Accelerating Financial
Evaluations using Haskell
and the GPU

Alex Olivier Appetiti

Bit of Background

Prudential is an investments/insurance
company.

\ A common task for them is to
evaluate the estimated value of a

f financial product they want to sell
? \/ for many different parameters.

PRlDENTIAL

Bit of Background

Currently, they do
these calculations on
a large cluster of
computers using a
program called Moses
(written in C++)

Bit of Background

... and it takes them a long time

Bit of Background

They are interested in
seeing how to make these
simulations run faster.

e More simulations
e More precise simulations

Can Hardware Solve the Problem?

Can Moore’s Law 322:«?:1?iﬂgﬁoﬂransistmboughlperS '* O
save us?? L.

2015*

2012 2014*

*Forecast Source: Linley Group

Enter Multicore... or better yet...

Do many things at
once, instead of
one thing at a
time very quickly!

Use a GPU!

The core’s of a
GPU have become
more powerful
with time... and
they have many
many cores!

And Why Haskell?

Haskell is a functional programming language
Maps well to mathematical problems, often
more elegant solutions!

For example...

Quicksort..

// To sort array a[] of size n: gsort(a,0,n-1)
void gsort(int a[], int lo, int hi)
int h, 1, p, t;

if (lo < hi) {
~ iy

do {
while ((1 < h) && (a[l] <= p))
1 = 141;

while ((h > 1) && (a[h] >= p))
h = h-1; S.

if (1 <h) {
t = a[l];
afl) = a(h);
alh] = t;

}
} while (1 < h);

afhi] = a[l];
a[l]) = p;

Quicksort...

quicksort :: Ord a => [a] -> [a]
quicksort [] =[]
quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)
where
lesser = filter (< p) xs
greater = filter (>= p) xs

Other Advantages...

No pointer manipulations.
Functions as first class citizens.
Automatic memory management.
Strong Static Typing.

Accelerate!

It’s Pretty, but is it Fast?

Black Scholes

28 Il OpenMP C
(Quad Core)

M C (Single)

B Haskell
(Single)

M Accelerate
Haskell
(GPU)

Time

0 ——
100000 1000000 1900000 2800000 3700000

Input Size

Cont..

Dot Product
0.028 mc
W OpenMP C
[Accelerate
0.021 Haskell
o
E 0.014
S
0.007

0
4000000 8000000 12000000 16000000 20000000

Input Size

Next Step: Cash Flow Valuation!

Any questions?

