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1.  INTRODUCTION

NEURON (Hines 1984; 1989; 1993; 1994) provides a powerful and flexible environment for
implementing biologically realistic models of electrical and chemical signaling in neurons and networks of
neurons.  This article describes the concepts and strategies that have guided the design and implementation
of this simulator, with emphasis on those features that are particularly relevant to its most efficient use.

1.1  The problem domain

Information processing in the brain results from the spread and interaction of electrical and chemical
signals within and among neurons.  This involves nonlinear mechanisms that span a wide range of spatial
and temporal scales (Carnevale and Rosenthal 1992) and are constrained to operate within the intricate
anatomy of neurons and their interconnections.  Consequently the equations that describe brain mechanisms
generally do not have analytical solutions, and intuition is not a reliable guide to understanding the working
of the cells and circuits of the brain.  Furthermore, these nonlinearities and spatiotemporal complexities are
quite unlike those that are encountered in most nonbiological systems, so the utility of many quantitative
and qualitative modeling tools that were developed without taking these features into consideration is
severely limited.

NEURON is designed to address these problems by enabling both the convenient creation of
biologically realistic quantitative models of brain mechanisms and the efficient simulation of the operation
of these mechanisms.  In this context the term “biological realism” does not mean “infinitely detailed.”
Instead it means that the choice of which details to include in the model and which to omit are at the
discretion of the investigator who constructs the model, and not forced by the simulation program.

To the experimentalist NEURON offers a tool for cross-validating data, estimating experimentally
inaccessible parameters, and deciding whether known facts account for experimental observations.  To the
theoretician it is a means for testing hypotheses and determining the smallest subset of anatomical and
biophysical properties that is necessary and sufficient to account for particular phenomena.  To the student
in a laboratory course it provides a vehicle for illustrating and exploring the operation of brain mechanisms
in a simplified form that is more robust than the typical “wet lab” experiment.  For experimentalist,
theoretician, and student alike, a powerful simulation tool such as NEURON can be an indispensable aid to
developing the insight and intuition that is needed if one is to discover the order hidden within the intricacy
of biological phenomena, the order that transcends the complexity of accident and evolution.

1.2  Experimental advances and quantitative modeling

Experimental advances drive and support quantitative modeling.  Over the past two decades the field of
neuroscience has seen striking developments in experimental techniques that include
• high-quality electrical recording from neurons in vitro and in vivo using patch clamp
• multiple impalements of visually identified cells
• simultaneous intracellular recording from paired pre- and postsynaptic neurons
• simultaneous measurement of electrical and chemical signals
• multisite electrical and optical recording
• quantitative analysis of anatomical and biophysical properties from the same neuron
• photolesioning of cells
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• photorelease of caged compounds for spatially precise chemical stimulation
• new drugs such as channel blockers and receptor agonists and antagonists
• genetic engineering of ion channels and receptors
• analysis of mRNA and biophysical properties from the same neuron
• “knockout” mutations
These and other advances are responsible for impressive progress in the definition of the molecular biology
and biophysics of receptors and channels, the construction of libraries of identified neurons and neuronal
classes that have been characterized anatomically, pharmacologically, and biophysically, and the analysis
of neuronal circuits involved in perception, learning, and sensorimotor integration.

The result is a data avalanche that catalyzes the formulation of new hypotheses of brain function, while
at the same time serving as the empirical basis for the biologically realistic quantitative models that must be
used to test these hypotheses.  Some examples from the large list of topics that have been investigated
through the use of such models include
• the cellular mechanisms that generate and regulate chemical and electrical signals (Destexhe et al.

1996; Jaffe et al. 1994)
• drug effects on neuronal function (Lytton and Sejnowski 1992)
• presynaptic (Lindgren and Moore 1989) and postsynaptic (Destexhe and Sejnowski 1995; Traynelis et

al. 1993) mechanisms underlying communication between neurons
• integration of synaptic inputs (Bernander et al. 1991; Cauller and Connors 1992)
• action potential initiation and conduction (Häusser et al. 1995; Hines and Shrager 1991; Mainen et al.

1995)
• cellular mechanisms of learning (Brown et al. 1992; Tsai et al. 1994a)
• cellular oscillations (Destexhe et al. 1993a; Lytton et al. 1996)
• thalamic networks (Destexhe et al. 1993b; Destexhe et al. 1994)
• neural information encoding (Hsu et al. 1993; Mainen and Sejnowski 1995; Softky 1994)

2.  OVERVIEW OF NEURON
NEURON is intended to be a flexible framework for handling problems in which membrane properties

are spatially inhomogeneous and where membrane currents are complex.  Since it was designed specifically
to simulate the equations that describe nerve cells, NEURON has three important advantages over general
purpose simulation programs.  First, the user is not required to translate the problem into another domain,
but instead is able to deal directly with concepts that are familiar at the neuroscience level.  Second,
NEURON contains functions that are tailored specifically for controlling the simulation and graphing the
results of real neurophysiological problems.  Third, its computational engine is particularly efficient
because of the use of special methods and tricks that take advantage of the structure of nerve equations
(Hines 1984; Mascagni 1989).

However, the general domain of nerve simulation is still too large for any single program to deal
optimally with every problem.  In practice, each program has its origin in a focused attempt to solve a
restricted class of problems.  Both speed of simulation and the ability of the user to maintain conceptual
control degrade when any program is applied to problems outside the class for which it is best suited.

NEURON is computationally most efficient for problems that range from parts of single cells to small
numbers of cells in which cable properties play a crucial role.  In terms of conceptual control, it is best
suited to tree-shaped structures in which the membrane channel parameters are approximated by piecewise
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linear functions of position.  Two classes of problems for which it is particularly useful are those in which
it is important to calculate ionic concentrations, and those where one needs to compute the extracellular
potential just next to the nerve membrane.  It is especially capable for investigating new kinds of membrane
channels since they are described in a high level language (NMODL (Moore and Hines 1996)) which
allows the expression of models in terms of kinetic schemes or sets of simultaneous differential and
algebraic equations.  To maintain efficiency, user defined mechanisms in NMODL are automatically
translated into C, compiled, and linked into the rest of NEURON.

The flexibility of NEURON comes from a built-in object oriented interpreter which is used to define
the morphology and membrane properties of neurons, control the simulation, and establish the appearance
of a graphical interface.  The default graphical interface is suitable for exploratory simulations involving
the setting of parameters, control of voltage and current stimuli, and graphing variables as a function of
time and position.

Simulation speed is excellent since membrane voltage is computed by an implicit integration method
optimized for branched structures (Hines 1984).  The performance of NEURON degrades very slowly with
increased complexity of morphology and membrane mechanisms, and it has been applied to very large
network models (104 cells with 6 compartments each, total of 106 synapses in the net [T. Sejnowski,
personal communication]).

3.  MATHEMATICAL BASIS

Strategies for numerical solution of the equations that describe chemical and electrical signaling in
neurons have been discussed in many places.  Elsewhere we have briefly presented an intuitive rationale for
the most commonly used methods (Hines and Carnevale 1995).  Here we start from this base and proceed
to address those aspects which are most pertinent to the design and application of NEURON.

3.1  The cable equation

The application of cable theory to the study of electrical signaling in neurons has a long history, which
is briefly summarized elsewhere (Rall 1989).  The basic computational task is to numerically solve the
cable equation
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which describes the relationship between current and voltage in a one-dimensional cable.  The branched
architecture typical of most neurons is incorporated by combining equations of this form with appropriate
boundary conditions.
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Figure 3.1.  The net current entering a region must equal zero.

Spatial discretization of this partial differential equation is equivalent to reducing the spatially
distributed neuron to a set of connected compartments.  The earliest example of a multicompartmental
approach to the analysis of dendritic electrotonus was provided by Rall (1964).

Spatial discretization produces a family of ordinary differential equations of the form
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Equation 2 is a statement of Kirchhoff’s current law, which asserts that net transmembrane current leaving
the jth compartment must equal the sum of axial currents entering this compartment from all sources
(Fig. 3.1).  The left hand side of Eq. 2 is the total membrane current, which is the sum of capacitive and
ionic components.  The capacitive component is c dv dtj j , where cj is the membrane capacitance of the

compartment.  The ionic component iionj
 includes all currents through ionic channel conductances.  The

right hand side of Eq. 2 is the sum of axial currents that enter this compartment from its adjacent
neighbors.  Currents injected through a microelectrode would be added to the right hand side.  The sign
conventions for current are:  outward transmembrane current is positive; axial current flow into a region is
positive; positive injected current drives vj in a positive direction.

Equation 2 involves two approximations.  First, axial current is specified in terms of the voltage drop
between the centers of adjacent compartments.  The second approximation is that spatially varying
membrane current is represented by its value at the center of each compartment.  This is much less drastic
than the often heard statement that a compartment is assumed to be “isopotential.”  It is far better to picture
the approximation in terms of voltage varying linearly between the centers of adjacent compartments.
Indeed, the linear variation in voltage is implicit in the usual description of a cable in terms of discrete
electrical equivalent circuits.

If the compartments are of equal size, it is easy to use Taylor's series to show that both of these
approximations have errors proportional to the square of compartment length.  Thus replacing the second
partial derivative by its central difference approximation introduces errors proportional to ∆x2, and
doubling the number of compartments reduces the error by a factor of four.

It is often not convenient for the size of all compartments to be equal.  Unequal compartment size might
be expected to yield simulations that are only first order accurate.  However, comparison of simulations in
which unequal compartments are halved or quartered in size generally reveals a second-order reduction of
error.  A rough rule of thumb is that simulation error is proportional to the square of the size of the largest
compartment.

The first of two special cases of Eq. 2 that we wish to discuss allows us to recover the usual parabolic
differential form of the cable equation.  Consider the interior of an unbranched cable with constant
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diameter.  The axial current consists of two terms involving compartments with the natural indices j–1 and
j+1 , i.e.

c
dv

dt
i

v v

r

v v

rj
j

ion
j j

j j

j j

j j
j

+ =
−

+
−−

−

+

+

1

1

1

1, ,

If the compartments have the same length ∆x and diameter d, then the capacitance of a compartment is
Cm π d ∆x and the axial resistance is Ra ∆x / π (d/2)2.  Cm is called the specific capacitance of the
membrane, which is generally taken to be 1 µf / cm2.  Ra is the axial resistivity, which has different
reported values for different cell classes (e.g. 35.4 Ω cm for squid axon).  Eq. 2 then becomes
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where we have replaced the total ionic current iionj
 with the current density i j .  The right hand term, as

∆x → 0, is just ∂ ∂2 2V x  at the location of the now infinitesimal compartment j.
The second special case of Eq. 2 allows us to recover the boundary condition.  This is an important

exercise since naive discretizations at the ends of the cable have destroyed the second order accuracy of
many simulations.  Nerve boundary conditions are that no axial current flows at the end of the cable, i.e.
the end is sealed.  This is implicit in Eq. 2, where the right hand side consists only of the single term

v v rj j j j− −−1 1d i ,  when compartment j lies at the end of an unbranched cable.

3.2  Spatial discretization in a biological context:  sections and segments

Every nerve simulation program solves for the longitudinal spread of voltage and current by
approximating the cable equation as a series of compartments connected by resistors (Fig. 3.4 and Eq. 2).
The sum of all the compartment areas is the total membrane area of the whole nerve.  Unfortunately, it is
usually not clear at the outset how many compartments should be used.  Both the accuracy of the
approximation and the computation time increase as the number of compartments used to represent the
cable increases.  When the cable is “short,” a single compartment can be made to adequately represent the
entire cable.  For long cables or highly branched structures, it may be necessary to use a large number of
compartments.

This raises the question of how best to manage all the parameters that exist within these compartments.
Consider membrane capacitance, which has a different value in each compartment.  Rather than specify the
capacitance of each compartment individually, it is better to deal in terms of a single specific membrane
capacitance which is constant over the entire cell and have the program compute the values of the
individual capacitances from the areas of the compartments.  Other parameters such as diameter or channel
density may vary widely over short distances, so the graininess of their representation may have little to do
with numerically adequate compartmentalization.

Although NEURON is a compartmental modeling program, the specification of biological properties
(neuron shape and physiology) has been separated from the numerical issue of compartment size.  What
makes this possible is the notion of a section, which is a continuous length of unbranched cable.  Although
each section is ultimately discretized into compartments, values that can vary with position along the length
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of a section are specified in terms of a continuous parameter that ranges from 0 to 1 (normalized distance).
In this way, section properties are discussed without regard to the number of segments used to represent it.
This makes it easy to trade off between accuracy and speed, and enables convenient verification of the
numerical correctness of simulations.

Figure 3.2.  Top:  cartoon of a neuron indicating the approximate boundaries between biologically
significant structures..  The left hand side of the cell body (Soma) is attached to an axon hillock (AH) that
drives a myelinated axon (myelinated internodes Ii alternating with nodes of Ranvier Ni).  From the right
hand side of the cell body originates a branched dendritic tree (Di).  Bottom:  how sections would be
employed in a NEURON model to represent these structures.

Sections are connected together to form any kind of branched tree structure.  Fig. 3.2 illustrates how
sections are used to represent biologically significant anatomical features.  The top of this figure is a
cartoon of a neuron with a soma that gives rise to a branched dendritic tree and an axon hillock connected
to a myelinated axon.  Each biologically significant component of this cell has its counterpart in one of the
sections of the NEURON model, as shown in the bottom of Fig. 3.2:  the cell body (Soma), axon hillock
(AH), myelinated internodes (Ii), nodes of Ranvier (Ni), and dendrites (Di).  Sections allow this kind of
functional/anatomical parcellation of the cell to remain foremost in the mind of the person who constructs
and uses a NEURON model.

To accommodate requirements for numerical accuracy, NEURON represents each section by one or
more segments of equal length (Figs. 3.3 and 3.4).  The number of segments is specified by the parameter
nseg , which can have a different value for each section.

At the center of each segment is a node, the location where the internal voltage of the segment is
defined.  The transmembrane currents over the entire surface area of a segment are associated with its
node.  The nodes of adjacent segments are connected by resistors.

It is crucial to realize that the location of the second order correct voltage is not at the edge of a
segment but rather at its center, i.e. at its node.  This is the discretization method employed by NEURON.
To allow branching and injection of current at the precise ends of a section while maintaining second order
correctness, extra voltage nodes that represent compartments with 0 area are defined at the section ends.  It
is possible to achieve second order accuracy with sections whose end nodes have nonzero area
compartments.  However, the areas of these terminal compartments would have to be exactly half that of
the internal compartments, and extra complexity would be imposed on administration of channel density at
branch points.

Based on the position of the nodes, NEURON calculates the values of internal model parameters such
as the average diameter, axial resistance, and compartment area that are assigned to each segment.
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Figs. 3.3 and 3.4 show how an unbranched portion of a neuron, called a neurite (Fig. 3.3A), is represented
by a section with one or more segments.  Morphometric analysis generates a series of diameter
measurements whose centers lie on the midline of the neurite (thin axial line in Fig. 3.3B).  These
measurements and the path lengths between their centers are the dimensions of the section, which can be
regarded as a chain of truncated cones or frusta (Fig. 3.3C).

Distance along the length of a section is discussed in terms of the normalized position parameter x .
That is, one end of the section corresponds to x  = 0 and the other end to x  = 1.  In Fig. 3.3C these locations
are depicted as being on the left and right hand ends of the section.  The locations of the nodes and the
boundaries between segments are conveniently specified in terms of this normalized position parameter.  In
general, a section has nseg  segments that are demarcated by evenly spaced boundaries at intervals of
1 / nseg .  The nodes at the centers of these segments are located at x  = (2 i – 1) / 2 nseg  where i is an
integer in the range [1, nseg ].  As we shall see later, x  is also used in specifying model parameters or
retrieving state variables that are a function of position along a section (see 4.4  Range variables).

Figure 3.3.  A:  cartoon of an unbranched neurite (thick lines) that is to be represented by a section in a
NEURON model.  Computer-assisted morphometry generates a file that stores successive measurements of
diameter (thin circles) centered at x, y, z coordinates (thin crosses).  B:  each adjacent pair of diameter
measurements (thick circles) becomes the parallel faces of a truncated cone or frustum, the height of which
is the distance between the measurement locations.  The outline of each frustum is shown with thin lines,
and a thin centerline passes through the central axis of the chain of solids.  C:  the centerline has been
straightened so the faces of adjacent frusta are flush with each other.  The scale underneath the figure
shows the distance along the midline of the section in terms of the normalized position parameter x .  The
vertical dashed line at x  = 0.5 divides the section into two halves of equal length.  D:  Electrical equivalent
circuit of the section as represented by a single segment (nseg  = 1).  The open rectangle includes all
mechanisms for ionic (non-capacitive) transmembrane currents.

The special importance of x  and nseg  lies in the fact that they free the user from having to keep track
of the correspondence between segment number and position on the nerve.  In early versions of NEURON,
all nerve properties were stored in vector variables where the vector index was the segment number.
Changing the number of segments was an error prone and laborious process that demanded a remapping of
the relationship between the user’s mental image of the biologically important features of the model, on the
one hand, and the implementation of this model in a digital computer, on the other.  The use of x  and nseg
insulates the user from the most inconvenient aspects of such low-level details.
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When nseg  = 1 the entire section is lumped into a single compartment.  This compartment has only
one node, which is located midway along its length, i.e. at x  = 0.5 (Fig. 3.3C and D).  The integral of the
surface area over the entire length of the section (0 ≤ x  ≤ 1) is used to calculate the membrane properties
associated with this node.  The values of the axial resistors are determined by integrating the cytoplasmic
resistivity along the paths from the ends of the section to its midpoint (dashed line in Fig. 3.3C).  The left
and right hand axial resistances of Fig. 3.3D are evaluated over the x  intervals [0, 0.5] and [0.5, 1],
respectively.

Figure 3.4.  How the neurite of Fig. 3.3 would be represented by a section with two segments (nseg  = 2).
Now the electrical equivalent circuit (bottom) has two nodes.  The membrane properties attached to the first
and second nodes are based on neurite dimensions and biophysical parameters over the x  intervals [0, 0.5]
and [0.5, 1], respectively.  The three axial resistances are computed from the cytoplasmic resistivity and
neurite dimensions over the x  intervals [0, 0.25], [0.25, 0.75], and [0.75, 1].

Fig. 3.4 shows what happens when nseg = 2 .  Now NEURON breaks the section into two segments
of equal length that correspond to x  intervals [0, 0.5] and [0.5, 1].  The membrane properties over these
intervals are attached to the nodes at 0.25 and 0.75, respectively.  The three axial resistors Ri1, Ri2 and Ri3
are determined by integrating the path resistance over the x  intervals [0, 0.25], [0.25, 0.75], and [0.75, 1].

3.3  Integration methods

Spatial discretization reduced the cable equation, a partial differential equation with derivatives in
space and time, to a set of ordinary differential equations with first order derivatives in time.  Selection of
an integration method to solve these equations is guided by concerns of stability, accuracy, and efficiency
(Hines and Carnevale 1995).

NEURON offers the user a choice of two stable implicit integration methods:  backward Euler, and a
variant of Crank-Nicholson (C-N).  Backward Euler is the default because of its robust numerical stability
properties.  Backward Euler can be used with extremely large time steps in order to find the steady-state
solution for a linear (“passive”) system.  It produces good qualitative results even with large time steps, and
it works even if some or all of the equations are strictly algebraic relations among states.

A method which is more accurate for small time steps is available by setting the global parameter
secondorder  to 2.  NEURON then uses a variant of the C-N method, in which numerical error is
proportional to ∆t2.

Both of these are implicit integration methods, in which all current balance equations must be solved
simultaneously.  The backward Euler algorithm does not resort to iteration to deal with nonlinearities, since
its numerical error is proportional to ∆t anyway.  The special feature of the C-N variant is its use of a
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staggered time step algorithm to avoid iteration of nonlinear equations (see 3.3.1 Efficiency below).  This
converts the current balance part of the problem to one that requires only the solution of simultaneous
linear equations.

Although the C-N method is formally stable, it is sometimes plagued by spurious large amplitude
oscillations (see Fig. 7 in Hines and Carnevale (1995)).  This occurs when ∆t is too large, as may occur in
models that involve fast voltage clamps or that have compartments which are coupled by very small
resistances.  However, C-N is safe in most situations, and it can be much more efficient than backward
Euler for a given accuracy.

These two methods are almost identical in terms of computational cost per time step (see 3.3.1
Efficiency below).  Since the current balance equations have the structure of a tree (there are no current
loops), direct gaussian elimination is optimal for their solution (Hines 1984).  This takes exactly the same
number of computer operations as would be required for an unbranched cable with the same number of
compartments.

For any particular problem, the best way to determine which is the method of choice is to compare both
methods with several values of ∆t to see which allows the largest ∆t consistent with the desired accuracy.
In performing such trials, one must remember that the stability properties of a simulation depend on the
entire system that is being modeled.  Because of interactions between the “biological” components and any
“nonbiological” elements, such as stimulators or voltage-clamps, the time constants of the entire system
may be different from those of the biological components alone.  A current source (perfect current clamp)
does not affect stability because it does not change the time constants.  Any other signal source imposes a
load on the compartment to which it is attached, changing the time constants and potentially requiring use
of a smaller time step to avoid numerical oscillations in the C-N method.  The more closely a signal source
approximates a voltage source (perfect voltage clamp), the greater this effect will be.

3.3.1  Efficiency

Nonlinear equations generally need to be solved iteratively to maintain second order correctness.
However, voltage dependent membrane properties, which are typically formulated in analogy to Hodgkin-
Huxley (HH) type channels, allow the cable equation to be cast in a linear form, still second order correct,
that can be solved without iterations.  A direct solution of the voltage equations at each time step t →
t + ∆t using the linearized membrane current I(V,t) = G · (V – E) is sufficient as long as the slope
conductance G and the effective reversal potential E are known to second order at time t + 0.5 ∆t.  HH type
channels are easy to solve at t + 0.5 ∆t since the conductance is a function of state variables which can be
computed using a separate time step that is offset by 0.5 ∆t with respect to the voltage equation time step.
That is, to integrate a state from t – 0.5 ∆t to t + 0.5 ∆t we only require a second order correct value for the
voltage dependent rates at the midpoint time t.

Figure 3.5 contrasts this approach with the common technique of replacing nonlinear coefficients by
their values at the beginning of a time step.  For HH equations in a single compartment, the staggered time
grid approach converts four simultaneous nonlinear equations at each time step to four independent linear
equations that have the same order of accuracy at each time step.  Since the voltage dependent rates use the
voltage at the midpoint of the integration step, integration of channel states can be done analytically in just
a single addition and multiplication operation and two table lookup operations.  While this efficient scheme
achieves second order accuracy, the tradeoff is that the tables depend on the value of the time step and must
be recomputed whenever the time step changes.
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Figure 3.5.  The equations shown at the top of the figure are computed using the Crank-Nicholson method.
Top:  x(t + ∆t) and y(t + ∆t) are determined using their values at time t.  Bottom:  staggered time steps yield
decoupled linear equations.  y(t + ∆t/2) is determined using x(t), after which x(t + ∆t) is determined using
y(t + ∆t/2).

Neuronal architecture can also be exploited to increase computational efficiency.  Since neurons
generally have a branched tree structure with no loops, the number of arithmetic operations required to
solve the cable equation by Gaussian elimination is exactly the same as for an unbranched cable with the
same number of compartments.  That is, we need only O(N) arithmetic operations for the equations that
describe N compartments connected in the form of a tree, even though standard Gaussian elimination
generally takes O(N3) operations to solve N equations in N unknowns.  The tremendous efficiency increase
results from the fact that, in a tree, one can always find a leaf compartment i that is connected to only one
other compartment j, so that:
1)  the equation for compartment i (Eq. 3a) involves only the voltages in compartments i and j, and
2)  the voltage in leaf compartment i is involved only in the equations for compartments i and j (Eq. 3a

and b).

a V a V bii i ij j i+ = (3a)

a V a V bji i jj j j+ + =terms from other compartments (3b)

Using Eq. 3a to eliminate the Vi term from Eq. 3b, which requires O(1) (instead of N) operations, gives
Eq. 4 and leaves N–1 equations in N–1 unknowns.

′ + = ′a V bjj j jterms from other compartments (4)

where ′ = −a a a a ajj jj ij ji iid i and ′ = −b b b a aj j i ji iid i

This strategy can be applied until there is only one equation in one unknown.
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Assume that we know the solution to these N–1 equations, and in particular that we know Vj.  Then we
can find Vi from Eq. 3a with O(1) step.  Therefore the effort to solve these N equations is O(1) plus the
effort needed to solve N–1 equations.  The number of operations required is independent of the branching
structure, so a tree of N compartments uses exactly the same number of arithmetic operations as a one-
dimensional cable of N compartments.

Efficient Gaussian elimination requires an ordering that can be found by a simple algorithm:  choose
the equation with the current minimum number of terms as the equation to use in the elimination step.  This
minimum degree ordering algorithm is commonly employed in standard sparse matrix solver packages.  For
example, NEURON’s “Matrix” class uses the matrix library written by Stewart and Leyk (1994).  This
and many other sparse matrix packages are freely available on the Internet at http://www.netlib.org .

4.  THE NEURON SIMULATION ENVIRONMENT

No matter how powerful and robust its computational engine may be, the real utility of any software
tool depends largely on its ease of use.  Therefore a great deal of effort has been invested in the design of
the simulation environment provided by NEURON.  In this section we first briefly consider general aspects
of the high-level language used for writing NEURON programs.  Then we turn to an example of a model of
a nerve cell to introduce specific aspects of the user environment, after which we cover these features more
thoroughly.

4.1  The hoc  interpreter

NEURON incorporates a programming language based on hoc , a floating point calculator with C-like
syntax described by Kernighan and Pike (Kernighan and Pike 1984).  This interpreter has been extended by
the addition of object-oriented syntax (not including polymorphism or inheritance) that can be used to
implement abstract data types and data encapsulation.  Other extensions include functions that are specific
to the domain of neural simulations, and functions that implement a graphical user interface (see below).

With hoc  one can quickly write short programs that meet most problem-specific needs.  The
interpreter is used to execute simulations, customize the user interface, optimize parameters, analyze
experimental data, calculate new variables such as impulse propagation velocity, etc..

NEURON simulations are not subject to the performance penalty often associated with interpreted (as
opposed to compiled) languages because computationally intensive tasks are carried out by highly efficient
precompiled code.  Some of these tasks are related to integration of the cable equation and others are
involved in the emulation of biological mechanisms that generate and regulate chemical and electrical
signals.

NEURON provides a built-in implementation of the microemacs text editor.  Since the choice of a
programming editor is highly personal, NEURON will also accept hoc  code in the form of straight ASCII
files created with any other editor.

4.2  A specific example

In the following example we show how NEURON might be used to model the cell in the top of
Fig. 4.1.  Comments in the hoc  code are preceded by double slashes (// ), and code blocks are enclosed in
curly brackets ({} ).
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4.2.1  First step:  establish model topology

One very important feature of NEURON is that it allows the user to think about models in terms that
are familiar to the neurophysiologist, keeping numerical issues (e.g. number of spatial segments) entirely
separate from the specification of morphology and biophysical properties.  As noted in a previous section
(3.2  Spatial discretization . . . ), this separation is achieved through the use of one-dimensional cable
“sections” as the basic building block from which model cells are constructed.  These sections can be
connected together to form any kind of branched cable and endowed with properties which may vary with
position along their length.

Figure 4.1.  Top:  cartoon of a neuron with a soma, three dendrites, and an unmyelinated axon (not to
scale).  The diameter of the spherical soma is 50 µm.  Each dendrite is 200 µm long and tapers uniformly
along its length from 10 µm diameter at its site of origin on the soma, to 3 µm at its distal end.  The
unmyelinated cylindrical axon is 1000 µm long and has a diameter of 1 µm.  An electrode (not shown) is
inserted into the soma for intracellular injection of a stimulating current.  Bottom:  topology of a NEURON
model that represents this cell (see text for details).

The idealized neuron in Fig. 4.1 has several anatomical features whose existence and spatial
relationships we want the model to include:  a cell body (soma), three dendrites, and an unmyelinated axon.
The following hoc  code sets up the basic topology of the model:

create soma, axon, dendrite[3]
connect axon(0), soma(0)
for i=0,2 { connect dendrite[i](0), soma(1) }

The program starts by creating named sections that correspond to the important anatomical features of the
cell.  These sections are attached to each other using connect  statements.  As noted previously, each
section has a normalized position parameter x  which ranges from 0 at one end to 1 at the other.  Because
the axon and dendrites arise from opposite sides of the cell body, they are connected to the 0 and 1 ends of
the soma section (see bottom of Fig. 4.1).  A child section can be attached to any location on the parent,
but attachment at locations other than 0 or 1 is generally employed only in special cases such as spines on
dendrites.
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4.2.2  Second step:  assign anatomical and biophysical properties

Next we set the anatomical and biophysical properties of each section.  Each section has its own
segmentation, length, and diameter parameters, so it is necessary to indicate which section is being
referenced.  There are several ways to declare which is the currently accessed section, but here the most
convenient is to precede blocks of statements with the appropriate section name.

// specify anatomical and biophysical properties
soma {

nseg = 1 // compartmentalization parameter
L = 50 // [µm] length
diam = 50 // [µm] diameter
insert hh // standard Hodgkin-Huxley currents
gnabar_hh = 0.5*0.120 // max HH sodium conductance

}
axon {

nseg = 20
L = 1000
diam = 1
insert hh

}
for i=0,2 dendrite[i] {

nseg = 5
L = 200
diam(0:1) = 10:3 // dendritic diameter tapers along its length
insert pas // standard passive current
e_pas = -65 // [mv] equilibrium potential for passive current
g_pas = 0.001 // [siemens/cm 2] conductance for passive current

}

The fineness of the spatial grid is determined by the compartmentalization parameter nseg  (see
3.2  Spatial discretization . . . ).  Here the soma is lumped into a single compartment (nseg = 1 ), while
the axon and each of the dendrites are broken into several subcompartments (nseg = 20  and 5,
respectively).

In this example, we specify the geometry of each section by assigning values directly to section length
and diameter.  This creates a “stylized model.”  Alternatively, one can use the “3-D method,” in which
NEURON computes section length and diameter from a list of (x, y, z, diam) measurements (see
4.5  Specifying geometry:  stylized vs. 3-D).

Since the axon is a cylinder, the corresponding section has a fixed diameter along its entire length.  The
spherical soma is represented by a cylinder with the same surface area as the sphere.  The dimensions and
electrical properties of the soma are such that its membrane will be nearly isopotential, so the cylinder
approximation is not a significant source of error.  If chemical signals such as intracellular ion
concentrations were important in this model, it would be necessary to approximate not only the surface area
but also the volume of the soma.

Unlike the axon, the dendrites become progressively narrower with distance from the soma.
Furthermore, unlike the soma, they are too long to be lumped into a single compartment with constant
diameter.  The taper of the dendrites is accommodated by assigning a sequence of decreasing diameters to
their segments.  This is done through the use of “range variables,” which are discussed below (4.4  Range
variables).

In this model the soma and axon contain Hodgkin-Huxley (HH) sodium, potassium, and leak channels
(Hodgkin and Huxley 1952), while the dendrites have constant, linear (“passive”) ionic conductances .  The
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insert  statement assigns the biophysical mechanisms that govern electrical signals in each section.
Particular values are set for the density of sodium channels on the soma (gnabar_hh ) and for the ionic
conductance and equilibrium potential of the passive current in the dendrites (g_pas  and e_pas ).  More
information about membrane mechanisms is presented in a later section (4.6  Density mechanisms and
point processes).

4.2.3  Third step:  attach stimulating electrodes

This code emulates the use of an electrode to inject a stimulating current into the soma by placing a
current pulse stimulus in the middle of the soma section.  The stimulus starts at t  = 1 ms, lasts for 0.1 ms,
and has an amplitude of 60 nA.

objref stim
soma stim = new IClamp(0.5) // put it in middle of soma
stim.del = 1 // [ms] delay
stim.dur = 0.1 // [ms] duration
stim.amp = 60 // [nA] amplitude

The stimulating electrode is an example of a point process.  Point processes are discussed in more detail
below (4.6  Density mechanisms and point processes).

4.2.4  Fourth step:  control simulation time course

At this point all model parameters have been specified.  All that remains is to define the simulation
parameters, which govern the time course of the simulation, and write some code that executes the
simulation.

This is generally done in two procedures.  The first procedure initializes the membrane potential and
the states of the inserted mechanisms (channel states, ionic concentrations, extracellular potential next to
the membrane).  The second procedure repeatedly calls the built-in single step integration function
fadvance()  and saves, plots, or computes functions of the desired output variables at each step.  In this
procedure it is possible to change the values of model parameters during a run.

dt = 0.05 // [ms] integration time step
tstop = 5 // [ms]
finitialize(-65) // initialize membrane potential, state variables, and time

proc integrate() {
print t, soma.v(0.5) // show starting time

//    and initial somatic membrane potential
while (t < tstop) {

fadvance() // advance solution by dt
// function calls to save or plot results would go here
print t, soma.v(0.5) // show present time

//    and somatic membrane potential
// statements that change model parameters would go here

}
}
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The built-in function finitialize()  initializes time t  to 0, membrane potential v  to –65 mv
throughout the model, and the HH state variables m, n and h to their steady state values at v  = –65 mv.
Initialization can also be performed with a user-written routine if there are special requirements that
finitialize()  cannot accommodate, such as nonuniform membrane potential.

Both the integration time step dt  and the solution time t  are global variables.  For this example dt  =
50 µs.  The while(){}  statement repeatedly calls fadvance() , which integrates the model equations
over the interval dt  and increments t  by dt  on each call.  For this example, the time and somatic
membrane potential are displayed at each step.  This loop exits when t  ≥ tstop .

When this program is first processed by the NEURON interpreter, the model is set up and initiated but
the integrate()  procedure is not executed.  When the user enters an integrate()  statement in the
NEURON interpreter window, the simulation advances for 5 ms using 50 µs time steps.

4.3  Section variables

Three parameters apply to the section as a whole:  cytoplasmic resistivity Ra (Ω cm), the section length
L, and the compartmentalization parameter nseg .  The first two are “ordinary” in the sense that they do
not affect the structure of the equations that describe the model.  Note that the hoc  code specifies values
for L but not for Ra.  This is because each section in a model is likely to have a different length, whereas
the cytoplasm (and therefore Ra) is usually assumed to be uniform throughout the cell.  The default value
of Ra is 35.4 Ω cm, which is appropriate for invertebrate neurons.  Like L it can be assigned a new value
in any or all sections (e.g. ~200 Ω cm for mammalian neurons).

The user can change the compartmentalization parameter nseg  without having to modify any of the
statements that set anatomical or biophysical properties.  However, if parameters vary with position in a
section, care must be taken to ensure that the model incorporates the spatial detail inherent in the parameter
description.

4.4  Range variables

Like dendritic diameter in our example, most cellular properties are functions of the position parameter
x .  NEURON has special provisions for dealing with these properties, which are called “range variables.”
Other examples of range variables include the membrane potential v , and ionic conductance parameters
such as the maximum HH sodium conductance gnabar_hh  (siemens / cm2).

Range variables enable the user to separate property specification from segment number.  A range
variable is assigned a value in one of two ways.  The simplest and most common is as a constant.  For
example, the statement axon.diam = 10  asserts that the diameter of the axon is uniform over its entire
length.

The syntax for a property that changes along a length of a section is rangevar( xmin : xmax) =
e1: e2 .  The four italicized symbols are expressions with e1  and e2  being the values of the property at
xmin  and xmax, respectively.  The position expressions must meet the constraint 0 ≤ xmin  ≤ xmax ≤ 1.
Linear interpolation is used to assign the values of the property at the segment centers that lie in the
position range [xmin , xmax].  In this manner a continuously varying property can be approximated by a
piecewise linear function.  If the range variable is diameter, neither e1  nor e2  should be 0, or
corresponding axial resistance will be infinite.
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In our model neuron, the simple dendritic taper is specified by diam(0:1) = 10:3  and nseg =
5.  This results in five segments that have centers at x  = 0.1, 0.3, 0.5, 0.7 and 0.9 and diameters of 9.3,
7.9, 6.5, 5.1 and 3.7, respectively.

The value of a range variable at the center of a segment can appear in any expression using the syntax
rangevar(x)  in which 0 ≤ x  ≤ 1.  The value returned is the value at the center of the segment
containing x , NOT the linear interpolation of the values stored at the centers of adjacent segments.  If the
parentheses are omitted, the position defaults to a value of 0.5 (middle of the section).

A special form of the for  statement is available:  for (var) stmt .  For each value of the
normalized position parameter x  that defines the center of each segment in the selected section (along with
positions 0 and 1), this statement assigns var  that value and executes the stmt .  This hoc  code would
print the membrane potential as a function of physical position (in µm) along the axon:

axon for (x) print x*L, v(x)

4.5  Specifying geometry:  stylized vs. 3-D

As noted above (4.2.2  Second step . . . ), there are two ways to specify section geometry.  Our
example uses the stylized method, which simply assigns values to section length and diameter.  This is most
appropriate when cable length and diameter are authoritative and 3-D shape is irrelevant.

If the model is based on anatomical reconstruction data (quantitative morphometry), or if 3-D
visualization is paramount, it is best to use the 3-D method.  This approach keeps the anatomical data in a
list of (x, y, z, diam) “points.”  The first point is associated with the end of the section that is connected to
the parent (this is not necessarily the 0 end!) and the last point is associated with the opposite end.  There
must be at least two points per section, and they should be ordered in terms of monotonically increasing arc
length.  This pt3d list, which is the authoritative definition of the shape of the section, automatically
determines the length and diameter of the section.

When the pt3d list is non-empty, the shape model used for a section is a sequence of frusta.  The pt3d
points define the locations and diameters of the ends of these frusta.  The effective area, diameter, and
resistance of each segment are computed from this sequence of points by trapezoidal integration along the
segment length.  This takes into account the extra area introduced by diameter changes; even degenerate
cones of 0 length can be specified (i.e. two points with same coordinates but different diameters), which
add area but not length to the section.  No attempt is made to deal with the effects of centroid curvature on
surface area.  The number of 3-D points used to describe a shape has nothing to do with nseg  and does
not affect simulation speed.

4.6  Density mechanisms and point processes

The insert  statement assigns biophysical mechanisms, which govern electrical and (if present)
chemical signals, to a section.  Many sources of electrical and chemical signals are distributed over the
membrane of the cell.  These density mechanisms are described in terms of current per unit area and
conductance per unit area;  examples include voltage-gated ion channels such as the HH currents.

However, density mechanisms are not the most appropriate representation of all signal sources.
Synapses and electrodes are best described in terms of localized absolute current in nanoamperes and
conductance in microsiemens.  These are called point processes.
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An object syntax is used to manage the creation, insertion, attributes, and destruction of point
processes.  For example, a current clamp (electrode for injecting a current) is created by declaring an object
variable and assigning it a new instance of the IClamp object class (see 4.2.3  Third step:  attach
stimulating electrodes).  When a point process is no longer referenced by any object variable, the point
process is removed from the section and destroyed.  In our example, redeclaring stim  with the statement
objref stim  would destroy the pulse stimulus, since no other object variable is referencing it.

The location of a point process can be changed with no effect on its other attributes.  In our example
the statement dendrite[2] stim.loc(1)  would move the current stimulus to the distal end of the
third dendrite.

Many user-defined density mechanisms and point processes can be simultaneously present in each
compartment of a neuron.  One important difference between density mechanisms and point processes is
that any number of the same kind of point process can exist at the same location.

User-defined density mechanisms and point processes can be linked into NEURON using the model
description language NMODL.  This lets the user focus on specifying the equations for a channel or ionic
process without regard to its interactions with other mechanisms.  The NMODL translator then constructs
the appropriate C program which is compiled and becomes available for use in NEURON.  This program
properly and efficiently computes the total current of each ionic species used, as well as the effect of that
current on ionic concentration, reversal potential, and membrane potential.  An extensive discussion of
NMODL is beyond the scope of this article, but its major advantages can be listed succinctly.
1.  Interface details to NEURON are handled automatically — and there are a great many such details.

• NEURON needs to know that model states are range variables and which model parameters can be
assigned values and evaluated from the interpreter.

• Point Processes need to be accessible via the interpreter object syntax and density mechanisms need
to be added to a section when the “insert” statement is executed.

• If two or more channels use the same ion at the same place, the individual current contributions
need to be added together to calculate a total ionic current.

2.  Consistency of units is ensured.
3.  Mechanisms described by kinetic schemes are written with a syntax in which the reactions are clearly

apparent.  The translator provides tremendous leverage by generating a large block of C code that
calculates the analytic Jacobian and the state fluxes.

4.  There is often a great increase in clarity since statements are at the model level instead of the C
programming level and are independent of the numerical method.  For example, sets of differential and
nonlinear simultaneous equations are written using an expression syntax such as

x’ = f(x, y, t)
~ g(x, y) = h(x, y)

where the prime refers to the derivative with respect to time (multiple primes such as x’’  refer to
higher derivatives) and the tilde introduces an algebraic equation.  The algebraic portion of such
systems of equations is solved by Newton’s method, and a variety of methods are available for solving
the differential equations, such as Runge-Kutta or backward Euler.

5.  Function tables can be generated automatically for efficient computation of complicated expressions.
6.  Default initialization behavior of a channel can be specified.

4.7  Graphical interface

The user is not limited to operating within the traditional “code-based command-mode environment.”
Among its many extensions to hoc , NEURON includes functions for implementing a fully graphical,
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windowed interface.  Through this interface, and without having to write any code at all, the user can
effortlessly create and arrange displays of menus, parameter value editors, graphs of parameters and state
variables, and views of the model neuron.  Anatomical views, called “space plots,” can be explored,
revealing what mechanisms and point processes are present and where they are located.

The purpose of NEURON’s graphical interface is to promote a match between what the user thinks is
inside the computer, and what is actually there.  These visualization enhancements are a major aid to
maintaining conceptual control over the simulation because they provide immediate answers to questions
about what is being represented in the computer.

The interface has no provision for constructing neuronal topology, a conscious design choice based on
the strong likelihood that a graphical toolbox for building neuronal topologies would find little use.  Small
models with simple topology are so easily created in hoc  that a graphical topology editor is unnecessary.
More complex models are too cumbersome to deal with using a graphical editor.  It is best to express the
topological specifications of complex stereotyped models through algorithms, written in hoc , that generate
the topology automatically.  Biologically realistic models often involve hundreds or thousands of sections,
whose dimensions and interconnections are contained in large data tables generated by hours of painstaking
quantitative morphometry.  These tables are commonly read by hoc  procedures that in turn create and
connect the required sections without operator intervention.

The basic features of the graphical interface and how to use it to monitor and control simulations
are discussed elsewhere (Moore and Hines 1996).  However, several sophisticated analyis and simulation
tools that have special utility for nerve simulation are worthy of mention.
• The “Function Fitter” optimizes a parameterized mathematical expression to minimize the least squared

difference between the expression and data.
• The “Run Fitter” allows one to optimize several parameters of a complete neuron model to

experimental data. This is most useful in the context of voltage clamp data which is contaminated by
incomplete space clamp or models that cannot be expressed in closed form, such as kinetic schemes for
channel conductance.

• The “Electrotonic Workbench” plots small signal input and transfer impedance and voltage attenuation
as functions of space and frequency (Carnevale et al. 1996).  These plots include the neuromorphic
(Carnevale et al. 1995) and L vs. x (O'Boyle et al. 1996) renderings of the electrotonic transformation
(Brown et al. 1992; Tsai et al. 1994b; Zador et al. 1995).  By revealing the effectiveness of signal
transfer, the Workbench quickly provides insight into the “functional shape” of a neuron.

All interaction with these and other tools takes place in the graphical interface and no interpreter
programming is needed to use them.  However, they are constructed entirely within the interpreter and can
be modified when special needs require.

4.8  Object-oriented syntax

4.8.1  Neurons

It is often convenient to deal with groups of sections that are related.  Therefore NEURON provides a
data class called a SectionList that can be used to identify subsets of sections.  Section lists fit nicely with
the “regular expression” method of selecting sections, used in earlier implementations of NEURON, in that
1. the section list is easily constructed by using regular expressions to add and delete sections
2. after the list is constructed it is available for reuse
3. it is much more efficient to loop over the sections in a section list than to pick out the sections accepted

by a combination of regular expressions
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This code

objref alldend
alldend = new SectionList()
forsec "dend" alldend.append()
forsec alldend print secname()

forms a list of all the sections whose names contain the string “dend” and then iterates over the list, printing
the name of each section in it.  For the example program presented in this report, this would generate the
following output in the NEURON interpreter window

dendrite[0]
dendrite[1]
dendrite[2]

although in this very simple example it would clearly have been easy enough to loop over the array of
dendrites directly, e.g.

for i = 0,2 {
dendrite[i] print secname()

}

4.8.2  Networks

To help the user manage very large simulations, the interpreter syntax has been extended to facilitate
the construction of hierarchical objects.  This is illustrated by the following code fragment, which specifies
a pattern for a simple stylized neuron consisting of three dendrites connected to one end of a soma and an
axon connected to the other end.

begintemplate Cell1
public soma, dendrite, axon
create soma, dendrite[3], axon
proc init() {

for i=0,2 connect dendrite[i](0), soma(0)
connect axon(0), soma(1)
axon insert hh

}
endtemplate Cell1

Whenever a new instance of this pattern is created, the init()  procedure automatically connects the
soma, dendrite , and axon  sections together.  A complete pattern would also specify default
membrane properties as well as the number of segments for each section.

Names that can be referenced outside the pattern are listed in the public  statement.  In this case,
since init  is not in the list, the user could not re-initialize by calling the init()  procedure.  Public
names are referenced through a dot notation.

The particular benefit of using templates (“classes” in standard object oriented terminology) is the fact
that they can be employed to create any number of instances of a pattern.  For example,

objref cell[10][10]
for i=0,9 for j=0,9 cell[i][j]=new Cell1()
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creates an array of 100 objects of type Cell1  that can be referenced individually via the object variable
cell .  In this example, cell[4][5].axon.gnabar_hh(0.5)  is the value of the maximum HH
sodium conductance in the middle of the axon of cell[4][5] .

As this example implies, templates offer a natural syntax for the creation of networks.  However it is
entirely up to the user to logically organize the templates in such a way that they appropriately reflect the
structure of the problem.  Generally, any given structural organization can be viewed as a hierarchy of
container classes, such as cells, microcircuits, layers, or networks.  The important issue is how much effort
is required for the concrete network representation to support a range of logical views of the same abstract
network.  A logical view that organizes the cells differently may not be easy to compute if the network is
built as an elaborate hierarchy.  This kind of pressure tends to encourage relatively flat organizations that
make it easier to implement functions that search for specific information.  The bottom line is that network
simulation design remains an ad hoc process that requires careful programming judgement.

One very important class of logical views that are not generally organizable as a hierarchy are those of
synaptic organization.  In connecting cells with synapses, one is often driven to deal with general graphs,
which is to say, no structure at all.

In addition to the notions of classes and objects (a synapse is an object with a pre- and a postsynaptic
logical connection) the interpreter offers one other fundamental language feature that can be useful in
dealing with objects that are collections of other objects.  This is the notion of “iterators,” taken from the
Sather programming language (Murer et al. 1996).  This is a separation of the process of iteration from
that of “what is to be done for each item.”  If a programmer implements one or more iterators in a
collection class, the user of the class does not need to know how the class indexes its items.  Instead the
class will return each item in turn for execution in the context of the loop body.  This allows the user to
write

for layer1.synapses(syn, type) {
// statements that manipulate the object reference named "syn"
// (The iterator causes "syn" to refer, in turn,
// to each synapse of a certain type in the layer1 object)

}

without being aware of the possibly complicated process of picking out these synapses from the layer (that
is the responsibility of the author of the class of which layer1  is an instance).

It is to be sadly emphasized that these kinds of language features, though very useful, do not impose
any policy with regard to the design decisions users must make in building their networks.  Different
programmers express very different designs on the same language base, with the consequence that it is
more often than not infeasible to reconcile slightly different representations of even very similar concepts.

An example of a useful way to deal uniformly with the issue of synaptic connectivity is the policy
implemented in NEURON by Lytton (1996).  This implementation uses the normal NMODL methodology
to define a synaptic conductance model and enclose it within a framework that manages network
connectivity.

5.  SUMMARY

The recent striking expansion in the use of simulation tools in the field of neuroscience has been
encouraged by the rapid growth of quantitative observations that both stimulate and constrain the
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formulation of new hypotheses of neuronal function, and enabled by the availability of ever-increasing
computational power at low cost.  These factors have motivated the design and implementation of
NEURON, the goal of which is to provide a powerful and flexible environment for simulations of
individual neurons and networks of neurons.  NEURON has special features that accommodate the
complex geometry and nonlinearities of biologically realistic models, without interfering with its ability to
handle more speculative models that involve a high degree of abstraction.

As we note in this paper, one particularly advantageous feature is that the user can specify the physical
properties of a cell without regard for the strictly computational concern of how many compartments are
employed to represent each of the cable sections.  In a future publication we will examine how the NMODL
translator is used to define new membrane channels and calculate ionic concentration changes.  Another
will describe the Vector class.  In addition to providing very efficient implementations of frequently needed
operations on lists of numbers, the vector class offers a great deal of programming leverage, especially in
the management of network models.

NEURON source code, executables, and documents are available at http://neuron.duke.edu
and http://www.neuron.yale.edu , and by ftp from ftp.neuron.yale.edu .
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