
Implementing YewPar: a Framework for Parallel
Tree Search

Blair Archibald1�[0000−0003−3699−6658], Patrick Maier3[0000−0002−7051−8169],
Robert Stewart2[0000−0003−0365−693X], and Phil Trinder1[0000−0003−0190−7010]

1 School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK
{Blair.Archibald,Phil.Trinder}@Glasgow.ac.uk

2 Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK
3 Department of Computing, Sheffield Hallam University, Sheffield, UK

Abstract. Combinatorial search is central to many applications yet
hard to parallelise. We argue for improving the reuse of parallel searches,
and present the design and implementation of a new parallel search
framework. YewPar generalises search by abstracting search tree gener-
ation, and by providing algorithmic skeletons that support three search
types, together with a set of search coordination strategies. The eval-
uation shows that the cost of YewPar generality is low (6.1%); global
knowledge is inexpensively shared between workers; irregular tasks are
effectively distributed; and YewPar delivers good runtimes, speedups and
efficiency with up to 255 workers on 17 localities.

Keywords: Exact Combinatorial Search · Parallel Search · HPX.

1 Introduction

Exact combinatorial search is essential to a wide range of applications including
constraint programming, graph matching, and computer algebra. Combinatorial
problems are solved by systematically exploring a search space, and doing so
is computationally hard both in theory and in practice, encouraging the use of
approximate algorithms.

Alternatively, exact search can be parallelised to reduce execution time. Par-
allel search is, however, extremely challenging due to huge and highly irregular
search trees, and the need to preserve search heuristics. The state of the art is
parallel searches that (1) are single purpose, i.e. for a specific search application,
e.g. Embarrassingly Parallel Search [12] supports constraint programming only;
and (2) use hand crafted parallelism, e.g parallel MaxClique [13], with almost no
reuse of parallelism between search applications. Hence typically an application
is parallelised just once in an heroic effort.

We provide a high-level approach to parallel search that allows non-expert
users to benefit from increasing CPU core counts. Specifically YewPar supports
algorithmic skeletons that provide reusable implementations of common parallel
search patterns.



2 B. Archibald et al.

Contributions. We present for the first time the design (Section 3) and imple-
mentation (Section 4) of YewPar, a new C++ parallel search framework. YewPar
provides both high-level skeletons and low-level search specific schedulers and
utilities to deal with the irregularity of search and knowledge exchange between
workers. YewPar uses the HPX library for distributed task-parallelism [11], al-
lowing search on multi-cores, clusters, HPC etc.

A novel element of YewPar is the depth-pool, a search-specific distributed
workpool that aims to preserve search heuristics. We describe the depth-pool
and show average runtime performance very similar to the widely-used deque,
yet dramatically reduced variance for some searches (Section 5).

We evaluate YewPar using around 15 instances of two search applications
covering two search types. The applications are evaluated on standard challenge
instances, e.g. the DIMACS benchmark suite [10]. We investigate how YewPar
shares knowledge between search threads (workers), and how effectively it scales
from 15 to 255 workers, on a Beowulf cluster. The sequential YewPar overheads
are low, with a mean 6.1% slowdown compared to a hand-coded sequential im-
plementation.

2 Existing Search Approaches

a b

c

d

ef

g

h

... e {}f {a,d,g}

a {d,g}

c {a,b,e}

e {}b {}a {b}

b {} d {g} g {}

d {g} g {}

g {}

g {}

ε

Fig. 1: MaxClique: graph with maximum clique {a, d, f, g} and search tree

Conceptually exact combinatorial search proceeds by generating and travers-
ing a tree representing alternative options. In practice the trees are huge and
grow exponentially, e.g. 378× 1012 nodes at depth 67 with a growth rate of 1.62
in [9], and as such are not materialised fully during search.

There are three main search types: enumeration, which searches for all so-
lutions matching some property, e.g. all maximal cliques in a graph; decision,
which looks for a specific solution, e.g. a clique of size k; or optimisation, which
finds a solution that minimises/maximises an objective function, e.g. finding a
maximum clique. To illustrate, Fig. 1 shows a small graph, and a fragment of
the search tree generated during a maximum clique search. The search proceeds
depth-first, repeatedly adding nodes to extend the current clique. After exploring



YewPar: A Parallel Search Framework 3

the subtree rooted at c it backtracks to explore the subtree rooted at f , which
comes heuristically after c.

Although decades of algorithmic research have developed search heuristics
that minimise search time, the scale of the search trees mean that many can
take days to solve [9]. Alongside algorithmic improvements, parallel search is
often used to increase the range of problems that can be practically solved.

Parallel search comes in three main variants: parallel node processing, where
children of a node are generated in parallel; portfolio methods, where multiple
sequential searches (with differing strategies) race to find an optimal solution;
and space-splitting, where distinct areas of the search tree are searched in parallel.
Space-splitting search follows a task parallel approach, where a task searches a
given subtree. We focus on space-splitting techniques as they are application
independent and scalable, making them ideal for general purpose frameworks
such as YewPar.

There are three main work generation approaches for tree search:
1) Static work generation, as in embarrassingly parallel search [12], creates all

tasks at startup and stores them in a (global) workpool, where they are picked
up by idle workers. To balance load these approaches need to generate vastly
more tasks than the number of workers, which increases startup cost.

2) Periodic work generation intersperses search with work generation. In
mts [4], for example, workers that do not complete a task within a given budget
(e.g. time, or number of nodes traversed) stop and store their unexplored subtrees
in a workpool, where idle workers will pick them up.

3) On-demand work generation bypasses workpools; instead idle workers steal
unexplored subtrees directly from other workers. Abu-khzam et al. [1] show such
techniques to be highly scalable e.g. up to 131,072 workers.

The need for a new search framework. Many existing parallel search ap-
proaches were designed for a single application, with search code intertwined
with parallelism code, limiting reuse. Frameworks that support multiple search
applications often only support a single work generation approach, yet no ap-
proach works best for all applications, making it difficult to choose an appropriate
framework [2].

YewPar solves this by providing a more general, i.e. more reusable approach
for parallel search, supporting all of the above work generation approaches, i.e.
static, periodic and on-demand. A user writes their application once and has
access to a library of parallel skeletons that realise common parallel search pat-
terns. Importantly, the user never writes code for parallelisation, making it easy
to port existing sequential search applications and experiment with the different
parallelism configurations that YewPar provides.

While existing task-parallel frameworks such as Cilk [8] appear to provide
suitable parallelism, key aspects of their implementations are entirely inappro-
priate for search. For example, deque-based work-stealing can break heuristic
search orderings [13], and the common assumption that the number of tasks in
a workpool is a good measure of load is invalid when learned knowledge during



4 B. Archibald et al.

Depth-Bounded
Stack-Stealing

Budget
. . .

Enumeration
Decision

Optimisation

Search Skeleton = Search Coordination + Search Type

BudgetDecision
DepthBoundedEnumeration

. . .

Clique Search
Numerical Semigroups

. . .

Search Application = Search Skeleton + Lazy Node Generator

Fig. 2: Creating Search Skeletons and Applications

search is globally distributed, pruning search tasks. YewPar instead provides
parallel coordinations and a workpool that are all specialised for search.

3 YewPar Design

YewPar parallelises tree search using distributed task parallelism that adapts
to the dynamic and irregular nature of search, and enables scaling on common
distributed-memory platforms.

Users construct search applications by combining a YewPar search skeleton
with a lazy node generator that they implement to characterise their search
problem, as shown in Fig. 2. The lazy node generator specifies how to generate
the search tree on demand and in which order to traverse the tree. Each skeleton
comprises a search coordination, e.g. Depth-Bounded (Section 3.1), and a search
type, e.g Decision. For example, YewPar’s DepthBoundedEnumeration skeleton
statically generates work and enumerates the search space. The skeleton library
is extensible, allowing new search coordination methods to be added.

3.1 Search Coordination Methods

During a search potentially any node in the search tree may be converted to
a task, but to minimise search time it is critical to choose heuristically a good
node. We follow existing work e.g. [14], using search heuristics, as encoded in
the lazy node generator, and select subtrees close to the root as we expect these
to be large; minimising scheduling overheads.

YewPar provides a range of standard search coordinations. A novel paral-
lel operational semantics for each coordination is provided in Chapter 4 of [2].
Sequential coordination is provided for reference and simply searches the tree
without generating any tasks.

Depth-Bounded coordination implements semi-static work generation by con-
verting all nodes below a user-defined cut-off depth (dcutoff ) into tasks and plac-
ing them in a workpool. New tasks are generated throughout the computation as
subtrees with nodes below dcutoff are stolen rather than being generated upfront.



YewPar: A Parallel Search Framework 5

Fig. 3: YewPar System Stack

Budget coordination uses periodic work generation. On stealing a new task,
a worker is given a user-defined backtrack budget. If the worker reaches the back-
tracking limit before completing the task, it offloads all unexplored subtrees at
the lowest depth, i.e. closest to the root, into a workpool, before resetting the
budget and continuing to search the remaining subtrees.

Stack-Stealing coordination provides on-demand work generation, triggered
by work-stealing, similar to [1]. On receiving a steal request, the victim ships
the lowest unexplored subtree from its own stack to the thief. Victim selection is
random but biased to favour local over remote steals in order to minimise steal
latency. YewPar combines work-stealing with work-pushing on startup in order
to distribute tasks quickly.

4 YewPar Implementation

YewPar4 is C++ parallel search framework. It supports the parallel algorithmic
skeletons of Section 3 and provides low-level components such as schedulers,
workpools, and global knowledge management so that new skeletons can be
created. For efficiency and type safety, YewPar uses C++ templates to compile
search applications. This specialises code to the specific application types, e.g.
the node type, and enables type directed optimisations.

For distributed-memory parallelism YewPar uses HPX [11], a library designed
for Exascale computing (1018 FLOPS). Figure 3 shows the YewPar system stack.
The implementation achieves scalability using asynchronous task-parallelism and
lightweight, user-space threads (HPX-threads). Distributed load management
has been implemented directly in YewPar as HPX does not provide it. Crucially
the load management aims to maintain search order heuristics (Section 5).

HPX is selected as the distributed task library as it does not require a bespoke
compiler and provides APIs for user-level access to tasks, futures, schedulers etc.

4 https://github.com/BlairArchibald/YewPar

https://github.com/BlairArchibald/YewPar


6 B. Archibald et al.

Alternatively, parallel languages with distributed tasks could also be used, such
as Chapel [6] or X10 [7].

Application-level Scheduling: YewPar divides operating system threads, one
per physical core, into two types: (1) worker threads that run the scheduling
loop until they are terminated, and (2) HPX manager threads. YewPar has
one HPX manager thread per locality for processing of active messages, synchro-
nisation, and PGAS updates. In order to minimise latency, YewPar also reserves
one CPU core for this manager thread.

Distributed Scheduling Policies Conceptually, idle workers request new
tasks from a scheduling policy, that is determined by the coordination method,
for example Depth-Bounded relies on a workpool whereas Stack-Stealing does
not. Policies communicate directly with HPX to either push work to remote lo-
calities, or receive stolen tasks from other localities. Two scheduling policies are
currently available, more could be added.

1. The distributed workpool policy, used by Depth-Bounded and Budget,
features one workpool per locality that stores all locally generated tasks.
Steals, both local and remote, are directed to the workpool, which aims to
serve thiefs tasks in heuristic order (Section 5).

2. The pickpocket policy, used by Stack-Stealing, has no workpools as Stack-
Stealing generates tasks only on demand. Instead, there is a special compo-
nent per locality, the pickpocket. Steals, both local and remote, are directed
to the pickpocket, which requests an unexplored subtree from a busy local
worker and serves it to the thief. Like the workpool, the pickpocket aims to
pick unexplored subtrees in heuristic order.

Both policies follow the same victim selection strategy when stealing. Victims
are chosen at random, with two provisos: (1) Local steals take priority; remote
steals are attempted only if there is no work locally. (2) Remote steals are biased
towards the victim of the most recent successful steal, in the hope that it still
has more work.

Global Knowledge Management Current search results are shared between
workers. YewPar provides each locality with a registry that shares search specific
variables – for example current bounds and skeleton parameters – between all
workers of a locality. Although primary access to this state is local, it supports
global updates via active messages, e.g. when receiving improved bounds.

The global incumbent object, e.g. the current solution for a decision/optimisation
problem, is stored in HPX’s Partitioned Global Address Space (PGAS) making it
accessible to any worker. On receiving an update message the incumbent checks
that no better solution has been found and, if so, updates the stored solution
and broadcasts the new bound to all localities. Section 6.2 shows that one global
object suffices due to the infrequent and irregular access patterns.



YewPar: A Parallel Search Framework 7

5 Depth-pool: A workpool that respects search heuristics

The performance of many tree searches depends heavily on a search heuristic that
prescribes the order the search tree is traversed, aiming to find good solution(s)
quickly and to minimise the search space through pruning. Failure to follow a
good heuristic can cause detrimental search anomalies where large parts of the
search tree are traversed that could have been pruned [5].

Workpool choice is key to ensuring search heuristics are maintained. Most
work-stealing workpools use deques, where local steals pick the youngest tasks
from one end, and remote steals pick the oldest tasks from the other. This works
well for divide-and-conquer workloads, as Cilk [8] has shown, but not for tree
searches that depend on heuristics [13]. The reason is that deque-based workpools
do not maintain heuristic orderings; worse still the steal policy selects tasks that
are heuristically unfavourable.

Fully respecting heuristic orderings entirely eliminates search anomalies but
centralises task selection, severely limiting scalability [3]. At larger scale, a dis-
tributed workpool is needed that (1) preserves heuristic ordering as far as pos-
sible, (2) biases remote steals towards big tasks (i.e. subtrees close to the root),
and (3) has low steal latency. Low steal latency is crucial since standard latency
hiding techniques such as task pre-fetching disrupt the heuristic ordering. To
this end, we propose a new workpool, the depth-pool, illustrated in Fig. 4.

The central data structure is an array of first-in-first-out (FIFO) queues. The
array is indexed by the depth in the search tree, i.e. the i-th queue holds tasks
spawned at depth i. The depth-pool biases remote steals towards the root of
the tree, where tasks are likely bigger, while biasing local steals to the deepest
depth, thereby improving locality. By using FIFO queues the heuristic ordering
is maintained at each depth, which avoids the heuristically poor choices made
by deque-based scheduling. Steal latency is low as a HPX manager thread is
available to handle steals.

As the depth-pool is more complex than a deque, one might expect higher
overheads, but maintaining the search heuristics should reduce runtime variance.
All of the results in the following section use the depthpool, and show good
performance. Moreover, a direct comparison of depth-pools and deques for 7
instances of two search applications shows very similar performance, with depth-
pool delivering dramatically lower variance in at least one instance (Figure 6.6
of [2]).

T 1
1 T 2

2 T 3
3

T 4
0 T 5

1 T 6
2 T 7

3

T 8
0

Depth

Remote Steal

Local Steal

Fig. 4: Depth-pool structure. T 1
0 is a task with id 1 and heuristic position 0.

Lower implies better heuristic position.



8 B. Archibald et al.

6 Evaluation

We evaluate YewPar performance on a cluster of 17 localities each with dual
8-core Intel Xeon E5-2640v2 CPUs (2Ghz; no hyper-threading), 64GB of RAM
and running Ubuntu 14.04.3 LTS. Datasets underpinning the experiments are
available online5.

Input datasets, e.g. particular graphs, to search applications are known as
instances. YewPar is evaluated in [2] with 25 instances across seven search appli-
cations that cover all three search types. Here we report results for a selection of
instances of the following two state-of-the-art search applications covering two
search types.

MaxClique searches a graph for the largest set of vertices (optimisation
search) where each vertex is adjacent to all other vertices in the set. We im-
plement Prosser’s MCSa1 algorithm [15], as sketched in Fig. 1. The instances
are drawn from the DIMACS benchmark suite [10].

Numerical Semigroups (NS) enumerates the numerical semigroups with a
genus ≤ g. A numerical semigroup is defined over the set of natural numbers with
a set of numbers removed (holes) such that the remaining set still forms a semi-
group under addition. The genus of a numerical semigroup is the number of holes.
The implementation is closely based on, and uses the efficient bit representation
for semigroups, of [9]. Each step in the search removes a number from the group
generator and adds additional elements to maintain the group property.

Section 6.1 compares YewPar sequential performance with a state-of-the-
art MaxClique solver. However parallel performance comparisons are made only
with other YewPar implementations as no other parallel comparator is available.
That is, there is no other system that allows both MaxClique and Numerical
Semigroups to be implemented, nor is there another distributed-memory parallel
version of the MCSa1 algorithm [3].

6.1 Skeleton Overheads

The generality of the YewPar skeletons incurs performance overheads compared
with search specific implementations. For example lazy node generation requires
that nodes are duplicated rather than updated in place. Compared with hand
written sequential clique search, YewPar shows low overheads with a geometric
mean overhead of only 6.1% across 21 DIMACS MaxClique instances (Table 6.1
of [2]).

6.2 Global Knowledge Exchange

Searches share global knowledge, e.g. the current incumbent in an optimisation
search, and YewPar uses HPX’s broadcasts and PGAS to do so. We evaluate
the performance implications using MaxClique instances on 255 workers (17
localities) with Depth-Bounded coordination and dcutoff = 2.

5 https://doi.org/10.5281/zenodo.3240291

https://doi.org/10.5281/zenodo.3240291


YewPar: A Parallel Search Framework 9

b
ro

ck
4
0
0

1

b
ro

ck
4
0
0

2

b
ro

ck
4
0
0

3

b
ro

ck
4
0
0

4

b
ro

ck
8
0
0

1

b
ro

ck
8
0
0

2

b
ro

ck
8
0
0

3

b
ro

ck
8
0
0

4

p
h

a
t5

0
0
-3

p
h

a
t7

0
0
-3

sa
n

r4
0
0

0
.7

0

50

100

150

2.19s

2.01s

1.28s

0.89s

23.74s

22.66s
15.25s

12.32s

1.15s

9.85s

0.94s

Instance

In
cu

m
b

en
t

U
p

d
a
te

s

Depth-Bounded Incumbent Updates: 255 Workers

Successful Unsuccessful

(a) Total incumbent updates. To-
tal runtime shown above.

0 1,000 2,000 3,000 4,000 5,000

brock400 1

sanr400 0.7

brock400 3

brock800 1

p hat500-3

p hat700-3 (×8s)

(×24s)

Time (ms)

Incumbent Update Time: 255 Workers

Unsuccessful Successful

(b) Time of incumbent updates. × repre-
sents final running time.

Fig. 5: Incumbent Updates.

Figure 5a shows the mean number of attempted incumbent updates (to the
nearest integer) for each instance. Failure to update occurs when a better solu-
tion was found before the update message arrived. For most instances, regard-
less of their runtime, the total number of updates is small: often less than 50.
In instances with more updates, a greater proportion are unsuccessful. More-
over Fig. 5b shows how most updates occur early in the search.

While the number of successful updates is bounded by the size of the max-
imum clique, the variation in the number of successful and unsuccessful steals
is instance specific and depends, for example, on how many branches near the
start of the search report similar incumbent values (before bound propagation
occurs). This non-predictability is a key challenge in parallel search.

Given the small amount of global knowledge exchanged, YewPar’s approach
combining PGAS and broadcast is appropriate and likely scales beyond the cur-
rent architecture. Crucially, although message delays may reduce performance,
they do not affect the correctness of the search.

6.3 Work-Stealing Performance

Effective work-stealing is crucial to obtaining good performance in task paral-
lel search. We investigate this using three representative MaxClique instances,
brock400 1, brock800 4 and brock400 3, to show that performance portability is
achievable. We report results from a single execution on 8 localities with Depth-
bounded, Stack-Stealing, and Budget search coordinations.

Figure 6a shows the number of spawns, and local/distributed steals per local-
ity for brock400 1 with Depth-Bounded coordination. A uniform distribution of
tasks across localities is unlikely given the huge variance in task runtime. Rather,
YewPar effectively ensures that all localities have work, i.e. almost all localities
have 2000+ tasks.



10 B. Archibald et al.

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

S
p
aw

n
s

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

L
o
ca

l
S
te

a
ls

Sucessful Failed

0 1 2 3 4 5 6 7
0

200

400

600

Locality

D
is

tr
ib

u
te

d
S
te

a
ls

Sucessful Failed

(a) brock400 1: Depth-Bounded coordination with cut-off depth 2.

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

L
o
ca

l
S
te

a
ls

Sucessful Failed

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

D
is

tr
ib

u
te

d
S
te

a
ls

Sucessful Failed

(b) brock800 4: Stack-Stealing coordination.

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

8,000

Locality

S
p

aw
n

s

0 1 2 3 4 5 6 7
0

2,000

4,000

6,000

Locality

L
o
ca

l
S

te
a
ls

Sucessful Failed

0 1 2 3 4 5 6 7
0

1,000

2,000

3,000

Locality

D
is

tr
ib

u
te

d
S

te
a
ls

Sucessful Failed

(c) brock400 3: Budget coordination limiting tasks to 106 backtracks.

Fig. 6: Sample per-locality work generation and stealing statistics.

Tasks are well distributed across the localities as they are spawned during
the search rather than upfront. A large proportion of the steals occur locally
as there are many localities with < 500 distributed steals. YewPar handles the
large numbers of tasks efficiently, scheduling and running 26924 tasks in 3.5s
(7692 tasks per second).

Figure 6b summarises the work-stealing statistics for brock800 4 with Stack-
Stealing coordination. As work is generated on demand, there is no spawn count.
As steals can occur at any depth in the search tree many local steals are suc-
cessful. Locality 0 steals little, probably because it holds the largest tasks.

Figure 6c summarises work-stealing statistics for brock800 4 with Budget
coordination. Like Depth-Bounded the work is well spread across the localities,
with almost all having 2000+ tasks. Locality 4 has relatively few tasks despite
stealing successfully, and we infer that most of the tasks stolen are small.

In summary, YewPar efficiently handles searches with thousands of tasks
spread over 120 workers. All search coordinations work well with MaxClique



YewPar: A Parallel Search Framework 11

1 2 4 8

1
6

1
7

100

200

300

400

500

Localities

R
u

n
ti

m
e

(s
)

1 2 4 8

1
6

1
7

1
2

4
8

1
2

1
7

S
p

ee
d

u
p

(R
el

1
L

o
ca

li
ty

)

Maximum Clique, brock800 2, Scaling

1 2 4 8

1
6

1
7

100

200

300

400

500

Localities

R
u

n
ti

m
e

(s
)

1 2 4 8

1
6

1
7

1
2

4
8

1
2

1
7

2
4

3
2

S
p

ee
d

u
p

(R
el

1
L

o
ca

li
ty

)

Maximum Clique, brock800 3, Scaling

Depth-Bounded (dcutoff = 2) Stack-Stealing Budget (budget = 107) Ideal

Fig. 7: Scaling performance of MaxClique. Error bars show min/max runtimes.

ensuring a sufficient number of tasks per locality despite the high degree of
irregularity common in search applications.

6.4 Scalability of YewPar

To investigate scalability we evaluate the runtimes and relative speedups of large
instances of both MaxClique instances and Numerical Semigroups on 255 workers
across 17 localities. Speedup is relative to a single locality with 15 workers as
one worker runs take a significant time, i.e. around 2–3 hours per instance.

Figure 7 shows the runtime and relative speedup for the three search coordi-
nations on two MaxClique instances. Depth-Bounded is best with a super-linear
speedup, caused by subtree pruning, of 31.0 on 16 localities. We deduce that
tasks searching subtrees at dcutoff are generally long running. In comparison,
Stack-Stealing and Budget are slower as they interrupt search more frequently.

Parameter values like dcutoff and budget can have a large impact of parallel
performance (see 6.5 and 6.7 of [2]). Techniques that guide users to chose good,
or low-risk, values remains an open problem.

Figure 8 shows the runtime and relative speedups of Numerical Semigroups.
Budget is best with a maximum speedup of 15.4 on 17 localities. Depth-Bounded
performs worst, timing out after 30 minutes regardless of the number of workers.
This illustrates the need for a search framework like YewPar to provide multiple
search coordinations that are suitable for different search applications; allowing



12 B. Archibald et al.

1 2 4 8

1
6

1
7

0

200

400

600

800

Localities

R
u

n
ti

m
e

(s
)

1 2 4 8

1
6

1
7

1
2

4
8

1
2

1
7

S
p

ee
d

u
p

(R
el

1
L

o
ca

li
ty

)

Numerical Semigroups, g = 50, Scaling

Stack-Stealing (chunked) Budget (budget = 107) Ideal

Fig. 8: Scaling performance of Numerical Semigroups. Error bars show min/max
runtimes.

it to often achieve an average efficiency of >50% even for these highly irregular
computations.

7 Conclusion

Parallel combinatorial search is challenging and we argue for improving the reuse
of parallel searches. For this purpose we present the design and implementation
a new parallel search framework. YewPar generalises search by abstracting the
search tree generation, and by providing algorithmic skeletons that support three
search types, and a set of standard search coordination strategies. A novel feature
is the depth-pool, a new distributed workpool that preserves search heuristics to
minimise runtime variance.

Evaluating YewPar on around 15 instances of two search applications (Max-
Clique and Numerical Semigroups) demonstrates its generality and effective-
ness. The cost of YewPar generality is low: averaging 6.1% compared with a
specific implementation. Moreover global knowledge is inexpensively shared be-
tween search tasks; the irregular tasks are effectively distributed; and YewPar
delivers good runtimes, speedups and efficiency with up to 255 workers on 17
locations.

Acknowledgments

Work supported by UK EPSRC Grants: S4: Science of Sensor Systems Soft-
ware (EP/N007565/1); Border Patrol: Improving Smart Device Security through
Type-Aware Systems Design (EP/N028201/1); AJITPar: Adaptive Just-In-Time
Parallelisation (EP/L000687); and CoDiMa (EP/M022641). We also thank Greg
Michaelson and the anonymous reviewers for their helpful comments.



YewPar: A Parallel Search Framework 13

References

1. Abu-Khzam, F.N., Daudjee, K., Mouawad, A.E., Nishimura, N.: On scalable
parallel recursive backtracking. J. Parallel Distrib. Comput. 84, 65–75 (2015).
https://doi.org/10.1016/j.jpdc.2015.07.006

2. Archibald, B.: Skeletons for Exact Combinatorial Search at Scale. Ph.D. thesis,
University of Glasgow (2018), http://theses.gla.ac.uk/id/eprint/31000

3. Archibald, B., Maier, P., McCreesh, C., Stewart, R.J., Trinder, P.: Replicable par-
allel branch and bound search. J. Parallel Distrib. Comput. 113, 92–114 (2018).
https://doi.org/10.1016/j.jpdc.2017.10.010

4. Avis, D., Jordan, C.: mts: a light framework for parallelizing tree search codes.
CoRR abs/1709.07605 (2017), http://arxiv.org/abs/1709.07605

5. de Bruin, A., Kindervater, G., Trienekens, H.: Asynchronous parallel branch and
bound and anomalies. In: IRREGULAR’95, vol. 980, pp. 363–377. Springer Berlin
Heidelberg (1995). https://doi.org/10.1007/3-540-60321-2 29

6. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel Pro-
grammability and the Chapel Language. IJHPCA 21(3), 291–312.
https://doi.org/10.1177/1094342007078442

7. Charles, P., Grothoff, C., Saraswat, V.A., Donawa, C., Kielstra, A., Ebcioglu,
K., von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform
cluster computing. In: Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA. pp. 519–538.
https://doi.org/10.1145/1094811.1094852

8. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of
the Cilk-5 Multithreaded Language. In: PLDI. pp. 212–223 (1998).
https://doi.org/10.1145/277650.277725

9. Fromentin, J., Hivert, F.: Exploring the tree of numerical semigroups. Math. Comp.
85(301), 2553–2568 (2016). https://doi.org/10.1090/mcom/3075

10. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, Workshop, October 11-13, 1993. AMS (1996)

11. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: A Task Based
Programming Model in a Global Address Space. In: PGAS. pp. 6:1–6:11 (2014).
https://doi.org/10.1145/2676870.2676883

12. Malapert, A., Régin, J.C., Rezgui, M.: Embarrassingly Parallel Search in Con-
straint Programming. J. Artif. Intell. Res. 57, 421–464 (2016)

13. McCreesh, C., Prosser, P.: The Shape of the Search Tree for the Maximum Clique
Problem and the Implications for Parallel Branch and Bound. TOPC 2(1), 8:1–8:27
(2015). https://doi.org/10.1145/2742359

14. Pietracaprina, A., Pucci, G., Silvestri, F., Vandin, F.: Space-Efficient Parallel
Algorithms for Combinatorial Search Problems. CoRR abs/1306.2552 (2013),
http://arxiv.org/abs/1306.2552

15. Prosser, P.: Exact Algorithms for Maximum Clique: A Computational Study. Al-
gorithms 5(4), 545–587 (2012). https://doi.org/10.3390/a5040545

https://doi.org/10.1016/j.jpdc.2015.07.006
http://theses.gla.ac.uk/id/eprint/31000
https://doi.org/10.1016/j.jpdc.2017.10.010
http://arxiv.org/abs/1709.07605
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/277650.277725
https://doi.org/10.1090/mcom/3075
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2742359
http://arxiv.org/abs/1306.2552
https://doi.org/10.3390/a5040545

	Implementing YewPar: a Framework for Parallel Tree Search

