

An Automatic Detection of Rugby Union Player

Motions Using Time Series Analysis

Nicole Catherine Donnelly

September 2017

Dissertation submitted in partial fulfilment for the degree of

Master of Science in Big Data

Computing Science and Mathematics

University of Stirling

- i -

Abstract

Advances in wearable technology have proven to be a huge benefit in the professional

sports industry. Athlete behaviour and rehabilitation can now be monitored through the data

produced by wearable sensors. The ability to classify a professional athlete’s movement will

reap benefits for the manager of any team when it comes to improving team strategy on

match day, creating a more refined training routine or assisting in rehabilitation. Global Rug-

by Network aims to have these services available to professional and amateur teams across

the globe to assist any coach.

Through the use of deep learning techniques, basic motions that an athlete would perform

were classified. This was done by using a Long Short-Term Memory recurrent neural net-

work. Signal Processing techniques were employed beforehand to improve the performance

of the classifier.

A successful result was achieved with final and best accuracy measuring reaching 80.4%.

- ii -

Attestation

I understand the nature of plagiarism, and I am aware of the University’s policy on this.

I certify that this dissertation reports original work by me during my University project ex-

cept for the following:

 The data collection and data labelling activities discussed in section 3 was carried out

by Adam Rennie, a University of Strathclyde student also completing a summer

placement with Global Rugby Network.

 The time slicing of the data discussed in section 3 was carried out and the sliding

windows function written by Kostas Chartomatzis, a data scientist at Global Rugby

Network.

 The code discussed in section 6 was largely taken from [73] and used in accordance

with the licence supplied.

 The code discussed in Section 5 was developed by me during a vacation placement

with the collaborating company.

Signature Date

- iii -

Acknowledgements

I would first like to express my thanks to my thesis supervisor Professor Carron Shank-

land of the University of Stirling. She consistently allowed this paper to be my own work,

but steered me in the right the direction whenever she felt I needed it. I must also express my

gratitude towards Prof. Shankland for helping me take steps to overcome my imposter phe-

nomenon, and for inspiring me in my pursuit of a career with her work in the technology

field as a female.

I would also like to acknowledge the time spent and contribution of Professor Amir

Hussain as the second reader of this thesis.

 I am also indebted to the Data Lab for paying my tuition fees and making it possible to

undertake the M.Sc. Big Data. Thank you to MBN Solutions for working in collaboration

with the Data Lab and assisting me in finding this placement opportunity.

Thanks are also due to Global Rugby Network for affording me with an opportunity for

learning and professional development. I consider myself very lucky for this opportunity and

being able to be a part of this very exciting research project. Special thanks to Stefan Raue

(CTO) for his continuous support and guidance and Kostas Chartomatzis (Data Scientist) for

the many tasks he assisted me with.

- iv -

Table of Contents

Abstract ... i

Attestation... ii

Acknowledgements ... iii

Table of Contents ... iv

List of Figures... vii

List of Tables ... viii

List of Abbreviations ... ix

1 Introduction ... 1

1.1 Background and Context ... 1

1.2 Scope and Objectives ... 2

1.3 Achievements .. 3

1.4 Overview of Dissertation ... 4

2 State-of-The-Art .. 5

2.1 The significance of technology in sport ... 5

2.2 Machine Learning .. 5

2.2.1 Supervised Learning ... 6

2.2.2 Unsupervised learning .. 6

2.3 Literature Review of Related Work ... 6

2.3.1 Motion Sensor Classification Techniques .. 7

2.3.2 Classifier Chosen for Implementation .. 9

2.4 Neural Network Architecture ... 10

2.4.1 From Feedforward to Recurrent Neural Networks ... 10

2.4.2 Long-Short Term Memory Network ... 12

2.5 Methods for evaluating a machine learning classifier ... 14

2.5.1 Confusion Matrix .. 14

2.5.2 Accuracy Rate .. 15

2.5.3 Precision and Recall ... 15

2.5.4 F1_Score ... 16

2.6 Programming Language and Toolkit Used .. 16

3 Design and Approach .. 19

3.1 Data set .. 19

3.2 Methodology .. 21

4 Data Acquisition .. 23

4.1 Player Monitoring Device.. 23

- v -

4.2 Placement of the Tracker ... 25

5 Signal Processing .. 26

5.1 Signal Pre-processing .. 26

5.1.1 Median Filter .. 28

5.1.2 Low-Pass Butterworth Filter .. 29

5.1.3 Accelerometer Signals .. 31

5.2 Time-Series Segmentation ... 32

5.3 Feature Engineering ... 33

5.3.1 Fourier Transform ... 33

5.3.2 Euclidean Magnitude .. 34

6 Neural Network Design ... 35

6.1 Cost Function ... 35

6.1.1 Learning Method .. 35

6.1.2 Training .. 36

6.2 One Hot Encoding ... 37

6.3 Hyperparameters .. 37

6.4 Data Split ... 38

7 Analysis & Results .. 40

7.1 Two Stacked LSTM Cells .. 40

7.1.1 Original Signals .. 40

7.1.2 No gravity signals ... 42

7.1.3 All signals ... 43

7.1.4 Euclidean Magnitude Data ... 43

7.1.5 Accelerometer Data only .. 44

7.1.6 Fourier Transform signals ... 45

7.2 Varying Window Size .. 45

7.3 Analysis of the Optimal Configuration .. 46

7.3.1 Analysis of the sessions training progress .. 51

8 Conclusion ... 53

8.1 Summary .. 53

8.2 Critical Evaluation ... 54

8.3 Recommendation of Database ... 56

References .. 57

Appendix A ... 63

Appendix B ... 64

Distribution of the Training and Test Data ... 64

Raw accelerometer X signal vs the final filtered signal of participant one’s top device 64

- vi -

Appendix C ... 65

Python code for the Butterworth Filters ... 65

Python code for the LSTM algorithm ... 66

- vii -

List of Figures

Figure 1. Architecture of a feedforward neural network ... 11

Figure 2. Architecture of a recurrent neural network .. 11

Figure 3. Input and Output architectures of a RNN, [36] ... 12

Figure 4. The architecture of an LSTM cell ... 13

Figure 5. CRISP-DM Methodology ... 21

Figure 6. The Development Process ... 22

Figure 7. The GRN device showing the directions and measurements of the three axes 23

Figure 8. Snapshot of the raw accelerometer data from participant one’s csv file 24

Figure 9. A mock-up of the GPS vest used by GRN to hold the device 25

Figure 10. Filters applied at pre-processing stage of project .. 26

Figure 11. Raw Accelerometer X Signal for participant one showing the difference between

the signal for the top and bottom device ... 27

Figure 12. The accelerometer X axis signals showing the raw signal and the median filtered

signal for participant one’s top device .. 28

Figure 13. The accelerometer X axis signals showing the median filtered signal and the 3
rd

order low-pass Butterworth filtered signal for participant one’s top device 30

Figure 14. The noise and outliers removed from participant one’s top device, accelerometer

X signal ... 31

Figure 15. Python code for the function implemented to separate the gravity and body

components of the accelerometer signals ... 32

Figure 16. A representation of the data after applying the sliding windows algorithm 33

Figure 17. The results of the Adam Optimiser compared to classical techniques on training a

multilayer neural network, from [65] ... 36

Figure 18. Data Split ... 39

Figure 19. The confusion matrix for the optimal result obtained during training 47

Figure 20. Accelerometer x, y and z signals produced for the Sprint and Walk classes 47

Figure 21. Accelerometer x, y and z signals produced for the jog class and cruise class 48

Figure 22. Accelerometer x, y and z signals produced for the Vertical Jump, Stand and

Horizontal Jump classes ... 49

Figure 23. The confusion matrix for the optimal result obtained during training with the..... 50

Figure 24. The progress of trainings session for the optimal configuration of the classifier .. 51

Figure 25. The progress of trainings session for the poorest configuration of the classifier

that was discovered ... 52

- viii -

 List of Tables

Table 1. Classification models and respective accuracy rate detailed in [20] 7

Table 2. List of Motions to be classified including how long they were performed for

individually and in total for the whole routine. .. 20

Table 3. List of Activities and how many times this was repeated in one standing as well as

how long this lasted, and also the number of times the activity was repeated................ 20

Table 4. Time and Frequency domain features ... 33

Table 5. One hot encoding for four unique integers ... 37

Table 6. The descriptions of each of the feature sets tested .. 40

Table 7. Results of fine tuning of the number of hidden layers on the first feature set with the

learning rate kept equal to 0.0025 ... 41

Table 8. Results of fine tuning of the learning rate on the first feature set with hidden number

of layers kept equal to 33 .. 41

Table 9. Results of fine tuning the number of hidden layers on the second feature set 42

Table 10. Results of fine tuning the number of hidden layers on the third feature set 43

Table 11. Results of fine tuning the number of hidden layers of the fourth feature set 44

Table 12. Results of fine tuning the number of hidden layers on the fifth feature set 44

Table 13. A highlight of the results of the FFT data ... 45

Table 14. Results of different feature sets and hidden layers with data window size = 128 ... 46

- ix -

List of Abbreviations

Abbreviation Explanation

ANN Artificial Neural Network

BN Bayesian Networks

CNN Convolutional Neural Network

CRISP-DM Cross Industry Standard Process for Data Mining

CSV Comma Separated Value

DAG Directed Acyclic Graph

DFT Discrete Fourier Transform

DSP Digital Signal Processing

EC2 Amazon Elastic Compute Cloud

FFNN Feedforward Neural Network

FFT Fast Fourier Transform

FN False Negative

FP False Positive

GPS Global Positioning System

GRN Global Rugby Network

HAR Human Activity Recognition

HMM Hidden Markov Models

IMU Inertial Measurement Unit

LDA Linear Discriminant Analysis

LSTM Long Short-Term Memory

MEMS Micro-Electro-Mechanical Systems

PCA Principal Component Analysis

QDA Quadratic Discriminant Analysis

RNN Recurrent Neural Network

SVM Support Vector Machine

TN True Negative

TP True Positive

(1) G Unit of Acceleration, equal to the standard value of

the Earth’s gravity = 9.8 ms
-2

°/s Degrees per second

- 1 -

1 Introduction

“Winning in team sports has always been a function of superior ownership, front offices

and coaching.” [1] Moneyball: The Art of Winning and Unfair Game, was a book released in

2003 documenting Billy Beane, the manager of the Oakland Athletics baseball team, and his

use of sabermetrics. This number one best seller chronicles his discovery of the secret to suc-

cess in what can be described as the imperfect science of baseball player evaluation. [2]

Since the release of this book (that was later made into a box office hit movie) the populari-

ty of data-driven decision making in the sports industry has increased exponentially; spreading

to all professional team sports. Player tracking technologies have been described as a “game

changer” and the “future of sport”; they are set to completely change the field as technology

does for any industry.[3][4] With the Sporting Industry being a £20bn a year industry in the

UK alone, [5] player performance, and using technology to monitor it, has never been of more

interest.

1.1 Background and Context

As the market for wearable technology continues to explode and venture into new niches, it

naturally progressed into professional sports. These wearable devices produce a “tsunami of

data”, the implications of which are beginning to be used in data science applications. [6]

This mountain of data can be overwhelming to a manager or coach of a professional team.

Many different applications can be constructed using data such as; activity recognition, con-

cussion detection, real-time statistics on player’s speed, acceleration and heart-rate. Data

analytics can be consulted to influence coaches’ decisions yielding better results on the field.

Motion Sensor Classification is an important and relevant technology in persuasive compu-

ting as it can be applied to many real-life, human centric problems such as healthcare and

rehabilitation. The substantially large datasets produced can be manipulated to develop a clas-

sifier, which allows for data-driven decisions to be made. Nowadays, technology for

performance enhancement is a necessity for any competitive sport.

The objective of this classifier was conceived by Global Rugby Network (GRN); a soft-

ware-driven start-up company based in Glasgow. GRN’s core product is free team and

performance management software. Amateur teams and emerging rugby nations have great

difficulty in accessing professional team management, coaching and performance software.

GRN is an innovative solution to this problem, allowing teams, coaches and unions to grow in

rugby and become more successful. [7]

- 2 -

The launch of GRN's wearable performance tracking device has enabled the company to

set out a road-map for the development of performance analytics. The company’s initial focus

will be placed upon descriptive statistics, such as speed, performance zones, impact, and posi-

tioning of individual players; all obtained through the data measured by the device.

1.2 Scope and Objectives

An exploratory investigation was carried out in the application of Deep Learning tech-

niques on human data to produce a classification system. This research activity is geared

towards using the substantial and increasing volume of player performance data to train and

deploy a machine learning model. The model will aim to achieve the capability of classifying

basic human motions. The movements selected for classification will commonly appear in a

rugby match or training session. This model (and results of later work) is aimed towards ad-

vanced analysis, such as in-detail player performance analysis, group strategy analysis, and

injury prevention through player training/game load monitoring.

Within this framework, this project work was carried out as an exploratory research into

predictive analytics. The scope of the work was defined as follows:

 explore raw sensor data from existing trials (London/Paris)

 apply signal processing techniques to detect outliers/noise within the data, and interpo-

late with suitable values

 contribute to the design of a controlled data capturing process

 implement a prototypical data processing pipeline

 research/identify a suitable machine learning technique

 implement proposed machine learning model

 obtain optimal configuration of implemented model based on predictive power

The intention of this research is to use the results as a foundation for future research into

group motion/activity detection, injury prevention, and automatic video annotations. The work

undertaken and final results are vital for improving the GRN software and hardware marketed

to new and existing customers. After a sufficient amount of work with good results has been

undertaken in this application area, the output will be a tailored application capable of classify-

ing basic and more complex movements that could generate commercial interest and drive the

overall sales and business development of GRN.

http://www.cs.stir.ac.uk/~kjt/research/conformed.html

- 3 -

1.3 Achievements

Developing an algorithm that has the ability to detect context from noisy and ambiguous

sensor data is the key difficulty in creating any robust computer application. Handling the sub-

sequently large datasets produced from these sensors adds to the level of difficulty. Research

of the advanced signal processing techniques and the implementation to improve the perfor-

mance of the classifier has been an extremely challenging task. A steep learning curve had to

be overcome in a short time frame, which included being able to visualise the signal and un-

derstand the meaning of its different aspects. Ensuring that accurate, high quality data would

be implemented for training the classifier fell into this branch.

The data involved in this research and GRN’s existing data is stored in csv files and not

stored in a database as of yet. Being able to manage the data without a database was difficult at

times and to overcome this challenge the Pandas library available for Python was used. It ena-

bled reading of multiple csv files in an efficient manner. To achieve this, a basic knowledge of

Python programming language had to be improved very quickly which included learning the

data container and merging features of the Pandas library.

This research has met all objectives presented above, and the accompanying documentation

provides a clear and concise thought process in order to understand and replicate this work.

This will allow the company to make modifications to different steps in order to improve the

performance. However, the results obtained have shown this solution to the motion sensor

classification problem is a very promising foundation for future work.

This implementation can be extended to consider future data sources, different signal pro-

cessing steps or alternatively a different algorithm for classifying movements.

- 4 -

1.4 Overview of Dissertation

This report is organised into chapters charting the development process of the Motion Sen-

sor Classifier.

Section 2 – State of the Art provides an overview to the research carried out in order to fulfil

the brief outlined. A brief passage about the significance and relevance of technology within

sports will introduce this section. The background and current research available in motion

sensor classification field will be summarised to provide sufficient understanding. The classi-

fication methods unearthed within this research will be discussed, with a particular focus upon

the techniques used within the implementation of the classifier. Lastly, the Programming lan-

guage and toolkit used will be presented.

Section 3 – Design and Approach presents an outline of the routine of activities used to collect

the training data. A brief overview of all the stages throughout the project will be provided in

the Methodology.

Section 4 – Data Acquisition presents detail on the player monitoring device used to capture

the data which will be presented along with a description of the data it generates.

Section 5 – Signal Processing exhibits the pre-processing stage of the project. The various

techniques used for this will be discussed in addition to others that have been researched. The

reasoning behind the chosen techniques is discussed. The data cleaning (pre-processing), data

segmentation and feature extraction steps are covered in this section.

Section 6 – Neural Network Design will discuss the various choices made for the LSTM clas-

sification algorithm in addition to the final step taken to prepare the data for the classifier.

Section 7 – Analysis & Results presents a clear summary of the different results achieved by

varying different hyperparameters and features before discussing the analysis of the optimal

result achieved by the model.

Section 8 – Critical Evaluation will discuss the limitations and challenges incurred in the pro-

ject and will discuss future work and recommendations for data collection, a database and

algorithm improvements that could be investigated.

Section 9 – Conclusion will summarise what was achieved in the project and re-iterate the

configurations of the best result achieved.

- 5 -

2 State-of-The-Art

“The world’s most valuable resource is no longer oil, but data.” [8] The role of data in

many industries has increased exponentially in the recent years, including professional sports.

Machine learning contributes to data-driven decision making in sports and allows numerous

patterns to be detected which the human eye alone cannot achieve. [9]

2.1 The significance of technology in sport

Human activity recognition and classifying motions is an emerging field of research,

stemming from larger fields of ubiquitous computing. It is becoming a popular area of interest

in deep learning through the use of inertial movement sensors. It has many applications which

range from healthcare and rehabilitation to smart assistive technology; [10] all of which can be

easily integrated to use in professional sports. The benefits of tracking how far and how fast an

individual runs pay off quickly for a coach allowing them to focus more on developing the

team. From analysed live data, a coach can instantly see if players are adhering to restrictions

given on effort level in training; for example, training at only 50% effort level the day before a

game to preserve strength. [11] In combination with other metrics such as hormone levels, a

coach can monitor the effect jet lag has on a player’s ability to perform; which for a sport like

rugby (that travels to multiple locations during a season) could be highly useful. [12] Player

tracking can be used to monitor fatigue levels during a game allowing coaches to make in-

formed data-driven decisions about which players to send off and draft in. The data can

determine if continuing to play is within the player’s range of capabilities and strength or the

risk of injury is increased. [13] The applications of a well-constructed motion sensor classifier

can be extended to not only sports, but also used in military training applications and in health

and education.

The combination of raw talent of an individual player and scientific analysis from assistive

technology make for a more competitive and compelling sport.

2.2 Machine Learning

Pattern recognition is the theory that computers have the ability to learn specific tasks

without being explicitly programmed for them. Researches in the field of Artificial Intelli-

gence challenged this to see if computers could learn from data. This theory was intriguing as

these models should have the functionality of independently adapting to new data from the

learned data whilst producing reliable results. This technique (that is growing in popularity)

has become known as Machine Learning. [14]

- 6 -

Rich data sources are now readily available to build problem solving models which can be

integrated into working software to support products in high demand across industries. [15] It

is important to consider the data available when selecting a machine learning model to use;

moreover, the first decision is if supervised or unsupervised learning techniques will be ap-

plied.

2.2.1 Supervised Learning

Supervised Learning is the most commonly used method in machine learning applications.

It entails the data consisting of a number of input variables and a single output variable for that

instance of data; i.e., labelled data. This means the correct outcome for the variable is known

and the role of the algorithm is to learn and iteratively make correct predictions on an instance

of data. Supervised learning problems can be further grouped into classification and regres-

sion. Classification is implemented when a variable has a nominal output and the aim of the

algorithm is to correctly predict a class. Regression tasks are used on numerical variables to

achieve the ability of making a prediction or forecast. [16]

2.2.2 Unsupervised learning

Unsupervised is the exact inverse, it involves only input data with no subsequent output

variables. An algorithm needs to discover and present the underlying structure of the data.

There is no correct answer for the model to achieve and the inherent structure of the data is

discovered without a “teacher”, hence the name unsupervised. There is fewer use cases of un-

supervised learning due to the level of complexity required to implement. [17] The two main

branches of unsupervised learning are clustering and association. Clustering involves discover-

ing groupings in the data meanwhile association is a rule based technique that uncovers a rule

describing large portions of the data. [16]

When there is a mixture of labelled and unlabelled data a balance between supervised and

unsupervised algorithms can be applied; this method is conversely known as semi-supervised

learning. The motivation for this is that high quality labelled data can often be costly to gener-

ate meanwhile unlabelled data tends not to be. [18]

2.3 Literature Review of Related Work

Traditionally, wearable sensors have been used for motion capture and human activity

recognition (HAR). This work has often involved a subject being confined to a laboratory or a

similar environment with motion capture equipment, which is both restrictive and invasive.

This type of research has widely investigated HAR based on vision data and 3D data. In the

past decade or so, the interest has been placed upon Inertial Measurement Units (IMUs); a

- 7 -

wearable device that provides non-intrusive monitoring. Technical advances have reduced

prices of sensors capable of capturing the input data necessary for this type of classification.

The OPPORTUNITY challenge was run in 2011 with a view to recognising activities in a

home environment. It is a well-known application within the HAR technology field. The high-

est accuracy rate achieved was 88% upon the recognition of 17 gestures. [19] The conclusion

was the performance of activity recognition will need to be improved upon before addressing

more complex problems such as activity diarisation.

An extensive survey conducted by Avci et al. documents prior work on HAR using inertial

sensors and an outline of pre-processing, data segmentation, feature extraction approaches,

dimensionality reduction and classification techniques. Additionally, the survey illustrates the

range of different applications such as healthcare, sports and wellbeing. It was observed that

prior work in these areas typically involves gathering sensor information and post-processing

as a separate offline step. Therefore, it concludes that performing activity recognition in real-

time “remains an open research question”. [20] A dataset of reduced or selected features is

used as inputs for the classification techniques detailed in the survey, the results of which are

shown below in Table 1. The classification methods displayed are expanded upon with related

work in the motion sensor classification and human activity recognition fields of research.

Classification Model Accuracy Rate (%)

Naïve Bayes 83.97

Decision Tables 46.75

Decision Trees 90.8

Nearest Neighbour 91

Support Vector Machine 87.36

Hidden Markov Models 90

Gaussian Mixture Models 88.76

Artificial Neural Networks 95

Table 1. Classification models and respective accuracy rate detailed in [20]

2.3.1 Motion Sensor Classification Techniques

Bayesian-based approaches for classifying include Bayesian Networks (BN) and Naïve

Bayes both of which are simple, probabilistic classifiers based upon applying Bayes theorem.

Naïve Bayes does so with strong, naïve independence assumptions between features whilst a

Bayesian (belief) Network is a graphical based model that represents a set of random variables

and their conditional dependencies via a Directed Acyclic Graph (DAG). There has been pre-

vious research using Bayesian methods in motion capture/HAR field of interest such as the

work detailed in [21]. This involved mounting a MEMS IMU onto the belt of a participant to

- 8 -

gather data illustrating 7 activities. Bayesian Techniques are compared for this real-time classi-

fication; Bayesian Networks (BN), Inference in Static BN, Dynamic BN and Inference in

Dynamic BN with a grid based filter. In [22], decision trees, Naïve Bayes and Naïve Bayes

with Principal Component Analysis (PCA) in combination with 19 features extracted from

time, frequency and spatial domains were used to classify five activities (walking, running,

cycling, driving and sports). This work achieved a 72.3% accuracy measure.

A Decision Tree is a decision support tool that uses a tree like structure to model different

outcomes. Random Forrest is an ensemble learning method for classification, which extends

from decision trees. It operates by constructing a multitude of decision trees and the output

class is the mode of the classes. Research conducted by S. A. Rawashdeh et al. proposed using

motion capture for preventing shoulder injuries in overhead sports. A decision tree approach

was adapted for building a classifier, with 86% accuracy being achieved. [23] In [24], a low-

pass filter was used to remove outliers and the Euclidean magnitude used to combine signals

into a single magnitude as pre-processing and feature work. A Random Forrest classifier is

implemented to reach a performance of 83.49%.

The very extensive study conducted by C. Y. Yong et al. [25] also involves a sensor at-

tached to the upper forearm to classify walking, jogging and throwing. PCA-K-means, Linear

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Naïve Bayes Gaussi-

an Kernel, Naïve Bayes Kernel Density and Decision Tree are the classification algorithms

investigated. The accuracy measures achieved were 94.67%, 64.33%, 77.0%, 75.0%, 86.0%,

94.67% respectively. The PCA-K-Means classifier was presented as the most successful by

classifying all three motions with the shortest period, highest accuracy and lowest errors; ap-

propriate for processing large sets of data.

RecoFit is a wearable sensor that measures tri-axial accelerometer and gyroscope data from

the upper forearm. The data is smoothed using a low-pass Butterworth filter and sliding win-

dows to extract statistical features. A multi-class Support Vector Machine (SVM) is used to

achieve the classifications. [26]

Hidden Markov Models (HMM) are a statistical model based on the Markov chain process;

the system being modelled is assumed to be a Markov process with unobserved (hidden)

states. [27] describes the use of HMM as multi-class classifier. A moving average filter and

sliding windows have been used as pre-processing steps to improve the accuracy rate, with the

model achieving up to 93.39%. In [28] the classification algorithm is a hybrid mixture be-

tween Gaussian mixture and hidden Markov models. A sliding window and FFT have been

applied to the data, succeeding in a good classification result. However, overfitting was a con-

cern expressed by the authors of the paper.

- 9 -

There are various neural networks that can be implemented for classifying motions or ac-

tivities. The work studied by L. Bao et al. [29] involved a multilayer feedforward neural

network (FFNN) to classify 8 different activities. It achieved an impressive accuracy measure

of 95% correctly classified. Similarly, the research carried out in [30] achieves a very success-

ful 94% accuracy rate. It documents a continuous time recurrent neural network (which is a

more general predictor), implemented on an isolated dataset to deal with the classification of 8

gestures. In [31], a forearm band, PUSH (similar to RecoFit), is used to obtain exercise motion

data. An approach for classifying large scale wearable sensor data of exercise movements

achieving an accuracy rate of 92.14% is demonstrated using a Convolutional Neural Network

(CNN). In [32], five activities (running, walking, lying, standing and sitting) were classified

using a multi-layer perceptron, achieving 91.1% accuracy. In this work 13 statistical features

from time and frequency domains were utilised. Future work intends to investigate classifica-

tion without segmentation by introducing deep CNN, or alternatively using LSTM (Long

Short-Term Memory) by combining neural networks for time-series data. The benefits of deep

learning approaches to classifying human motion based on CNN and LSTM architecture ap-

proaches are presented in [33]. The findings from this analysis support the hypothesis that an

advantage of using LSTM-based models is the ability to learn the temporal feature dynamics,

which CNNs are not fully capable of modelling. Two well-known publicly available datasets

with the HAR field, OPPORTUNITY and Skoda, are used for implementation. The LSTM ar-

chitecture approach was able to achieve an F1-score of 0.958 (see 2.5.4 below).

2.3.2 Classifier Chosen for Implementation

Human Motions are comprised of complex sequences of motor movements which will of-

ten have large variability between movements. This is a very challenging problem for any

classifier to overcome. Conventionally, human activity related tasks have been solved by using

heuristic processes to obtain engineered features which have always been a lengthy process.

This approach was dominant in any field of recognition until deep learning presented im-

proved performance results, better than the carefully crafted, complex and time-consuming

feature detectors.

Achieving a solution to this problem is motivated by two requirements: attaining successful

recognition accuracy and decreasing reliance on engineered features to address increasingly

complex recognition problems. Feature engineering is a time consuming yet fundamental part

in the workflow of a machine learning project. Deep learning techniques allow raw data to be

used, as features will be automatically discovered and created by a neural network during

training. However, this does not mean that data pre-processing and feature engineering meth-

ods are obsolete; there is simply not as much time-consuming work involved.

- 10 -

A recurrent neural network (RNN) is well-suited for handling sequence dependent (time-

series) data. It is designed to recognise patterns in sequences of data, such as recognising a

motion from a signal. Other applications of RNN include recognising text, handwriting or

spoken word; all recognising a pattern in a given sequence. RNN in a network enables the

higher level temporal features to be learned effectively. From the related work discussed

above, immediately an LSTM network appeared to be favourable – partly due to the high ac-

curacy measures detailed. The suitability of the RNN meant that the LSTM network would be

used for the motion sensor classifier. It has the ability to learn from experience in order to pro-

cess, predict and classify time-series. Sequences containing patterns of unknown length are

suited to the LSTM due to the ability of the network’s long term memory. It has been proven

that very large architectures can be successfully trained using LSTM.

The reasoning above and the success shown in previous research demonstrates that an

LSTM is extremely suitable for the motion sensor classifier at GRN. The architecture of this

Neural Network is discussed below.

2.4 Neural Network Architecture

A neural network can be defined as a “beautifully biologically-inspired programming para-

digm which enables a computer to learn from observational data.” [34] As the name suggests,

neural networks are inspired by how the biological nervous system handles information. It is

modelled after the brain due to these two key aspects:

1. The network acquires knowledge through a learning process

2. Synaptic weights are interconnected strengths in network that store knowledge

Neural networks are powerful for pattern classification and are at the base of deep learning

techniques. The fundamentals of recurrent neural networks are outlined by beginning with the

more well-known feedforward neural network to provide a clearer explanation. In particular,

those built on LSTM units.

2.4.1 From Feedforward to Recurrent Neural Networks

An artificial feedforward neural network was the first and simplest type of neural network.

It is a computational model that processes information through a series of interconnected com-

putational nodes (synaptic weights). The synaptic weights are grouped into layers and

communicate directly with each other by using weighted connections. The model is loosely

defined by nodes and connections. The information is fed into the network at the input layer

and, using supervised learning, is transformed into an output (the predicted class). The hidden

- 11 -

layers are where the network is trained until it minimises the error it makes when predicting

classes. Figure 1 demonstrates the structure of a basic FFNN with three hidden layers.

Figure 1. Architecture of a feedforward neural network

A FFNN that is extended to include feedback connections is known as a recurrent neural

network. Both of these networks are named after the way they channel information, by per-

forming a series of mathematical operations at the nodes of the network. One feeds

information straight through (feedforward), whilst the other cycles it through a loop (recur-

rent). RNN is very adaptable for sequence data, which includes time-series predictions. [35]

The RNN has two sources of inputs; the current input instance and what it has recently ob-

served from past examples (the outcome at time step t-1 will affect the decision at time step t).

In a FFNN the hidden layers do not interconnect with nodes in the same layer, only the nodes

in the subsequent layer. Figure 2 below highlights the difference in structure between the

FFNN and RNN with the same number of hidden layers.

Figure 2. Architecture of a recurrent neural network

Typically, a FFNN remembers what it learned in training only and has no inherent notion of

time; it is a major short coming of traditional neural networks. RNNs are able to overcome this

- 12 -

issue by introducing loops which allow information to be passed from one stage to the next;

thus, allowing important information to persist in the network. The chain like structure of this

network immediately relates it to a sequence making it a natural and powerful architecture to

implement on sequence data. RNNs are much better suited to dealing with sequences, context

modelling and time dependencies due to the memory they possess.

FFNN are at times too constrained, they are only able to accept a fixed size vector as input

and produce a fixed size vector as output. A RNN has the ability to operate over a sequence of

vectors. It takes many input vectors and is able to process them before returning other output

vectors; Figure 3 below loosely describes this. The architecture of the LSTM used for this re-

search is a “many to one” style as there are a number of feature vectors per time step being fed

into the network as a time-series. [36]

Figure 3. Input and Output architectures of a RNN, [36]

2.4.2 Long-Short Term Memory Network

Long short-term memory (LSTM) is a RNN architecture published in 1997 by Sepp

Hochreiter and Jürgen Schmidhuber. LSTM units are also referred to as LSTM memory cells

due to interpretation of gating units’ likeness to computer memory.

RNN is a very powerful sequence model but it has been stated that it is difficult to train,

whereas, the design and architecture of the LSTM overcomes this problem. The vanishing

gradient problem found in the training of ANNs is a difficulty that occurs for gradient based

learning methods and backpropagation. Neural networks weights are updated based upon the

error function and the current weight found within a training iteration. [37]

Figure 4 below shows the architecture in an LSTM cell. The line that runs through the top

of the cell is known as the cell state (Ct); running through the entire chain of LSTM cells. This

is how information is passed between cells in the network.

- 13 -

Figure 4. The architecture of an LSTM cell

Hochreiter and Schmidhuber defined this architecture to be constructed to “allow constant

error flow through special, self-connected units”; the introduction of gated units allowed for

this to be possible. Multiplicative input and output gates protect the memory contents from

perturbation. The input gate shields alteration from irrelevant units and likewise the output

gate unit protects other units from perturbations made by current stored irrelevant memory

contents. [38]

The first decision made by the network is what information will be discarded from the

cell’s state; this is done using the “forget” gate layer (𝑓𝑡) which is a sigmoid layer (σ). The cur-

rent input (𝑋𝑡) and previous output (𝐻𝑡−1) are taken into consideration for this decision. The

objective of the forget gate is to produce a binary decision for each number in the cell state; 1

denotes keeping this information and 0 votes to discard.

The information stored within that cell is determined in two parts. An activation function

(the next sigmoid layer, σ) is applied as the input gate (𝑖𝑡) where the result is sent to a multi-

plicative operator. The inner activation value of the previous time step is also passed through a

multiplicative operator and summed with the recurrent self-connection. The hyperbolic tan

layer creates a vector of candidate solutions (�̂�𝑡) that could be added to the cell’s state.

The cell’s state needs to be updated from 𝐶𝑡−1 to 𝐶𝑡 using all of the information obtained

by these previous steps. The mathematical representation of this decision is:

- 14 -

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̂�𝑡

(2.1)

The result of the cell state is pushed through a hyperbolic tan layer which is “squashed” by

a logistic sigmoid function. This sigmoid layer will decide what parts of the cell’s state is the

output (𝐻𝑡). The various multiplication factors that regulate the scaling operations are con-

trolled by the gated units (input, forget and output gates). [39] [40]

In conclusion, the LSTM is an extremely powerful implementation of a neural network that

solves the vanishing gradient problem and if used correctly has the ability to produce highly

accurate results on sequence based data.

2.5 Methods for evaluating a machine learning classifier

The purpose of training a classifier is to test on unseen samples of data, otherwise the mod-

el could easily memorise its inputs. This means that it would erroneously produce high

classification scores, the classifier would not have learned to generalise correctly to cope with

new data. This section will discuss some of the essential techniques for evaluating a machine

learning classifier such as; a confusion matrix, accuracy rate, precision, recall and F1 score.

The confusion matrix is presented first as the other evaluation methods stem from its descrip-

tion.

2.5.1 Confusion Matrix

A confusion matrix is employed to present the outcomes that were obtained by the classifi-

er. This visualisation technique can be used in binary or multi-class classification. It will

display the percentage of data the model has correctly classified versus the percentage mis-

classified showing a breakdown for each specific class. The columns represent the class that

the model has predicted, whilst the rows represent the true class of the model. The diagonal of

the matrix will represent the percentage of instances where the classifier has agreed with the

truth of the dataset. A value of zero indicates no observations being assigned to this class, this

is the aim for the off-diagonal elements.

The diagram below represents the structure of a 2 x 2 confusion matrix. The principles out-

lined here will extend to multi-class n x n confusion matrix, where n represents the number of

classes.

Predicted

Class 1 Class 2

True
Class 1 TP FN

Class 2 FP TN

- 15 -

The correct entries are the True Positive (TP) and True Negative (TN), and the correspond-

ing False Positive (FP) and False Negative (FN) entries have not been classified correctly.

2.5.2 Accuracy Rate

The overall correctness of a classifier is judged by the accuracy rate. The equation present-

ed below represents the accuracy rate and is deduced from the confusion matrix above.

FNTNFPTP

TNTP
Rate_Accuracy

 (2.2)

It is the percentage of correctly classified instances made by the classification model and is

the simplest accuracy measure available for gauging the performance of a classifier. A higher

accuracy rate obviously implies a better classification. It is good practice to examine the fre-

quencies of the specific category labels in the test data, as a label could have 20 occurrences. If

18 of them are correctly classified then the 90% accuracy rate is not particularly remarkable.

However, if the label has 100 instances and correctly classifies 90; this accuracy is a much

better outcome.

Whilst the accuracy rate does provide insight into the percentage that is correctly classified,

it is not enough to assess the performance of the model. For example, if there are 100 data

samples to be classified and it correctly predicts 80 of them, then this would give an accuracy

rate of 80%. At first this may seem like a good accuracy rate. However, if one class was walk-

ing and had 80 occurrences and the second class was jogging which had 20; the classifier

could in theory have predicted the entire walking sample correctly and jogging incorrectly.

Therefore, the accuracy rate of 80% would not be particularly good. This highlights the im-

portance of examining a confusion matrix to improve the accuracy of a model.

2.5.3 Precision and Recall

As previously stated, accuracy is not the only metric required for evaluating performance.

Precision and Recall are two metrics which provide greater insight into the true effectiveness

of a classifier. They catalogue two different types of error that can be made during motion sen-

sor classification.

Precision is the exactness of a classifier. It is the fraction of a correctly identified motion

and the sum of identified instances for that motion. A higher precision value will denote fewer

false positives within classifications, whilst a lower precision suggests more false positives.

The leftmost column of the confusion matrix gives the values for precision. The precision is

evidently the number of correctly classified TP within that predicted class.

- 16 -

FPTP

TP
ecisionPr

 (2.3)

Recall is the sensitivity of the classifier; it is the ratio between the number of correctly clas-

sified observations and the number of true observations in the data. Higher recall suggests

fewer false negatives and conversely a lower recall more false negatives. In the confusion ma-

trix above, this is given by the top row. The recall is simply the ability of the classifier to

identify all the positive samples.

FNTP

TP
callRe

 (2.4)

As the sample space grows it becomes increasingly difficult to increase the precision, espe-

cially when recall improves.

2.5.4 F1_Score

The last accuracy measure that will be used is the F1 Score (also known as F-measure). It is

a measure of a test’s accuracy. It can be considered as the weighted harmonic mean of Preci-

sion and Recall and is calculated as follows:

callReecisionPr*

callRe*ecisionPr
*11F

 (2.5)

Recall is weighed more than precision by a factor of β, if β=1 then recall and precision are

considered equally important. When the value of β is less than one, then intuitively precision

will be weighted higher than recall. The F1 score reaches its best value at one and worst at ze-

ro.

2.6 Programming Language and Toolkit Used

There are a number of programming languages and associated technologies that are suita-

ble to implement for the motion sensor classifier. MATLAB, Python and R were investigated

to find the most appropriate choice. Python was the programming language chosen for devel-

oping and testing with motion sensor classifications.

Presently, Python has many built in packages and libraries available for use such as:

NumPy and SciPy for mathematical and scientific computing purposes respectively, matplotlib

to create clear and concise data visualisations and Scikit-learn for machine learning purposes

in Python. In addition, the (now very extensive) Pandas library provides two additional data

containers (Series & DataFrame) for adding structure to data by annotating in the format of

- 17 -

named and indexed rows and columns. This functionality makes it useable and easily accessi-

ble for data analysis. [41]

The SciPy library contains a Signal toolbox [42] which was employed for the various sig-

nal processing tasks required and the Fourier transform. MATLAB [43] is a very popular

option for signal processing; it is very useful for building preliminary models but not for

achieving deployable solutions. Its Big Data capabilities and run-time speed are lacking in

comparison to Python and is also a very expensive piece of software. [44] While this is availa-

ble for use as a student, GRN would have to absorb the licence costs to continue using it after

this work was complete. The SciPy alternative is inspired by the success of MATLAB’s signal

processing functionality. SciPy offers the same benefits and capabilities without the financial

constraints for the business.

R [45] is a more statistically oriented programming language and environment. One of the

main strengths of R is the ease of which a user can produce a high quality graphic, arguably

superior to matplotlib for Python. The speed of R is particularly slow and functions often need

to be run in parallel to speed up computation. However, implementation in Python is much

easier, with high quality results available in shorter timescales. Whilst it is important to con-

sider which is better suited for the tasks, when dealing with a considerable volume of data

computation speed is an important aspect to consider when selecting a language. This is argu-

ably the biggest downfall of R and one of the reasons Python was selected. However, the

geosphere package in R was used for different aspects of handling and visualising the GPS

data. [46]

Python 3.5.2 [47] was chosen after investigating various programming languages that

would be suitable for this task. It was installed within Anaconda 4.0.2 (64-bit) [48], since it

has an extensive list of analytical libraries. The Jupyter Notebook [49] was used due to the

aesthetic of the computational environment it provides by combining code execution with rich

text, mathematics and plots. The de-bugging functionality available also made it easy to work

with Python code and data. Python is a general purpose programming language and has often

been described as “easy to learn for beginners”. [50] The more straightforward syntax makes

the code human readable and enables a user to write programs at a faster speed. Python has the

ability to successfully glue together large software components making it easy to integrate

with every aspect of workflow.

The aforementioned Python libraries were utilised in combination with Tensorflow 1.2.0

for the purposes of this work. TensorFlow [51] is an open source software library for Machine

Intelligence developed by Google. It allows for fast iterations of machine learning models and

has an abundance of useful built-in functions. Tensorflow has a large and growing online

- 18 -

community meaning a large amount of code and models are available compared to competitors

such as, Theano and Keras. It is optimised for big models and compile time is efficient. Ten-

sorflow presented itself as the most favourable library for training an LSTM.

Lastly, Amazon Web Services (AWS) [52] was adopted to improve the run time speed of

the network. AWS is a subsidiary of Amazon that provides on-demand cloud computing plat-

forms for a user. The technology makes a virtual cluster of computers available through a paid

subscription basis. Vast amounts of computing power are available which can be used to pro-

cess and handle massive volumes of data quickly.

The Deep Learning AMI, Amazon Linux Version p2.xlarge [53] was installed to use in

combination with the Tensorflow framework. It runs on the Amazon Elastic Compute Cloud

(EC2) to provide a reliable, secure, and high performance execution environment for deep

learning applications. It includes Anaconda Data Science Platform for versions of Python 3

and packages that facilitate easy integration with AWS, including launch configuration tools

and many popular AWS libraries and tools.

- 19 -

3 Design and Approach

This aim of this section is to provide a clear and concise overview of the motion sensor

classification development. It will begin by briefly discussing the data set used for the classifi-

er, which was collected specifically for the purposes of this work. Each phase of the

development process will be presented as a guide for the following chapters.

3.1 Data set

GRN had previously collected data from trials at Paris and London worn by the Scottish

Rugby Union players. However, there was no information about what this data represented

and it was not suitable to implement for this specific task. To obtain a dataset reflecting the

movements chosen for the classifier, six volunteers at the Global Rugby Network office partic-

ipated in a data collection activity. Participants were all male aged between 23 and 35, with

varying heights and weights. They were instructed to follow a protocol of activities at a nor-

mal and comfortable speed.

One of the main reasons that GRN is interested in commissioning this research is to im-

prove the performance hardware i.e. the player tracking devices. Each participant wore two

devices (a top and bottom device), which resulted in twelve devices being used to capture the

data. This was done to provide a visual aid for identifying any points where the device has

failed to accurately record a motion. The bottom device was placed in the correct position

shown in Figure 9 in section 4 and the top device placed directly to the side of it. Throughout

the routine the placement of the devices was checked to ensure they were remaining tightly in

place. The idea behind this was to take the mean value between the two devices for each rec-

orded timestamp. The hope was to have an accurate signal between the top and bottom device.

Environmental factors such as the temperature registering at 28°
C
 (which is abnormally

high weather conditions for Glasgow) meant that the participants were not performing in the

most comfortable environment. This contributed to fatigue and exhaustion levels greatly and

the subjects would not have been able to perform to the best of their ability. A number of the

participants also experienced the fit of the vest to be uncomfortable and restrictive which con-

tributed to exhaustion and the ability they were able to perform at.

Table 2 below lists the different exercises that this research aims to classify. It presents de-

tails of how long each exercise was performed for in one sitting and the number of instances of

this exercise. This produces a column denoting the sum value of time for each exercise. It was

important to consider this when creating a routine of activities due to multi-class imbalance.

Class imbalance is the first problem to consider when developing a classifier. [54] It refers to

- 20 -

some classes in the data being highly represented whilst other classes are extremely un-

derrepresented in comparison. The skewed distribution of classes can make many machine

learning algorithms less effective, especially when trying to classify the underrepresented mi-

nority classes. A common example of this is when trying to predict fraudulent cases within

insurance claims. The recorded number of true fraudulent cases will be much lower than the

non-fraudulent.

Label Activity Performed for No of Instances Total Time

1 Standing 30 seconds 12 360 seconds

2 Walking 30 seconds 16 480 seconds

3 Jogging 30 seconds 20 600 seconds

4 Cruising 30 seconds 20 600 seconds

5 Sprinting 10 seconds 16 160 seconds

6 Vertical Jump 15 seconds 6 90 seconds

7 Horizontal Jump 15 seconds 6 90 seconds

8 Passing ring clockwise 60 seconds 6 360 seconds

9 Passing ring anticlockwise 60 seconds 6 360 seconds

 Total 3100 seconds

Table 2. List of Motions to be classified including how long they were performed for individu-

ally and in total for the whole routine.

The exercises displayed above were incorporated into routines in an attempt to try and

make the data seem less “artificial” and more like natural, un-prompted human behaviour. Ta-

ble 3 below shows a break down on the activities. For example, the walk-sprint was performed

five times in one phase which lasted 160 seconds; this activity phase was performed 4 times

during the routine. This was also broken up in this way to simulate a match or training session

to provide a more accurate representation of the data. It was also to test the transition of speed

between different exercises for the accelerometer. Another attempt to preserve the signal was

to aid fatigue levels by breaking up a sprint with a walk etc.

Activity Phase Repetitions in

one phase

Total Duration Iterations

Walk → Sprint 5 160 seconds 4

Cruise → Jog 5 300 seconds 4

Vertical Jump → Stand →

Horizontal Jump → Stand

3 270 seconds 2

Passing ring clockwise →

Passing ring anti-clockwise

3 360 seconds 2

 Total 3100 seconds

Table 3. List of Activities and how many times this was repeated in one standing as well as

how long this lasted, and also the number of times the activity was repeated

- 21 -

A formal definition of these activities is given in Appendix A.

3.2 Methodology

The methodology was compiled based on the CRISP-DM architecture (cross industry

standard process for data mining); a common framework used by practitioners to plan any data

mining project. The six stages of this are business understanding, data understanding, data

preparation, modelling, evaluation and deployment; the flow of this process is charted in Fig-

ure 5 below.

Figure 5. CRISP-DM Methodology

The aim of this research is to be used as a foundation for future work in this application for

GRN. Tri-axial accelerometer and gyroscope signals will be used for developing a motion sen-

sor classifier. This contributes the link between the business understanding of the task at hand,

and data understanding, which involved research of what the data was capable of being used

for. The classifier development consists of six stages: data collection, pre-processing, data

segmentation, feature engineering, training, and testing.

The data collection portion of this project has been discussed above and this is the only da-

ta used for the classifier. Within the training dataset, breaks that were taken in between

activities resulted in unwanted data as it did not reflect any aspect of motions to be classified.

In order to eliminate unwanted values from the dataset, the data had to be timestamped. Once

a process was set up for getting an accurate timestamp for the data, the data could be time-

sliced. This involved using the notes taken for recordings and simply erasing the data from the

breaks. The data was then labelled according to these notes for each activity.

- 22 -

The pre-processing and feature engineering justifications are presented in the Signal Pro-

cessing chapter of this report. This includes using a median then a low-pass filter as the initial

pre-processing stages. The two files per participant are then merged after the data cleaning to

produce the most accurate signal possible. The files were merged within a function using the

following line of code from the Pandas (pd) library.

pd.concat([top_df, bot_df]).groupby('TimeStamp').mean()

It makes use of the concatenate function whilst taking the mean at each time stamp between

the same columns of each data frame. The next step was to time-slice the data; this involved

taking out all of the data that is not meaningful; such as the breaks taken in between activities.

The data will then be put into a window format using sliding windows and a Fourier trans-

form will be applied to each window to suitably prepare the data for the classifier.

It will then be split into a training and test data set and fed into a LSTM where various hy-

perparameters will be altered to find the model producing the best classifications. Figure 6

presents the process of the stages employed.

Figure 6. The Development Process

- 23 -

4 Data Acquisition

4.1 Player Monitoring Device

A Player Monitoring Device is used to capture the data, which includes a Global Position-

ing System (GPS) and Inertial Measurement Unit (IMU). A tri-axial accelerometer and

gyroscope make up the IMU of this device. Figure 7 below shows the directions of the posi-

tive measurements of the device. The accelerometer will provide an insight into the dynamic

acceleration force exerted by a player throughout the time the device is functional, whilst the

gyroscope details the angular rate by measuring the rotations of the axes. The GPS is included

for player tracking purposes to provide an enhanced set of statistics about the speed of a player

and provide a visual of the movement on the pitch throughout the time operated.

Figure 7. The GRN device showing the directions and measurements of the three axes

The accelerometer and gyroscope components have sensitivities; these tend to be high as

they are intended to measure minute fluctuations in acceleration. The accelerometer compo-

nent of the GRN device has a sensitivity measure of 16G (where 1G is the acceleration due to

gravity at the surface of the Earth, equivalent of 9.8ms
-2

). In order to derive a meaningful val-

ue from this and normalise the data, all raw accelerometer values need to be divided by 2048.

This number is obtained by dividing the maximum value that the device can measure (32,768)

by the sensitivity.

𝑎𝑐𝑐𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
32768

16
= 2048 (3.1)

- 24 -

The sensitivity of the gyroscope is 250 °/s which means that the raw gyroscope values need

to be divided by 131, following the same process as before.

𝑔𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
32768

250
≈ 131 (3.2)

This is an important step for obtaining meaningful values of data. Without normalising the

signal processing techniques the classification would not be as effective producing a poorer

performance.

The rate at which a device samples is an important aspect to consider as it contributes to

the accuracy of a movement. Most GPS watches and fitness trackers available to the general

public sample at only one hertz (i.e. once a second); [12] for a professional athlete this would

be highly inaccurate. An analyst needs to take into consideration the capabilities of a profes-

sional athlete and the speed they can move at in one second. The sampling rate of the IMU

used by GRN is set to 100Hz, meaning the device captures 100 data points in one second

whilst the GPS samples at 10Hz (producing 10 data points a second). For a motion processing

algorithm IMU devices should be operating at a high sampling rate, typically it would be

around 200 Hz. This is to provide more accurate results with low latency. [55]

The data generated by the accelerometer and gyroscope is a sequence of the different ob-

servations ordered by the offset (time), therefore making it time-series data. For each session

that is recorded the device will produce a comma separated value file containing the accel-

erometer measurements and the offset, and similarly for the gyroscope. The file that

corresponds to the GPS logging contains the offset, latitude and longitude (both in decimal

degree format). Figure 8 below shows a snapshot of the raw accelerometer data. It consists of

the first column as the offset and the second and fourth columns are the X, Y and Z measure-

ments respectively. It shows ten rows of data, which amounts to one tenth of a second.

Figure 8. Snapshot of the raw accelerometer data from participant one’s csv file

- 25 -

The data collection activity produced approximately 72 million data points from the accel-

erometer and gyroscope alone. After the files were merged (which cut the size directly in half)

and the data was truncated to remove un-meaningful data, there was approximately 17 million

data points available to use for training the LSTM classifier.

4.2 Placement of the Tracker

Figure 9 below shows a mock-up of the vest employed by GRN to hold the device during a

match or whilst training. The device is placed between the shoulder blades; precisely it will sit

between the T2 to T6 vertebrae with the longest dimension being parallel to the spine. The

pouch the device is held in must ensure it remains tightly in place so the device cannot rotate

on any axis whilst operating. The fit of the vest contributes to this, it needs to be tight enough

to hold the device securely in place, but not so tight that it is uncomfortable and restrictive to a

player.

Figure 9. A mock-up of the GPS vest used by GRN to hold the device

Aside from the fact that choice of spine placement is to comply with the Rugby Union reg-

ulations set in place for player monitoring devices; between the shoulder blades has been

deemed as the most favourable placement. Common positions for IMU include the waist and

hips, for example the England rugby team had previously placed the devices within a pouch in

their shorts. [56] However, the hips are exposed to a lot of left and right movement, and a lot

of gyration which will cause the data to be less accurate and less consistent; even more so

when in a high impact sport environment. [12] To summarise, placing the device between the

shoulder blades will remove any superfluous movement that would cause the gyroscope to

record inaccurate data.

- 26 -

5 Signal Processing

Human data from wearable sensor technology results in “noisy data”. Classical techniques

for signal processing need to be employed before any machine learning operations to improve

prediction accuracy. The most common relationship between the two is that signal processing

is used as a pre-processing (data cleaning) step before machine learning applications (classifi-

cation). It is important to consider digital signal processing (DSP) before evaluating the

efficacy of a predictive model. This section will discuss the use of DSP in the motion sensor

classification project and the reasoning behind the techniques chosen.

5.1 Signal Pre-processing

In any data-driven project, pre-processing is an extremely important and commonly over-

looked step. It consists of performing multiple imputations, filtering data, replacing outliers

and extracting/selecting features. It is also good practice to observe the distribution of the data.

This enables a visualisation as to whether there are any minority values or outliers that can

skew the distribution of the data. The techniques employed during pre-processing can help to

improve the accuracy rate of a classifier. Figure 10. below shows the order of techniques used

for pre-processing particular signals. The values for the filters were inspired from an existing

study in human wearable classifiers, [57]. The outputs shown at the end of this diagram are the

time domain signals that will be fed into the LSTM classifier.

Figure 10. Filters applied at pre-processing stage of project

The GRN dataset will not have any missing values, so there is no need to consider any

form of imputations. The first step for pre-processing the signal was to visualise it. Data visu-

alisation is a general term that describes placing data in a visual context in an effort to aid the

understanding of the significance of data. Visualisation allows for patterns, trends and clusters

- 27 -

of data points to be exposed and recognised by the human eye. A spike on a graph could be

caused by the inaccurate logging of data by the tracker. Alternatively, it could be a rapid

change caused by a change in movement or speed. Visualising the signal can provide an in-

sight into what different patterns could be and effective methods to apply for signal

processing.

The accelerometer X axis signals of the top and bottom device of participant one is shown

in Figure 11. The difference between the two signals is highlighted, which shows outliers pre-

sent in one signal that are not in the other. Taking the mean between an outlier and an accurate

signal at a certain timestamp would not result in the most accurate signal possible. This illus-

trates the reasoning behind choosing to clean the signals before taking the average between

them.

Figure 11. Raw Accelerometer X Signal for participant one showing the difference between the

signal for the top and bottom device

- 28 -

5.1.1 Median Filter

Some form of random variation is always inherent in any data collected over a period of

time; this variation is known as “noise”. A smoothing filter is used to take account of noise by

reducing or eliminating the effect it has on the signal, thus allowing any important patterns to

stand out. An accelerometer in particular is exposed to a number of high-frequency noise com-

ponents so a smoothing filter is important for producing a more refined signal.

An investigation into a number of different smoothing filters appropriate for the IMU data

was completed. From this, a moving average and median filter were directly compared to

make an informed decision about which would produce the better outcome.

A median filter was chosen and administered to smooth the accelerometer and gyroscope

signals. A window size of 25 was chosen to smooth for every quarter of a second. This was

computed using the Signal toolbox available in the SciPy package: [58]

sp.signal.medfilt(data_frame[column], kernel_size = 25)

Figure 12. The accelerometer X axis signals showing the raw signal and the median filtered

signal for participant one’s top device

- 29 -

Figure 12 above provides a visualisation on the performance of the median filter. It shows

the original raw signal (blue) and the signal with the median filter applied to it (orange). It

shows that the majority of unwanted outliers have been removed.

The transition between exercises can cause an algorithm to easily misclassify; using a

smoothing filter should take account of this. The median filter was implemented to improve

the result of the classifier; however one problem that is exposed is some short duration activi-

ties may not be classified correctly. [59]

5.1.2 Low-Pass Butterworth Filter

Low-Pass filters are used by supplying a cut-off frequency; they pass signals with a fre-

quency lower than the cut-off value and attenuate signals with higher frequencies. When the

noise components are isolated to a specific frequency range, a low-pass filter should be used to

diminish it.

A 3
rd

 order low pass Butterworth filter was selected to execute this. A cut-off value of 15Hz

is sufficient to use for capturing human body motion as 99% of energy is contained below this

threshold. Wearable technology employed for human motion can cause exorbitant noise to be

recorded, which results in the appearance of outliers on the signal. This is the reason for em-

ploying two filtering techniques for removing noise. The role of the median filter was to

simply smooth the signal; however some outliers were not accounted for. Using a low pass

filter would remove any of these remaining inconsistencies resulting in a more accurate signal,

such as the tracking device inaccurately recording the data.

This was also implemented making use of the SciPy signal processing library. The cut-off

frequency supplied to the Butterworth filer needs to be normalised in the range of (0, 1). [59]

This is calculated by making use of the Nyquist frequency; which is defined as half of the

sampling rate. The following equation is used to normalise the cut-off frequency for the low

pass Butterworth filter and shows the values used.

0.50

0.15

2

0.100

0.15

frequency_nyquist

frequency_cutoff
cutoff_normal

(5.1)

This is used to build the Butterworth filter which gives two outputs; the numerator coeffi-

cient and the denominator coefficient of the filter. A forward-backward filter in the signal

processing toolbox is used to apply the filter. The function applies the low pass filter twice,

once forward and once backwards as the name suggests by using the coefficients of the filter.

[61]

- 30 -

Figure 13. The accelerometer X axis signals showing the median filtered signal and the 3
rd

 or-

der low-pass Butterworth filtered signal for participant one’s top device

Figure 13 shows the result of the 3
rd

 order low pass Butterworth filter compared against the

median filter. The remaining unwanted spikes have been removed to produce a more refined

signal. Figure 14 shows the total amount of noise and outliers that have been removed from

the signal. Signal in Appendix A shows a graph of the raw signal before any pre-processing

against the end result after all the data cleaning steps have been applied.

The functions for the Butterworth filter are supplied for reference in the appendix. After

this stage was carried out, the two files that were produced for each player were merged as

referred to in section 3.2. After this the data was “time-sliced” (truncated) which removed the

unwanted parts of the data, i.e. when a motion that was to be classified wasn’t being per-

formed. This explains some of the unwanted spikes that remain, as they were not meaningful

parts of the data. Also, the point on the graph where the signal is zero is from the vests holding

the trackers being temporarily removed.

- 31 -

Figure 14. The noise and outliers removed from participant one’s top device, accelerometer X

signal

5.1.3 Accelerometer Signals

A raw accelerometer signal is comprised of three basic components; movement, noise and

gravity. For the purposes of the classifier, only the movement component is of interest. As dis-

cussed above the noise has already been filtered out, the next step was to account for the

gravity and remove it from the signals. Separation of these signals can become increasingly

problematic, especially when investigating any rotational based movements.

An accelerometer is exposed to a great deal of gravity during the time it is operational. A

low-pass filter could be used again to distinguish the two remaining portions of the signal. The

result of the low pass filter was deemed to be the gravitational element of the signal by using a

cut-off frequency of 0.3 Hz. This value has been observed to be the optimal corner frequency

for constant gravity signal, as the assumption drawn is that gravitational force has only low

frequency values. By subtracting this result from the accelerometer signal, only the body por-

- 32 -

tion of the signal remained. The Python code used to implement this is provided in Figure 15

to provide a clear explanation of this process.

def separate_accelerometer_from_gravity(accelerometer_data):

 """ The function used to separate the gravitational component
 from the accelerometer signal. 3rd order low-pass

 Butterworth filter with cutoff frequency = 0.3 Hz is

 used to identify the gravity.

 """

 sampling_rate = 100.0
 nyquist_freq = sampling_rate / 2.0

 body_signals = []
 for channel in accelerometer_data:

 # Low-Pass filter for 0.3 Hz to split gravity component
 gravity = butter_lowpass_filter(accelerometer_data[channel],
 cutoff_freq = 0.3, nyquist_freq, order=3)

 body = accelerometer_data[channel]
 body -= gravity
 # Assume that body signals have lost gravity component

 body_signals.append(body)

 body_accel_signals = np.array(body_signals)

 return body_accel_signals

Figure 15. Python code for the function implemented to separate the gravity and body compo-

nents of the accelerometer signals

5.2 Time-Series Segmentation

Time-series data is often represented as a sequence of discrete segments of finite length. In

time-series analysis, segmentation is a method that involves partitioning an input time-series

into a sequence of discrete segments. It is important to consider how to represent time by con-

verting the numeric points into a meaningful representation. A sliding windows algorithm was

the approach chosen for this. This type of “windowing” technique is implemented to reveal the

underlying properties of a signal and improve continuity representation.

The sliding windows algorithm implemented involved the time-domain signals being sam-

pled in fixed-width sliding windows of 2.56 seconds and with 50% overlap between the

windows. This reasoning was taken from [57] the same paper that inspired the values of the

filters due to the success of the experiment. The value of 2.56 seconds was chosen because:

 The cadence of an average person walking is within the range of [90, 130] steps/min.

 For classification tasks, it is preferential to have one complete cycle of a motion in a

window, e.g. two steps is one complete walking cycle.

- 33 -

This means that there will be 256 samples in each window, this is obtained from 2.56sec ×

100Hz = 256 samples. The label corresponds to the sample of data in each discrete time inter-

val. Figure 16 shows a representation of the data after the sliding windows algorithm has been

applied. This method of windowing technique has shown success in the past in [28] and also

in [27] that achieved a prediction accuracy of 93.39%.

Figure 16. A representation of the data after applying the sliding windows algorithm

5.3 Feature Engineering

Table 4 below shows the time and frequency domain signals that were obtained for use in

the LSTM classifier. The methods to obtain these signals are described below.

Acc_total_Signal Gyro _Signal Acc_body_Signal Euclidean Magni-

tude

Time_x Time_x Time_x Acc_mag

Time_y Time_y Time_y Gyro_mag

Time_z Time_z Time_z Acc_body_mag

Fourrier_x Fourrier_x Fourrier_x

Fourrier_y Fourrier_y Fourrier_y

Fourrier_z Fourrier_z Fourrier_z
Table 4. Time and Frequency domain features

5.3.1 Fourier Transform

The Fast Fourier Transform (FFT) algorithm was used as a method for extracting a set of

features from the signals. The algorithm computes the discrete Fourier transform (DFT) of the

sequence supplied to it. The purpose is to convert a time-domain series to a frequency domain.

The DFT is defined by the following formula:

1N

0n

N

kn2i

nk exX

 N,...,1,0k (5.1)

- 34 -

This produces values of complex types with a real and imaginary part (a + bi). These num-

bers are useless in this situation, to overcome this; the power log spectrum is computed.

Depending upon the data, the FFT could reveal any harmonic content of the signal such as cy-

cles and repetitions; these will be visible by a few prominent peaks on when plotted.

The signals are mapped into the frequency domain through each window created by the

sliding window function. The work in [28] had great success for classifications by using this

method.

There are built in functions to compute the FFT algorithm available in Python through the

NumPy and SciPy libraries. SciPy has a slightly faster computation time, however; it requires

an extra stage to convert to complex output. NumPy may take longer to compute but the out-

put is ready to use straight away. [63] For this reason, NumPy’s fast Fourier transform module

was used to transform the time-domain signals to a frequency domain signal.

5.3.2 Euclidean Magnitude

The Euclidean Magnitude (also commonly referred to as the norm) was used to supply ex-

tra features to the classifier. This stage involved taking the magnitude across the x, y and z axis

of each of the accelerometer, gyroscope and accelerometer body signals. The formula used for

this was:

222 zyxm (5.2)

In Python, this made use of another NumPy module called linear algebra. [64] This module

had a function that would take the norm across the three axes, returning a single value for each

timestamp.

- 35 -

6 Neural Network Design

This section will discuss various aspects of the neural network design, including a number

of decisions made/trialled to improve the performance of the algorithm.

6.1 Cost Function

In any data mining project a model which minimises the sum of squared residuals can be

defined as the “best” model. In this instance, the residual of a data point is defined as the dif-

ference between the true (observed) class and the class predicted by the model. The concept of

minimising a function is a building block of supervised learning, and this function is known as

the Cost Function (also commonly known as the Loss Function). By finding the global mini-

mum of a cost function, the cost associated with the model is minimised.

Traditionally, a cost function is minimised through a learning process known as gradient

descent. How well a cost function has performed with respect to its training sample may de-

pend on different weights and biases.

6.1.1 Learning Method

An optimisation algorithm for the motion sensor classifier could mean the difference be-

tween good results in minutes or in hours. Adam is an optimisation algorithm that can be

implemented instead of the classical stochastic gradient descent approach to update network

weights. Gradient Descent is not the most efficient learning method to use for training any

Deep Neural Network. The Adam optimiser was first presented in [65] by D. Kingma and J.

Ba, who aimed the method towards toward machine learning applications with large datasets.

The effectiveness of Adam compared to previous techniques is highlighted in Figure 17 below.

It is apparent that Adam makes faster progress in terms of time and number of iterations. The

benefits of implementing the Adam optimiser highlighted by the authors are the ease of which

it can be implemented, it is computationally efficient and it requires very little memory. Hy-

per-parameters have intuitive interpretation in the optimiser so typically require little or less

tuning. The Tensorflow library includes a built-in function for implementing an Adam opti-

miser.

- 36 -

Figure 17. The results of the Adam Optimiser compared to classical techniques on training a

multilayer neural network, from [65]

6.1.2 Training

Training a neural network can be described as a process for finding a set of weights and bi-

ases for computed outcomes to closely match the known outcomes of the training data

instances. When a set of values for weights and biases that produce reliable results has been

uncovered, the neural network should have the functionality to make predictions on unseen

data that does not contain labelled outcomes. [37]

One approach to use for training a neural network is batch training. Batch training involves

working with the entire dataset during training. A batch is the number of data instances used in

an iteration of training. It involves learning over a group of patterns (multiple data samples) as

opposed to learning with one data sample at a time (online learning). The weights and biases

are only updated after all the inputs have been presented to the neural network when batch

training is being used.

In classification related machine learning tasks, a loss function represents the “price paid”

for predictions that are inaccurate. This LSTM network uses an L2 Softmax loss function. It is

the final layer of the neural network which yields the given performance scores for each class

in the data.

- 37 -

6.2 One Hot Encoding

Categorical data can often be difficult for machine learning algorithms to handle as they

require numerical data as both inputs and outputs. This problem is easily overcome by trans-

forming the data in two steps; integer encoding and one hot encoding. A nominal variable has

no sense of ordinal relationship whereas an integer variable possesses this quality. When inte-

ger encoding does not provide enough understanding for a classifier to harness this

relationship, one hot encoding can be applied. This type of encoding allows an algorithm to

assume an inherent, natural order of categorical classes resulting in better performance accura-

cy. [66]

The labels for the data, which are displayed in Table 2 of Section 3.1, were already sup-

plied in an integer format to avoid an extra transformation to the data. For the motion sensor

classifier, one hot encoding was applied directly to the integer representation of the categorical

classes. It involves removing the inter representation and replacing it with a binary string that

is unique to each integer category label. A representation of one hot encoding for four unique

integer labels is presented in Table 5.

Label

One Hot Encoding

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

Table 5. One hot encoding for four unique integers

6.3 Hyperparameters

Hyperparameters can have a significant impact on the performance and results of a neural

network. Any machine learning model needs to learn the parameters that give produce the op-

timal mapping from inputs to outputs. The cost of not fine-tuning hyperparameters in the

learning process can be high. A “grid search” approach is the most traditional and prevalent

technique used for hyperparameter optimisation and was employed in this project. It is a pro-

cess of exhaustive enumeration of trying different combinations of hyperparameters in the

algorithm. It can be argued that it is a costly method in terms of time however, for an explora-

tory research project provides insight into the effects of different combinations and should be

helpful in later work. The hyperparameters that are to be tuned during training are as follows.

Hidden Layers – this is the only hyperparameter for the model itself (the remaining are all

training hyperparameters). Random selection of these values was adopted to find the optimal

- 38 -

number to use and values between 20 and 35 are reported on. The optimal number for this hy-

perparameter allows the neural network to fit the training data well and learn to generalise.

Learning Rate – The learning rate determines the “step size” that is taken during the learning

process. The values for the learning rate can be in the range of [0.0001, 0.1]. A small enough

step size is required for a model to learn to generalise correctly. The learning rate needs to be

optimised to a suitable value as, too high a value will not learn properly. Similarly, if the value

is too low the model will not learn properly; it can cause training to get stuck in local minima

or take too long. A complete explanation of the learning process and rate is available in [67].

The values investigated were 0.001, 0.0015, 0.002 and 0.0025. They were all sufficiently small

enough for the classifier to learn during the training session.

Batch Size – the batch size used can have an impact on the model. A smaller batch size allows

more updates to be made however a larger batch size allows the updates to be computed more

efficiently. The batch size can be optimised separately from the rest of the hyperparameters; it

was set to be 1500 in this experiment. Other batch sizes (both higher and lower) caused the

training process to drastically slow down or the resulting classification was much poorer.

Training Iterations – this is the number of times that the algorithm loops over the dataset. For

this experiment the algorithm looped over the dataset 300 times. It was treated in a similar

fashion to the batch size; other values caused the training session time to increase and did not

improve the classifier performance. Altering the training iterations can be a powerful method

for preventing overfitting in the model. [68]

6.4 Data Split

When the objective of a data analytics project turns towards the development of a model

used for classifying, there needs to be a means of assessing its accuracy, reliability and credi-

bility. The final stage in preparing the data gathered for the classifier is to partition it into a

Train dataset and a Test dataset. The essential role of the training dataset is to provide the data

that generates the model. The classifier will learn from this data when the model is training

and the test dataset is left untouched throughout this phase. The test dataset is employed after

the training stage to evaluate the performance of the model on unseen data. The underlying

assumptions of this split are such that:

 The data available fairly represents the real-world processes being modelled

 The real-world processes are expected to remain relatively stable over time. A

well-constructed model built on previous data is expected to perform adequately on

future data

- 39 -

Therefore, if these assumptions hold true, holding back some of the present data is a fair ap-

proximation to having future data for testing.

The data employed for the motion sensor classifier was split using a feature of the Scikit-

learn library. The model selection submodule of Scikit-learn contains a feature for splitting

into train and test data. [69] This function randomly partitions data the data before splitting. It

allows the percentage of each dataset to be specified. The stratify parameter used within also

allows for an even distribution of the classes between the train and test datasets. Appendix B

shows the bar plots illustrating the split for each class between the training dataset and the test

dataset. Figure 18 shows the flow of this process.

Figure 18. Data Split

- 40 -

7 Analysis & Results

This section will provide a summary of the results produced by the LSTM algorithm. Vari-

ous configurations of hyperparameters and feature sets were fine-tuned on this algorithm. As

previously stated, an approach of exhaustive enumeration was employed to find the optimal

combination and observe any insights in the behaviour of the network

Table 6 below shows the combination of different feature sets that have been applied to

these algorithms, where acc and gyro denote the accelerometer and gyroscope readings respec-

tively. All of these signals (which are being treated as different combinations of feature sets)

are time-domain signals that have been achieved by following the process laid out in chapter 5

Signal Processing. Fourier transform variations of this signal have also been trialled; a prefix

of “f” is used when referring to the Fourier transform signal and “mag” is used when referring

to the magnitude implementation of the signal.

 Feature Set Accelerometer Signals Gyroscope Signals

1 Original signals acc_X, acc_Y, acc_Z gyro_X, gyro_Y, gyro_Z

2 No gravity signals body_X, body_Y, body_Z gyro_X, gyro_Y, gyro_Z

3 All signals acc_X, acc_Y, acc_Z,

body_X, body_Y, body_Z

gyro_X, gyro_Y, gyro_Z

4 With magnitude sig-

nals

acc_X, acc_Y, acc_Z, acc_mag gyro_X, gyro_Y, gyro_Z,

gyro_mag

5 Accelerometer only

signals

acc_X, acc_Y, acc_Z,

body_X, body_Y, body_Z

6 Fourier Transform

signals

facc_x, facc_Y, facc_Z fgyro_X, fgyro_Y, fgyro_Z

Table 6. The descriptions of each of the feature sets tested

7.1 Two Stacked LSTM Cells

The results below were all passed through a RNN with two stacked LSTM cells, the Python

code for this algorithm is represented in Appendix C. Using stacked cells is what makes it a

deep neural network.

7.1.1 Original Signals

The results of the first feature set are presented below in Table 7. The number of hidden

layers was altered whilst the learning rate and lambda loss amount were kept constant at

0.0025 and 0.0015 respectively to find the optimal number of hidden layers.

- 41 -

Hidden Layers Accuracy (%) Precision (%) Recall (%) F1-Score Batch Loss

20 69.291824 69.191069 69.291819 0.686105 0.960350

25 70.818067 70.457468 70.818071 0.704185 1.004126

28 73.382181 73.869218 73.382173 0.733548 0.946159

30 74.450552 74.952946 74.450549 0.743022 0.945834

31 75.122112 75.310360 75.122100 0. 747973 0.916978

32 77.564102 77.743261 77.564103 0.775422 0.900496

33 80.402929 80.483431 80.402930 0.803301 0.861666

34 76.159954 76.812028 76.159951 0.762359 0.982086

35 74.175829 74.688734 74.175824 0.739767 0.990814

Table 7. Results of fine tuning of the number of hidden layers on the first feature set with the

learning rate kept equal to 0.0025

The configuration that gave the optimal result from this experiment was with 33 hidden

layers, learning rate as 0.0025. The learning rate was fine-tuned keeping the number of hidden

layers equal to 33, the results of this are displayed in Table 8 below.

Learning Rate Accuracy (%) Precision (%) Recall (%) F1-Score Batch Loss

0.0010 71.398050 71.939312 71.398046 0.709904 1.187604

0.0015 75.000000 74.683727 75.000000 0.744932 0.957991

0.0020 74. 297929 74. 042799 74. 297924 0. 739059 0. 990942

0.0025 80.402929 80.483431 80.402930 0.803301 0.861666

Table 8. Results of fine tuning of the learning rate on the first feature set with hidden number

of layers kept equal to 33

The optimal configuration was as previously stated with the number of hidden layers and

learning rate equal to 33 and 0.0025 respectively, producing an accuracy measure of 80.40%.

The precise confusion matrix for the optimal configuration is:

SPRINT 150 3 28 9 2 4 1

JOG 5 664 108 4 3 1 1

CRUISE 32 135 687 0 0 1 0

WALK 6 11 5 434 6 6 11

V JUMP 3 14 0 8 207 13 46

H JUMP 1 2 1 15 56 150 23

STAND 0 1 0 16 43 18 342

 SPRINT JOG CRUISE WALK V JUMP H JUMP STAND

- 42 -

Where the rows represent the true label and the columns are the predicted label. It is appar-

ent that the sprint, walk and stand classes have all performed well in this algorithm. The

LSTM is struggling to classify the difference between jog and cruise and a vertical and hori-

zontal jump in comparison. The majority of data segments have been predicted correctly

however there is a much clearer struggle between these than the aforementioned classes.

7.1.2 No gravity signals

The second feature set, was passed through the network in the same fashion and the results

are displayed in Table 9. The learning rate and lambda loss amount were kept constant at

0.0025 and 0.0015 while the number of hidden layers was varied.

Hidden Layers Accuracy (%) Precision (%) Recall (%) F1-Score Batch Loss

30 66.880345 66.363483 66.880342 0.660842 1.188379

31 64.896220 64.883212 64.896215 0.646942 1.238871

32 66.300368 66.680690 66.300366 0.661081 1.299446

33 66.483521 65.985293 66.483516 0.661145 1.266903

34 65.842497 65.868753 65.842491 0.657071 1.297687

35 65.445668 65.439890 65.445665 0.652127 1.294704

Table 9. Results of fine tuning the number of hidden layers on the second feature set

The best version of the model produced was with 30 hidden layers, it is also very apparent

that this has not performed as well as the first feature set. The confusion matrix for this model

is:

SPRINT 85 4 126 16 3 10 3

JOG 2 627 161 9 6 0 1

CRUISE 20 213 594 4 2 2 2

WALK 7 14 7 392 8 8 17

V JUMP 2 13 5 24 125 31 77

H JUMP 11 3 8 26 40 121 32

STAND 3 6 3 54 72 30 247

 SPRINT JOG CRUISE WALK V JUMP H JUMP STAND

Immediately, it is apparent that this is a much poorer result than those obtained for the orig-

inal signals. The sprint class has not performed as well misclassifying as mostly the cruise.

The two jump and stand classes have also had significantly poorer results than the original

signals set. The walking class still classified well but was marginally poorer than the original

signals result.

- 43 -

7.1.3 All signals

The third feature set was the accelerometer, gyroscope and accelerometer body signals. Ta-

ble 10 denotes the various performance measures that were achieved during this run.

Hidden Layers Accuracy (%) Precision (%) Recall (%) F1-Score Batch Loss

30 67.582422 67.533845 67.582418 0.671872 1.104750

31 69.230777 69.240812 69.230769 0.690421 1.100112

32 67.979240 68.099634 67.979243 0.680156 1.186175

33 69.993901 69.983077 69.993895 0.698022 1.093515

34 63.949943 63.489814 63.949939 0.636352 1.330015

35 70.238107 70.353300 70.238095 0.698717 1.147799

Table 10. Results of fine tuning the number of hidden layers on the third feature set

Enhanced results compared to the second feature set were achieved, however these results

were still not as high-quality as the first (original) feature set. The optimal result found was

with the number of hidden layers equal to 35 which gave 70.24%. The confusion matrix was

as follows:

SPRINT 116 6 95 19 1 6 4

JOG 1 604 175 22 3 0 1

CRUISE 22 175 626 5 4 2 3

WALK 5 16 4 391 5 4 28

V JUMP 3 7 7 22 141 15 82

H JUMP 10 2 6 27 19 141 36

STAND 0 2 1 32 85 13 282

 SPRINT JOG CRUISE WALK V JUMP H JUMP STAND

Whilst these results are still not as good as the original signals feature set, it is obvious that

it is much better than the no gravity signals. The sprint class has performed much better than

previously, as has the stand class. The same issue with cruise and jog still arises and similarly

with the jumps and stand classes. The walking class remains consistent.

7.1.4 Euclidean Magnitude Data

The outcomes of fine-tuning the number of hidden layers on the fourth feature set are ex-

hibited in Table 11. This feature set included the Euclidean magnitude signals feature for the

accelerometer and gyroscope in addition to the original signals.

- 44 -

Hidden Layers Accuracy (%) Precision (%) Recall (%) F1-Score Batch Loss

31 67.521375 67.260709 67.521368 0.670008 1.134920

32 66.910863 66.633901 66.910867 0.665581 1.282758

33 71.001226 71.699608 71.001221 0.702757 1.126809

34 65.720397 65.909666 65.720391 0.654697 1.274866

35 67.857146 67.755131 67.857143 0.677217 1.163469

Table 11. Results of fine tuning the number of hidden layers of the fourth feature set

Similarly, this investigation did not produce better results than the first feature set. 71.00%

was the best accuracy rate that the algorithm managed to reach. The confusion matrix for this

feature set with the number of hidden layers set at 33 is presented below.

SPRINT 95 13 88 21 1 5 4

JOG 1 636 123 14 4 0 7

CRUISE 12 246 566 4 0 1 1

WALK 4 12 5 416 3 5 42

V JUMP 2 11 5 7 121 28 114

H JUMP 3 2 3 23 17 149 45

STAND 3 3 1 22 24 21 343

 SPRINT JOG CRUISE WALK V JUMP H JUMP STAND

The configuration for this network gave a marginally higher accuracy rate than the optimal

configuration for the Euclidean magnitude signals (section 7.1.3). However, after investigating

the different matrices the sprint class has performed much poorer despite the higher accuracy

rate. Again, the walk class has performed well.

7.1.5 Accelerometer Data only

Feature set five was the accelerometer total and body only signals. It was selected to ex-

clude the gyroscope signals as it consumes much more power than an accelerometer does. [70]

Table 12 shows the full results of varying the number of hidden layers in this configuration.

Hidden Layers Accuracy (%) Precision (%) Recall (%) F1-Score Batch Loss

30 78. 052503 78.091844 78.052503 0.776068 0.854365

31 80.006105 79.903809 80.006105 0.798645 0.817508

32 77.655685 77.802673 77.655678 0.773413 0.914106

33 78.052509 78.610008 78.052503 0.779254 0.850900

34 79.853487 80.035454 79.853480 0.796313 0.832503

35 78.205138 78.164623 78.205138 0.778327 0.861665

Table 12. Results of fine tuning the number of hidden layers on the fifth feature set

- 45 -

Surprisingly, this feature set produced an accuracy measure of approximately 80.00%;

which is not a great difference compared to 80.40% from feature set one. The optimal result

was with the number of hidden layers equal to 31, the confusion matrix for this was:

SPRINT 165 6 49 18 6 3 0

JOG 7 665 123 8 1 1 1

CRUISE 31 142 656 1 4 0 3

WALK 6 7 8 425 0 6 1

V JUMP 3 7 4 6 184 12 61

H JUMP 1 1 1 15 10 180 33

STAND 1 0 0 2 31 35 346

 SPRINT JOG CRUISE WALK V JUMP H JUMP STAND

Without the gyroscope data, the sprint class produced the highest number of correct classi-

fications of all the feature sets tried so far. The same problems with cruise and jog and for the

two jump classes and stand still arise. Walk is still consistently being correctly classified the

most.

7.1.6 Fourier Transform signals

This feature set consisted of the Fourier transform versions of the accelerometer and gyro-

scope data. Table 13 below shows some results of configurations tried.

Hidden Layers Accuracy (%) Precision (%) Recall (%) F1-Score Batch Loss

20 51.03785 51.227901 51.037851 0.503669 1.302989

25 51.678878 51.609079 51.678877 0.510935 1.295542

28 43.803426 45.555417 43.803419 0.420991 1.477041

33 49.572653 49.476274 49.572650 0.488366 1.351709

35 50.061053 50.552694 50.061050 0.491191 1.382882

Table 13. A highlight of the results of the FFT data

It is very apparent that these results are not as high as the previous signals that have been

ran through the classifier. The FFT version of the other signals has also been attempted; how-

ever none of them obtained particularly good results. It is could be possible that the FFT is

removing too much important and distinctive information from the signals.

7.2 Varying Window Size

To window size was varied from 256 to 128 (still with a 50% overlap) to investigate the net-

works performance on different activities. Table 14 below shows the results of different

feature sets and hidden layers.

- 46 -

Feature

Set

Hidden

Layers

Accuracy (%) Precision (%) Recall (%) F1-Score Batch Loss

1 33 66.153139 66.074842 66.153142 0.659775 1.137405

2 30 63.804144 64.219447 63.804149 0.636294 1.273343

3 35 65.329468 65.719803 65.329469 0.652720 1.214749

5 31 73.764485 74.198546 73.764491 0.733195 0.919023

Table 14. Results of different feature sets and hidden layers with data window size = 128

This highlights that all of the metrics for evaluating the classifier have not performed as

well as they did when the window size was 265. The best result obtained was with the accel-

erometer only data, the confusion matrix for this was:

SPRINT 212 27 112 35 5 9 4

JOG 11 1361 206 34 2 3 0

CRUISE 97 438 1181 11 4 9 3

WALK 10 21 14 880 0 18 4

V JUMP 5 23 9 7 282 78 168

H JUMP 14 2 0 52 23 304 112

STAND 3 2 1 5 25 114 616

 SPRINT JOG CRUISE WALK V JUMP H JUMP STAND

7.3 Analysis of the Optimal Configuration

The optimal configuration of the LSTM RNN was obtained using the accelerometer and

gyroscope XYZ signals. The number of hidden layers was 33, the learning rate 0.0025, lambda

loss amount 0.0015 and a batch size of 1500 looping over the dataset 300 times. The overall

accuracy rate of this was 80.4%. Figure 19 below shows the confusion matrix normalised to

the percentage of test data. The exact numbers of this confusion matrix are presented in sec-

tion 7.1.1 above.

- 47 -

Figure 19. The confusion matrix for the optimal result obtained during training

The model predicted the sprint class well with few incorrectly classified instances, and sim-

ilarly for walking. Figure 20 below shows the signals produced along the x, y and z axis for

the sprint and walk classes.

Figure 20. Accelerometer x, y and z signals produced for the Sprint and Walk classes

- 48 -

The jog and cruise motions struggled in comparison with a significant portion of jog being

classified as cruise and vice versa. This was perhaps because there is not a great deal of differ-

ence between the two movements. Figure 21 shows the accelerometer x, y and z signals

produced for each, this highlights that visually there was not a great difference between the

two motions signals. This would make the job of the classifier to correctly predict a class

much more difficult.

Figure 21. Accelerometer x, y and z signals produced for the jog class and cruise class

One solution to this specific class problem would be to combine these two classes into one.

It would indefinitely improve the performance of the classifier. However, for use in profes-

sional sport analytics it will be more beneficial to have these as different movements.

Participants commented on the difficulty to switch between these two movements in the rou-

tine, breaking up the routine for collecting data more by adding sprints and walks in between

the jog and cruise motions could help the classifier deal with transitions between the move-

ments better.

The cruise movement also had a significant proportion that would commonly be misclassi-

fied as a sprint. This is likely to be due to the definition of a cruise being at 75% of the pace of

a sprint (see Appendix A for definition). Comparing it to the signal for the sprint in Figure 20

shows there are parts of the signal for the sprint which are very similar to the cruise. The data

consists of movements from different participants and this is likely to have had an impact here.

The participant who produced the slowest sprint and the participant with the fastest cruise

could have produced very similar signals during the data collection routine. The LSTM RNN

would struggle to learn the difference between them properly if this was the case.

- 49 -

The vertical jump, horizontal jump and stand data also did not classify as well as the walk

and sprint classes. Figure 22 shows the accelerometer signals for these three classes.

Figure 22. Accelerometer x, y and z signals produced for the Vertical Jump, Stand and Hori-

zontal Jump classes

While it is very obvious (visually) the stand is different from both jump classes, this signal

shows the length of time it was performed for. When a participant was performing the vertical

jumps, there would be a short period of standing between each of the jumps. Within a sliding

window this data could easily reflect the data for the standing class. The same reasoning is

reproduced for the horizontal jumps; there would definitely be a moment where a participant

was standing. This could partly contribute to the LSTM misclassifying some of the jumps as

stands.

Across many of the different tables presented above the accuracy rate and the recall com-

monly have the same values. The recall is the sensitivity of the classifier, as discussed in

section 2.5.3; it is the classifier’s ability to detect all of the positive samples in the data. High

accuracy rates have been achieved in this exploratory research so a high recall denoting few

false negatives made by the classifier is not too surprising.

The reasoning behind altering the window size was to observe the performance of the ver-

tical jump, horizontal jump and stand. However, the performance of the algorithm decreased

and additionally the classification of the highlighted movements was much poorer. The next

stage of this would be to increase the window size and examine the effect it would have on all

the movement classes. Figure 23 shows the confusion matrix normalised to the total percent-

age of the test data to allow a more direct comparison between this and Figure 19. The jog and

cruise classes are relatively similar to the data of which had a window size of 256 as is the

- 50 -

walk class. The sprint has performed slightly poorer. The stand looks to have improved how-

ever the jump classes are still easily misclassified.

Figure 23. The confusion matrix for the optimal result obtained during training with the

window size = 128

Another combination that also achieved a very high performance was the accelerometer on-

ly signals with 31 hidden layers. The hypothesis was that a poorer result would be obtained

due to the data provided by the gyroscope being absent. However, this was not the case and an

accuracy measure of approximately 80% was obtained. This was very surprising as the gyro-

scope supplies an insight into the rotations of the movements and it was presumed without this

a great deal of information would be lost. The paper presented by A.J. Casson et al. researched

movement analysis with accelerometers and gyroscopes for heart rate monitoring purposes. It

was suggested that “it may be possible to dynamically switch between using accelerometer

and gyroscopic data at different points in time.” A period of sampling using gyroscope data is

desirable due to the higher power consumption of a gyroscope in comparison to an accelerom-

eter. Using this data to augment the motion estimation could produce a much more powerful

and precise classifier. [70]

- 51 -

7.3.1 Analysis of the sessions training progress

During the training of the neural network the accuracies and losses for the training and test

data was kept track of. Figure 24 below shows the results of this on a graph. It represents the

accuracies (the green lines) and losses (blue) of the optimal configuration.

Figure 24. The progress of trainings session for the optimal configuration of the classifier

The blue dashed curve shows that the losses decays exponentially as the number of training

iterations increase. It is also a relatively smooth curve for the training data with very minor

spikes. The test data also decreases, but begins to level off resulting in a higher loss rate than

the training data (which is always to be expected).

The accuracies increase as the number of iterations increase, as depicted by the green

curves. The line for the training losses falls below the line for the accuracies at roughly around

1250000 iterations. An ideal situation would show both the test and training losses below the

accuracy curves as time went on. The space between the training losses and test losses curve

would also be much closer than the resulting graph in a perfect scenario.

Figure 25 shows the same graph for the poorest configuration unearthed during training; it

was the no gravity signals feature set with 31 hidden layers (see Table 9). The curve does not

have as rapid a decay as that in Figure 24. It is also much less smooth, with some nasty ran-

dom spikes. Occasionally these random spikes would mean that a fault had occurred during

training, such as a hardware fault or the AMI resources would be exhausted. However, it was

- 52 -

more likely the result of a poorer combination of hyperparameters and features causing the

algorithm to not learn as well. The distance between the training and test losses also shows

that this exact model has failed to learn to generalise to the test data.

Figure 25. The progress of trainings session for the poorest configuration of the classifier that

was discovered

- 53 -

8 Conclusion

8.1 Summary

The work carried out in this project was (as a whole) a huge success as all of the objectives

were met in a relatively short time frame given the scale of the work. Initially, a considerable

portion of time was used to research new methodologies and technologies, such as the Tensor-

flow, Scikit-learn and Pandas libraries for Python.

This research was conducted with a view to finding a solution to the motion sensor classifi-

cation problem, and fully utilising the capabilities of the data available to GRN. This venture

encompassed numerous objectives and challenges: designing an implementation for a machine

learning algorithm capable of classifying movements, deploying techniques for visualising the

end result and signals during the process, and improving the performance of the classifier.

The scope and objectives of this work outlined in Section 1.2 were met by firstly conduct-

ing research in the Human Activity Recognition (HAR) field. The findings of various learning

algorithms and programming approaches were used to create the development cycle for the

classifier at GRN. This included implementing signal processing techniques, segmenting the

data, feature engineering, and the machine learning algorithm itself.

The final output was a prototype of a solution with capabilities in classifying select move-

ments. The final and highest accuracy achieved for this classifier was 80.4%; meaning that of

the seven movements classified the Long Short-Term Memory Recurrent Neural Network was

able to correctly classify 80.4% of the data instances. This technical paper is also part of the

final output. The steps and decisions made are all well documented to enable GRN to under-

stand, replicate, and improve upon this work.

Finally, many problems can be solved by using Data Science applications. Each problem

tends to have an aspect that is unique to that problem alone, and it is highly likely that it has

not been seen before. As such, it is not possible to know which techniques, methods or algo-

rithms to deploy initially or even whether the problem can be solved effectively using the

available data. On a personal level, I have found this journey to be a very rewarding and excit-

ing one. The steep learning curve was challenging, yet a real sense of pride and achievement

was gained by obtaining a powerful prototype in such a short time-frame. I look forward to

facing similar problems as a Data Scientist in the future.

- 54 -

8.2 Critical Evaluation

Although this project as an exploratory research activity was on the whole very successful,

the final product produced still has a lot of room for improvement. The following is a brief list

of proposals for future work that will cover limitations and ways to improve in addition to

more work that would have been covered if time permitted.

1. As this research was an exploratory investigation into the quality of data available at GRN

and what it was capable of doing, the motions selected were basic movements. It was im-

portant to start with this and produce an algorithm capable of correctly classifying these

motions. However, the data collection activity discussed in section 3.1 reflects that throwing

and catching (passing ring) movements were also captured. Due to time constraints, this data

was not labelled and therefore not trained by the classifier. The next stage would be to label

this data and feed it into the LSTM RNN.

2. Currently the company’s products are marketed towards Rugby Union players, after ex-

panding upon the basic motions covered in this research the next progressive stage would be to

include more complex motions. Line outs, mauls, scrums, tackles and rucks are some of the

motions that should be investigated making the product more attractive to potential customers.

GRN also intends to begin promoting their software to other sports. The basic motions cap-

tured in this research activity provide a solid groundwork for branching into more team sports

and investigating more specific motions.

3. In order to make the classifier more robust it is good practice to add to the data used in

training to make it larger. Due to how time-consuming the process of labelling the data was

unfortunately this was not carried out. Data from different sources (i.e. different participants)

will also add to the robustness of the classifier. Including data from different participants will

change the demographic of the sample; it is quite probable that the demographic of the sample

will have a significant effect on the classifier performance. The technique and performance

level will differ producing a slightly different signal.

4. An extension of this work would be to down sample the size of the data. Changing the sam-

pling rate from 100Hz to 50Hz would reduce the costs of storage in a database however, could

have a significant impact on the performance of the algorithm. Too much information could be

lost by halving the data and the LSTM could struggle to correctly classify. It would be another

interesting research activity to investigate the impact down sampling would have on the data

and the performance of the classifier.

5. In adding more data to this work one problem that could arise is the “Bias Variance Trade-

off”; which means that the algorithm could over fit or under fit to the data and fail to general-

- 55 -

ise; see a full explanation of this in [71]. One way to avoid this problem would be to introduce

dropout or other similar regularisation methods to avoid over-fitting the data.

5. The LSTM RNN proved very successful in being able to handle the data; however it would

still be beneficial to try different neural networks, machine learning algorithms or different

configurations of LSTMs. For example, a Bidirectional LSTM or a deep CNN with LSTM

units built on top of it.

6. In theory, using two trackers could have been a good idea and proved useful in measuring

the effectiveness of the IMUs. However, it created extra work with applying the signal pro-

cessing techniques to double the number of files and then merging. Personal opinion dictates

that no advantage was gained from doing this. The bottom device usually produced a much

more accurate signal due to the fact it was held tightly in the correct position as discussed in

section 4.2. Recreating this work with only the bottom devices could be a beneficial activity.

7. It was also discovered very late on in the process (from a different, much smaller attempt at

data collection) that tracker number 2 was faulty and not logging the data correctly. Upon fur-

ther investigation, the signal for this tracker was not what was expected and differed greatly

compared to the signal produced from other trackers. This is highly likely to have had a signif-

icant impact on the results. Removing this tracker’s data will improve the quality of the dataset

and thus the resulting classification and respective accuracies.

8. Unfortunately, there was a delay in receiving the labelled dataset of training the model. As a

Data Scientist a logical solution to overcome this blocking issue (due to time constraints) was

to use a publicly available data set. A dataset on classifying different motions made available

by the University of California [72] was a good alternative. The LSTM algorithm could be

tested using this and the format of this data fit well with the network. The existing data already

available at GRN was used to analyse the signal processing techniques before the dataset be-

came available.

9. There was however not enough time to fully explore different feature engineering aspects

suitable for use in this work. The results of the FFT were not as good as hoped. A Periodogram

or Spectrogram, Discrete Wavelets Transforms and Dynamic Time Warping are among a few

methods for time-series segmentation and feature engineering that could improve the resulting

accuracy measures of the LSTM.

10. Another intention is to eventually use the trackers for group performance rather than just

examining all individuals’ performance. In regards to classifying some more complex motions

group activities such as a line up could be investigated with the classifier. Providing insight

into a team’s performance in addition to an individual’s performance would make any of the

performance management aspects of GRN’s services very attractive to customers.

- 56 -

8.3 Recommendation of Database

When large quantities of data are available, a database makes retrieving and storing the da-

ta a much easier task. A database will structurally organise and capture large quantities of data

by inputting, storing, retrieving and managing information. It saves a data scientist (or any

programmer using data) time, which in turn would save the company money. Working with

such large CSV files was very challenging at times and luckily the Pandas library was able to

cope well with reading in a large number of files to Python.

Postgres is an object relational database management system that would be a good solution.

It uses SQL query language which means that complex joins may be involved when accessing

the data; however, it is a mature and stable piece of software which means it will be very de-

pendable. [75]

Relational databases are very structured and would be able to cope well with the structured

data at GRN. However, it is known that it is not as effective for updating compared to non-

relational database solutions.

Depending upon the size of the data that is being captured Cassandra could be a better al-

ternative. Apache Cassandra is a free and open source, column family, NoSQL database. It has

a simple architecture and robust support is available for clusters by scanning multiple datacen-

tres. It also has no single point of failure so the data is in no danger of being lost. It has been

likened to SQL solutions due to the very similar language CQL used to access the data but

does not have the complete functionality of the SQL language, such as group by commands

etc. Cassandra will be efficient for handling very large volumes of data; however, was not

purpose build for time-series data. [76]

InfluxDB is a database purpose built for time-series data. Once the data has been

timestamped it can be easily stored in the InfluxDB database. It has the ability to handle mil-

lions of data points per second and also has the ability to automate a process for down

sampling data. [77] Other database management solutions that are purpose built for time-series

data include Druid, Prometheus, Open TSB, Riak-TS, and Elasticsearch. [76]

- 57 -

References

[1] L. Steinberg, "CHANGING THE GAME: The Rise of Sports Analytics", Forbes.com,

2017. [Online]. Available:

 https://www.forbes.com/sites/leighsteinberg/2015/08/18/changing-the-game-the-rise-of-

sports-analytics/#7dd2d1954c1f.

[2] "Moneyball", wikipedia.org, 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Moneyball.

[3] Z. Technologies and Z. Technologies, "Sponsored: The sports industry is following pro

football players’ every move", Quartz, 2017. [Online]. Available:

https://qz.com/941307/for-the-nfl-and-industry-real-time-data-is-a-game-changer/

[4] "Technology Will Change the Future of Professional Sports!", The Medical Futurist, 2017.

[Online]. Available: http://medicalfuturist.com/technology-changes-the-future-of-

professional-sports/.

[5] A. Cave, "The potential of sport: a £20 billion industry", The Telegraph, 2017. [Online].

Available: http://www.telegraph.co.uk/investing/business-of-sport/potential-of-sport-

20billion-industry/.

[6] B. Marr, "15 Mind Boggling Facts About Wearables In 2016", Forbes.com, 2017.

[Online]. Available: https://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-

boggling-facts-about-wearables-in-2016/#91688e127323.

[7] "Global Rugby Network | About", Globalrugbynetwork.com, 2017. [Online]. Available:

https://globalrugbynetwork.com/about.

[8] “Data Economy Demands New Approach Antitrust Rules World’s Most Valuable Re-

source”, economist.com, 2017. [Online]. Available:

 http://www.economist.com/new/leaders/21721656-data-economy-demands-new-

approach-antitrust-rules-worlds-most-valuable-resource.

[9] S. Pudwell, "Machine Learning Is The Future Of Sports Data", Silicon UK, 2017.

[Online]. Available: http://www.silicon.co.uk/data-storage/bigdata/machine-learning-data-

206762?inf_by=59c22d4f671db8e5108b47e1

[10] S. Patel, H. Park, P. Bonato, L. Chan and M. Rodgers, "A review of wearable sensors

and systems with application in rehabilitation", Journal of NeuroEngineering and Reha-

bilitation, vol. 9, no. 1, p. 21, 2012.

[11] A. Powell, "Catapult Sports GPS Tracking Comes to Soccer", Gear Patrol, 2017.

[Online]. Available: https://gearpatrol.com/2016/08/31/catapult-gps-system-soccer/.

[12] G. Mairs, "Revealed - rugby's secret science lab", Telegraph.co.uk, 2017. [Online].

Available:

- 58 -

http://www.telegraph.co.uk/sport/rugbyunion/international/england/8527431/Revealed-

rugbys-secret-science-lab.html.

[13] “Wearable Technology for Rugby - Muddy Rhino", Muddyrhino.com, 2017. [Online].

Available: http://muddyrhino.com/wearable-technology-rugby/.

[14] "Machine Learning: What it is and why it matters", Sas.com, 2017. [Online]. Availa-

ble: https://www.sas.com/en_gb/insights/analytics/machine-learning.html.

[15] "Why Is Machine Learning So Popular", Quora.com, 2017. [Online]. Available:

https://www.quora.com/Why-is-machine-learning-so-popular.

[16] J. Brownlee, "Supervised and Unsupervised Machine Learning Algorithms", Machine

Learning Mastery, 2017. [Online]. Available:

 https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-

algorithms/.

[17] B. Marr, "Supervised v Unsupervised Machine Learning: Whats the Differ-

ence", Forbes.com, 2017. [Online]. Available:

 https://www.forbes.com/sites/bernardmarr/2017/03/16/supervised-v-unsupervised-

machine-learning-whats-the-difference/#50032fcb485d.

[18] "Introduction to Semi-Supervised Learning", MIT Press.

[19] "Activity Recognition Challenge - Dataset | Opportunity", Opportunity-project.eu,

2017. [Online]. Available: http://www.opportunity-project.eu/challengeDataset.

[20] A. Akin, S. Bosch, M. Marin-Perianu and P. Havinga, "Activity recognition using in-

ertial sensing for healthcare, wellbeing and sports applications: A survey", Architecture of

computing systems (ARCS), 2010, no. 23, pp. 1-10, 2010.

[21] F. Korbinian, V. Nadales, M. Josefa, P. Robertson and M. Angermann, "Reliable real-

time recognition of motion related human activities using MEMS inertial sensors", 2010.

[22] C. Saisakul, A. Atkins and H. Yu, "Activity classification using a single wrist-worn

accelerometer", Software, Knowledge Information, Industrial Management and Applica-

tions (SKIMA), no 5, pp. 1-6, 2011.

[23] R.A. Samir, D.A. Rafeldt and T.L. Uhl, "Wearable IMU for Shoulder Injury Preven-

tion in Overhead Sports", Sensors 16, no. 11, p. 1847, 2016.

[24] R. Palakodety, "Activity recognition using accelerometer data", Computer Science

Conference for University of Bonn Students, 2015.

[25] C.Y. Yong, R. Sudirman, N.H. Mahmood and K.M. Chew, "Motion Classification Us-

ing Proposed Principle Component Analysis Hybrid K-Means Clustering", Engineering 5,

no. 5, p. 25, 2013.

[26] D.T. Morris, S. Saponas, A. Guillory and I. Kelner, "RecoFit: using a wearable sensor

to find, recognize, and count repetitive exercises", Proceedings of the 32nd annual ACM

conference on Human factors in computing systems, pp. 3225-3234, 2014.

- 59 -

[27] P. Matthias, "Classification of Human Whole-Body Motion using Hidden Markov

Models", arX, vol iv, pp. 1605.01569, 2016.

[28] R. DeVaul and S. Dunn, "Real-time motion classification for wearable computing ap-

plications", 2001.

[29] L. Bao and S. Intille, "Activity recognition from user-annotated acceleration da-

ta", Persuasive Computing (2004), pp. 1-17, 2004.

[30] G. Bailador, D. Roggen, G. Tröster and G. Triviño, "Real time gesture recognition us-

ing continuous time recurrent neural networks", ICST 2nd international conference on

Body area networks, p. 15, 2007.

[31] T.T. Um, V. Babakeshizadeh and D. Kulic, "Exercise Motion Classification from

Large-Scale Wearable Sensor Data Using Convolutional Neural Networks", 2016.

[32] X. Long, B. Yin and R. Aarts, "Single-accelerometer-based daily physical activity

classification", In Engineering in Medicine and Biology Society. EMBC 2009. Annual In-

ternational Conference of the IEEE, pp. 6107-6110, 2009.

[33] F.J. Ordóñez and D. Roggen, "Deep convolutional and LSTMrecurrent neural net-

works for multimodal wearable activity recognition", Sensors 16, no. 1, p. 115, 2016.

[34] C. Stergiou and D. Siganos, "Neural Networks", Doc.ic.ac.uk, 2017. [Online]. Availa-

ble: https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html.

[35] R. Jazefowicz, W. Zaremba and H. Sutskever, "An Empirical Exploration of Recurrent

Network Architectures", mlr press, vol. 37, 2015.

[36] A. Karpathy, "The Unreasonable Effectiveness of Recurrent Neural Net-

works", github.io, 2015. [Online]. Available: http://karpathy.github.io/2015/05/21/rnn-

effectiveness/.

[37] J. McCaffrey, "Understanding Neural Network Batch Training: A Tutorial", Visual

Studio Magazine, 2014. [Online]. Available:

 https://visualstudiomagazine.com/articles/2014/08/01/batch-training.aspx.

[38] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory", Neural Computation,

vol. 9, no. 8, pp. 1735-1780, 1997.

[39] M. Sundermyer, R. Schlüter and H. Ney, "LSTM Neural Networks for Language

Modeling", Thirteenth Annual Conference of the International Speech Communication

Association, 2012.

[40] A. Colah, "Understanding LSTM Networks", Colah.github.io. [Online]. Available:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[41] "Pandas 0.20.3: Python Package Index", Pypi.python.org, 2017. [Online]. Available:

https://pypi.python.org/pypi/pandas/.

[42] "Signal processing (scipy.signal) — SciPy v0.19.1 Reference Guide", Docs.scipy.org,

2017. [Online]. Available: https://docs.scipy.org/doc/scipy/reference/signal.html.

- 60 -

[43] "MATLAB - MathWorks", Uk.mathworks.com, 2017. [Online]. Available:

 https://uk.mathworks.com/products/matlab.html.

[44] "What are the Comparative Pros and Cons of Using Python MATLAB Octave and R

for Data Analysis and Machine Learning", Quora.com, 2017. [Online]. Available:

https://www.quora.com/What-are-the-comparative-pros-and-cons-of-using-Python-

MATLAB-Octave-and-R-for-data-analysis-and-machine-learning.

[45] "R: What is R?", R-project.org, 2017. [Online]. Available: https://www.r-

project.org/about.html.

[46] "R: Geosphere package", R-project.org, 2017. [Online]. Available: https://cran.r-

project.org/web/packages/geosphere/geosphere.pdf.

[47] "Python Release Python 3.5.2", Python.org, 2017. [Online]. Available:

https://www.python.org/downloads/release/python-352/.

[48] "conda 4.0.2 : Python Package Index", Pypi.python.org, 2017. [Online]. Available:

https://pypi.python.org/pypi/conda/4.0.2.

[49] "Project Jupyter", Jupyter.org, 2017. [Online]. Available: http://jupyter.org/.

[50] A. Anisin, "Comparing Python and R for Data Science", Data Science Blog by Dom-

ino, 2017. [Online]. Available: https://blog.dominodatalab.com/comparing-python-and-r-

for-data-science/.

[51] "TensorFlow", TensorFlow, 2017. [Online]. Available: https://www.tensorflow.org/.

[52] "Amazon Web Services (AWS) - Cloud Computing Services", Amazon Web Services,

Inc., 2017. [Online]. Available: https://aws.amazon.com/.

[53] "AWS Marketplace: Deep Learning AMI Amazon Linux Version", Aws.amazon.com,

2017. [Online]. Available: https://aws.amazon.com/marketplace/pp/B01M0AXXQB.

[54] S. Wang and X. Yao, "Multi-Class Imbalance Problems: Analysis and Potential Solu-

tions", IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, no. 424,

pp. 1119-1130, 2012.

[55] "MPU-9250 Product Specification Revision 1.1", invensense.com, 2015. [Online].

Available: https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-

v1.1.pdf.

[56] "WHAT IS THAT BUMP AT THE BACK OF THE LIONS JERSEYS? | Catapult

UK", Catapultsports.com, 2017. [Online]. Available:

http://www.catapultsports.com/uk/media/what-is-that-bump-at-the-back-of-the-lions-

jerseys/.

[57] D. Anguita, A. Ghio, L. Oneto, X. Parra and J. Reyes-Ortiz, "A Public Domain Dataset

for Human Activity Recognition using Smartphones", ESANN, 2013.

[58] "scipy.signal.medfilt — SciPy v0.19.1 Reference Guide", Docs.scipy.org, 2017.

[Online]. Available:

- 61 -

 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html.

[59] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola and I. Korhonen, "Activity

classification using realistic data from wearable sensors", IEEE Transactions on infor-

mation technology in biomedicine, vol. 10, no. 1, pp. 119-128, 2006.

[60] "scipy.signal.butter — SciPy v0.14.0 Reference Guide", Docs.scipy.org, 2017.

[Online]. Available:

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.butter.html.

[61] "scipy.signal.filtfilt — SciPy v0.14.0 Reference Guide", Docs.scipy.org, 2017.

[Online]. Available:

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.filtfilt.html.

[62] J.M. Molina, J. Garcia, A.C. Bicharra Garcia, R. Melo and L. Correia, "Segmentation

and classification of time-series: Real case studies", International Conference on Intelli-

gent Data Engineering and Automated Learning. Springer, 2009.

[63] "What is the difference between numpy.fft and scipy.fftpack?", Stackoverflow.com,

2017. [Online]. Available: https://stackoverflow.com/questions/6363154/what-is-the-

difference-between-numpy-fft-and-scipy-fftpack.

[64] "Linear algebra (numpy.linalg) — NumPy v1.13 Manual", Docs.scipy.org, 2017.

[Online]. Available:

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.linalg.html.

[65] D. Kingma and J. Ba, "Adam: A method for stochastic optimization", arXiv, no.

14126980, 2014.

[66] J. Brownlee, "Why One-Hot Encode Data in Machine Learning?", Machine Learning

Mastery, 2017. [Online]. Available: https://machinelearningmastery.com/why-one-hot-

encode-data-in-machine-learning/.

[67] A. Ng, "Sparse Autoencoder", web.stanford.edu, 2017. [Online]. Available:

http://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf.

[68] C. Raffel, "Neural Network Hyperparameters", Colinraffel.com, 2017. [Online].

Available: http://colinraffel.com/wiki/neural_network_hyperparameters.

[69] "sklearn.model_selection.train_test_split — scikit-learn 0.19.0 documenta-

tion", Scikit-learn.org, 2017. [Online]. Available: http://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html.

[70] A. Casson, A. Vazquez Galvez and D. Jarchi, "Gyroscope vs. accelerometer measure-

ments of motion from wrist PPG during physical exercise", ICT Express, vol. 2, no. 4, pp.

175-179, 2016.

[71] S. Fortmannn-Roe, "Understanding the Bias-Variance Tradeoff", Scott.fortmann-

roe.com, 2017. [Online]. Available: http://scott.fortmann-roe.com/docs/BiasVariance.html.

- 62 -

[72] "UCI Machine Learning Repository: Human Activity Recognition Using Smartphones

Data Set", Archive.ics.uci.edu. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

[73] guillaume-chevalier, "LSTM-Human-Activity-Recognition", GitHub, 2016. [Online].

Available: https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition.

[74] M. Deutsch, G. Kearney and N. Rehrer, "Time – motion analysis of professional rugby

union players during match-play", Journal of Sports Sciences, vol. 25, no. 4, pp. 461-472,

2007.

[75] "Ask HN: What DB to use for huge time series?", Hacker News, 2017. [Online].

Available: https://news.ycombinator.com/item?id=8368509.

[76] Netsil, "A Comparison of Time Series Databases and Netsil’s Use of Dru-

id", blog.netsil.com, 2017. [Online]. Available: https://blog.netsil.com/a-comparison-of-

time-series-databases-and-netsils-use-of-druid-db805d471206.

[77] "InfluxData: The leading Platform for Monitoring & Analytics", InfluxData, 2017.

[Online]. Available: https://www.influxdata.com/products/.

- 63 -

Appendix A

The motions being classified in this work are further explained by the following operational

definitions [74]:

 Stand - standing without travelling any further forward or backward, the participant

should not be involved in any other motions. Small natural movements that were not

purposeful were allowed, such as shaking out legs, stretching and turning sideways.

 Walk – walking forwards at a pace that felt natural for the participant without much

haste. One foot was in contract with the ground at all times.

 Jog – running in a forwards direction at a slower pace (no particular haste) and no arm

drive

 Cruise – running in a forwards direction, with a pace faster than a jog but still not ex-

erting to maximal effort (3/4 pace).

 Sprint – high impact running, in a forwards direction, participant should do so with

maximal effort.

 Vertical jump – jumping in an upwards direction without travelling forwards or back-

wards.

 Horizontal jump – jumping whilst moving in a forwards direction with arm drive.

- 64 -

Appendix B

Distribution of the Training and Test Data

Raw accelerometer X signal vs the final filtered signal of participant one’s

top device

- 65 -

Appendix C

Python code for the Butterworth Filters

def butter_lowpass(self, cutoff, nyq_freq, order=3):

 """ Building the Butterworth filter with the frequency.

 The cutoff freq is the number of Hz that is used to filter out any

 data above this threshold

 Nyquist frequency (nyq_freq) is 1/2 of the sampling rate

 """

 normal_cutoff = float(cutoff) / nyq_freq

 b, a = signal.butter(order, normal_cutoff, btype='lowpass')

 return b, a

def butter_lowpass_filter(self, data, cutoff_freq, nyq_freq, order=3):

 """ This function will apply the 3rd order low pass Butterworth filter

 to the specified data.

 """

 b, a = self.butter_lowpass(cutoff_freq, nyq_freq, order=order)

 y = signal.filtfilt(b, a, data)

 return y

- 66 -

Python code for the LSTM algorithm

def LSTM_RNN(_X, _weights, _biases):

 """ The LSTM Network.

 Function returns a TensorFlow LSTM (RNN) artificial neural

 network from given parameters. Moreover, two LSTM cells are

 stacked which adds deepness to the neural network.

 """

 # input shape: (batch_size, n_steps, n_input)

 # permute (swap) n_steps and batch_size

 _X = tf.transpose(_X, [1, 0, 2])

 # Reshape to prepare input to hidden activation

 # new shape: (n_steps*batch_size, n_input)

 _X = tf.reshape(_X, [-1, n_input])

 # Linear activation

 # new shape: n_steps * (batch_size, n_hidden)

 _X = tf.nn.relu(tf.matmul(_X, _weights['hidden']) + _biases['hidden'])

 _X = tf.split(_X, n_steps, 0)

 # Define two stacked LSTM cells (two recurrent layers deep)

 lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(n_hidden,

forget_bias=1.0, state_is_tuple=True)

 lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(n_hidden,

forget_bias=1.0, state_is_tuple=True)

 lstm_cells = tf.contrib.rnn.MultiRNNCell(

[lstm_cell_1, lstm_cell_2], state_is_tuple=True)

 # Get LSTM cell output

 outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X,

 dtype=tf.float32)

 lstm_last_output = outputs[-1]

 # Linear activation

 return tf.matmul(lstm_last_output, _weights['out']) + _biases['out']

