodoo- template-haxx/max_clique.cc
https://github.com/ciaranm/sicsa-multicore-challenge-iii/ blob/324abebfc3a9144af0bf628077bfb6e5af02444e/c++/voodoo- template-haxx/max_clique.cc
https://github.com/ciaranm/sicsa-multicore-challenge-iii/ blob/324abebfc3a9144af0bf628077bfb6e5af02444e/c++/voodoo- template-haxx/max_clique.cc
https://doi.org/10.1145/2742359
https://doi.org/10.1145/2742359
https://doi.org/10.1016/j.jpdc.2017.05.019
https://doi.org/10.1016/j.jpdc.2017.05.019
https://doi.org/10.1613/jair.5456
https://doi.org/10.1613/jair.5456
https://doi.org/10.1016/j.jpdc.2014.09.007
https://doi.org/10.1016/j.jpdc.2014.09.007
https://doi.org/10.1007/978-3-540-70621-2_17

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

September 16-20, 2013. Proceedings. 596–610. https://doi.org/10.1007/
978-3-642-40627-0_45

[35] Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. 2014.
Improvement of the Embarrassingly Parallel Search for Data Centers.
In Principles and Practice of Constraint Programming - 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings.
622–635. https://doi.org/10.1007/978-3-319-10428-7_45

[36] Pablo San Segundo, Diego Rodríguez-Losada, and Agustín Jiménez.
2011. An exact bit-parallel algorithm for the maximum clique problem.
Computers & OR 38, 2 (2011), 571–581.

[37] Harry WJM Trienekens and A de Bruin. 1992. Towards a taxonomy
of parallel branch and bound algorithms. Technical Report. Erasmus
School of Economics (ESE).

[38] Gerhard J. Woeginger. 2001. Exact Algorithms for NP-Hard Problems:
A Survey. In Combinatorial Optimization - Eureka, You Shrink!, Papers
Dedicated to Jack Edmonds, 5th International Workshop, Aussois, France,
March 5-9, 2001, Revised Papers. 185–208. https://doi.org/10.1007/
3-540-36478-1_17

[39] Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. 2013. Scalable maxi-
mum clique computation using MapReduce. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April
8-12, 2013. 74–85. https://doi.org/10.1109/ICDE.2013.6544815

[40] Yan Xu, Ted K. Ralphs, Laszlo Ladányi, and Matthew J. Saltzman. 2005.
Alps: A Framework for Implementing Parallel Tree Search Algorithms.
Springer US, 319–334. https://doi.org/10.1007/0-387-23529-9_21

https://doi.org/10.1007/978-3-642-40627-0_45
https://doi.org/10.1007/978-3-642-40627-0_45
https://doi.org/10.1007/978-3-319-10428-7_45
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1109/ICDE.2013.6544815
https://doi.org/10.1007/0-387-23529-9_21

YewPar: Skeletons for Exact Combinatorial Search PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

A Artifact Appendix
The main artifact, which has been evaluated and assigned
the badges Artifact Available, Artifact Functional and
Results Replicated, is the YewPar framework for parallelis-
ing exact combinatorial search applications. Alongside the
framework we provide the example search applications used
in the paper’s evaluation (Section 5). The data and scripts
used in the evaluation are available separately at [7].
To facilitate experimentation we have packaged YewPar,

and the search applications, as a Docker image. Unfortu-
nately, this makes it difficult to fully replicate the experi-
ments in the paper which require MPI, a 17-node compute
cluster and many days of runtime. This document (1) demon-
strates parallel execution by showing how to run YewPar on
a single machine with 4 cores or more; (2) demonstrates dis-
tributed memory execution by showing how to run YewPar
under MPI within the Docker container.
For more systematic experimentation YewPar is open

source (MIT) and available with usage instructions at: https:
//github.com/BlairArchibald/YewPar

A.1 Downloading and Running the Docker Image
We assume Docker is installed already. First time Docker
users may require to run the following commands to ensure
that it has the correct permissions:
sudo groupadd docker

sudo usermod -aG docker $USER

The YewPar Docker image (approx 325MB) can be down-
loaded from: https://zenodo.org/record/3597463

Once the image is downloaded you should run the follow-
ing commands which will place you in an interactive bash
shell with an environment set up to run the YewPar search
applications.
docker load < yewpar -artifact -eval.tar.gz

docker run -it yewpar

A.2 Docker Image Structure
The YewPar docker image is structured as follows:
File/Directory Contents

/YewPar Main working directory
(all other files are in here)

src/ YewPar root directory
src/lib YewPar framework source
src/app YewPar application sources
c++/ MaxClique comparison code for

Table 1
instances/ Instances for the applications, e.g.

instances/maxclique/

kclique.sh Run the kclique example (Fig 4)
kclique-small.sh Run a shorter kclique example
example_commands.sh Run a subset of Table 2

A.3 Ease of Use: Creating New Search Applications
Creating Search Trees is the first challenge when imple-
menting a search application. Section 4.1 outlines the Lazy
Node Generator abstractions that generate YewPar search
trees, and these are relatively simple to use. An example is
in /YewPar/src/app/bnb/knapsack/knapsack.hpp, lines
60 to 90. The key function next shows how child nodes are
created by adding a candidate to the current solution, up-
dating pos (pointer into the candidate set) and creating a
new candidate set (via copy_if). A hasNext function would
simply return false if all candidates have been explored, that
is if pos > rem.size().

Parallelising Search and Exploring Alternate Paralleli-
sations. A key message of the paper is the ease with which
parallel search applications can be built in YewPar, and how
easy it is to explore alternate parallelisations. This can be
seen in /YewPar/src/app/bnb/maxclique/main.cpp. The
code between lines 235 and 343 demonstrates that only the
skeleton and some parameters need to be changed to alter the
parallel coordination. Crucially the Node Generator GenNode
that generates the MaxClique search tree is never changed.

A.4 Recreating Some of the Evaluation Results
A.4.1 Table 1
Table 1 compares the runtimes of a hand-written MaxClique
implementation (C++/OpenMP) with the YewPar skeleton-
based implementation.
A script runExp.sh to repeat the experiment is available

in the c++ sub-directory. Note this script expects a 16 core
machine. This can be changed by editing the runSeq and
runPar Makefiles.

If you do not wish to use the script you can manually run
commands such as
maxclique -14 --skeleton seq

-f /YewPar/instances/maxclique/brock400_4.clq

--hpx:threads 1

clique -omp /YewPar/instances/maxclique/brock400_4.clq

Where maxclique-n can process graphs of up to 64 × n
vertices. (To enable optimal use of memory, several max-
clique binaries have been compiled, each supporting graphs
of different maximal sizes.)

A.4.2 Figure 4
Figure 4 measures the scaling of three parallel YewPar skele-
tons for a k-clique search instance, namely the budget, stack
stealing and depth-bounded skeletons. Parallel executions
of the skeletons on four cores, together with a sequential
execution, can be obtained as follows:
maxclique -14

-f /YewPar/instances/finitegeo/spreads_H44.clq

--skeleton seq --decisionBound 33 --hpx:threads 1

https://github.com/BlairArchibald/YewPar
https://github.com/BlairArchibald/YewPar
https://zenodo.org/record/3597463

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

maxclique -14

-f /YewPar/instances/finitegeo/spreads_H44.clq

--skeleton budget -b 10000000 --decisionBound 33

--hpx:threads 4

maxclique -14

-f /YewPar/instances/finitegeo/spreads_H44.clq

--skeleton stacksteal --chunked

--decisionBound --hpx:threads 4

maxclique -14

-f /YewPar/instances/finitegeo/spreads_H44.clq

--skeleton depthbounded -d 2

--decisionBound 33 --hpx:threads 4

To emulate distributed memory execution of the skeletons
within the docker container you can run, for example:
mpiexec -n 2 -disable -hostname -propagation maxclique -14

-f /YewPar/instances/finitegeo/spreads_H44.clq

--skeleton budget -b 10000000

--decisionBound 33 --hpx:threads 2

And similarly for the DepthBounded/StackStealing skel-
tons.

Note that -disable-hostname-propagation is required
for MPI to work correctly with HPX. These commands are
available in the kclique.sh script.
To execute on different numbers of cores select a differ-

ent --hpx:threads n parameter. The number of workers
(threads performing the search) is n-1 (or 1 if n==1). This
implies that hpx:threads 2 may not be faster than hpx:threads
1, but hpx:threads 4 should be.

As Figure 4 illustrates, the k-clique search has long run-
times on small numbers of cores, e.g. around 15 hours on a
single fast core. To demonstrate the k-clique application on a
smaller example, we provide the kclique-small.sh script
that runs the k-clique application on the brock400_1 graph
(proving the existence of a clique of size 27, and proving the
non-existence of cliques of size 28). On a single core, these
runs should only take a few minutes each, and around 20
minutes in total.

A.4.3 Table 2
Table 2 reports 9 speedups for each of 6 search benchmarks
(54 data points) on 120 workers distributed over a Beowulf
cluster. To recreate Table 2 requires a similar sized cluster
and many days of running time. To illustrate examples of
each of the search applications we provide a list of example
commands in the example_commands.sh file in the root di-
rectory. These commands should give an idea as to what the
command line looks like for each application so feel free to
vary the parameters. As before you can run MPI locally to
experiment with executing YewPar over distributed memory.

If you wish to run the applications on a distributed mem-
ory cluster you will need to build YewPar from source; in-
structions are provided in https://github.com/BlairArchibald/
YewPar/blob/master/README.md.

https://github.com/BlairArchibald/YewPar/blob/master/README.md
https://github.com/BlairArchibald/YewPar/blob/master/README.md

	Abstract
	1 Introduction
	2 Background
	2.1 Parallel Combinatorial Search
	2.2 Existing Parallel Space-Splitting Searches
	2.3 Why a New Parallel Search Framework?

	3 Formalising Parallel Tree Search
	3.1 Trees
	3.2 Search types
	3.3 Configurations
	3.4 Reduction rules
	3.5 Pruning
	3.6 Spawning
	3.7 Correctness

	4 Composing Tree Searches
	4.1 Lazy Node Generators
	4.2 Search Coordination Methods
	4.3 YewPar Realisation
	4.4 Composing YewPar Search Applications

	5 Evaluation
	5.1 Search Applications
	5.2 Experimental Setup
	5.3 YewPar Overheads
	5.4 YewPar Scalability
	5.5 Exploring Search Parallelisations

	6 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Downloading and Running the Docker Image
	A.2 Docker Image Structure
	A.3 Ease of Use: Creating New Search Applications
	A.4 Recreating Some of the Evaluation Results

