
 1

Services and Policies for Care At Home

Feng Wang, Liam S. Docherty, Kenneth J. Turner, Mario Kolberg, Evan H. Magill
Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

Email fw, lsd, kjt, mko, ehm @cs.stir.ac.uk

Abstract It is argued that various factors including the increasingly
ageing population will require more care services to be delivered to
users in their own homes. Desirable characteristics of such services
are outlined. The Open Services Gateway initiative has been adopted
as a widely accepted framework that is particularly suitable for
developing home care services. Service discovery in this context is
enhanced through ontologies that achieve greater flexibility and
precision in service description. A service ontology stack allows
common concepts to be extended for new services. The architecture
of a policy system for home care is explained. This is used for
flexible creation and control of new services. The core policy
language and its extension for home care are introduced, and
illustrated through typical examples. Future extensions of the
approach are discussed.

Index Terms Home Care, Open Services Gateway initiative, Policy-
Based Management, Service Discovery.

I. INTRODUCTION AND MOTIVATION

A. Background
It is evident from Government and research statistics that the
age distribution in many Western countries is shifting
dramatically towards an older population. This factor alone
will have an enormous impact on the demands for care
services. Resource pressures and economic considerations are
already driving many countries to look for new ways of
delivering care services to greater numbers of people.

An emerging trend is increased use of network-based
services for care delivery to the home. The last five years has
seen major breakthroughs in bandwidth, availability and price
of communications to and within the home. All of these make
home care delivery a more feasible proposition. With the
stabilisation of broadband and wireless, plus advances in
assistive technologies, there is a real opportunity to create
home care networks tailored to the needs of individuals.

Research indicates that the next generation of care
products and services must provide personalised solutions
across distributed networks, where care professionals or
informal carers can monitor an individual’s welfare and well-
being in their own home. This will allow users to benefit from
linked care services and household services, helping users to
prolong an independent existence in their own homes.

The research described in this article aims to deliver care
services locally to end users. It exploits a number of
technologies of value in pervasive healthcare such as wireless

networks, distributed communication, ontologies, policy-
based management, and service-oriented architecture.

The work reported here was undertaken by the MATCH project at Stirling,
supported by the Scottish Funding Council and the participating Universities.

B. Research Challenges
Designing systems for care at home presents both
technological and sociological challenges for researchers. The
requirements for a home care system include the following
aspects.

Easy Configuration The developers must allow for lack
of technical knowledge among home users and the
organisations that support them (e.g. health centres, social
work departments). Automated configuration and remote
management are needed to allow for easy installation and
maintenance. Customisation and personalisation are essential
to meet the needs of end users. Home visits are costly in staff
time (especially in rural areas), and must be minimised

Easy Access The system needs to provide accessible and
understandable user interfaces, no more complex than
everyday domestic appliances. Conventional input devices
(keyboard, mouse) are less suitable for non-technical users. A
home care system should offer natural interfaces that exploit
other modalities (e.g. speech, sound and touch). This is even
more important where the end user has physical or mental
impairments, whether through ageing or through illness.

Stakeholder Interests Many parties may be involved in
home care: end users, health centres, community nurses, social
workers, informal carers and family members. The interests of
these stakeholders may conflict at a high level due to differing
goals, or at a low level due to different technical implications.
A home care system must provide mechanisms to support
detection and resolution of such conflicts.

Technology Integration Many network technologies,
device technologies and assistive technologies are available.
An effective home care solution must be able to accommodate
and integrate these. For example, there are many approaches
to home networks such as ANSI X10 (powerline
communication), the European Installation Bus, ETSI 300-220
(wireless communication), and UPnP (Universal Plug-and-
Play).

C. Approach
Pervasive (or ubiquitous) computing has attracted
considerable research and industrial interest (e.g. [1, 2, 3]).
Many approaches to pervasive computing require specialised
expertise for customisation or upgrading. Pervasive
computing techniques have been applied in clinical settings
(e.g. [4, 5]). There has been little research on pervasive
computing for care at home, though some projects (e.g. [6])
are investigating sending the patient’s medical data back to a

 2

care centre.
The authors believe that care at home requires much more

than just relaying sensor data. A complete solution should be
well integrated into the home and into the end user’s lifestyle.
Several commercial offerings support care at home. However
such products follow proprietary rather than open
architectures, and usually require specialised personnel to
install and configure them.

The authors are part of a multi-partner team working on
the MATCH project (Mobilising Advanced Technologies for
Care at Home, www.match-project.org.uk). The mission of
this project is to develop advanced software technologies in
support of health and social care at home. MATCH is focusing
on four technology areas of particular relevance to this goal:
home network services, lifestyle monitoring, speech
communication, and multimodal interfaces.

The authors have observed that approaches to smart
houses and home care often focus on building smart devices.
Such devices are specialised for particular functions, and do
not lend themselves to well to other uses or to combination
with other devices. The philosophy of the MATCH project is,
as far as practicable, to use off-the-shelf, relatively dumb
devices. This allows simple devices to be used to create smart
services. Because this is achieved by software rather than
hardware, new services and configurations are easily
achieved.

This paper concentrates on one aspect of the MATCH
project: service provision and management in home networks.
OSGi (Open Service Gateway Initiative [7, 8]) has been
selected as an industry-recognised approach to service
provision. OSGi is neutral with respect to network
technologies, and already supports a number of industry
standards. Although originally conceived for service delivery
to the home, OSGi has also been enthusiastically adopted for
other applications such as automobile services.

Two key issues in home care networks are service
discovery and policy-based management. Service discovery
requires fine-grained description combined with flexibility.
Policies are needed to let a variety of stakeholders state how
they wish care services to be managed.

Section II introduces the technical background to the work
reported here. Section III provides an overview of the home
care system that has been designed. The approach to service
discovery is discussed in section IV. Policy-based
management of home care services is described in section V.
Finally, section VI summarises initial experience of the
approach and discusses future work.

II. BACKGROUND AND RELATED WORK

A. Positioning of The Research
The MATCH project is distinguished in a number of respects.
The emphasis is on delivery of care services to the home.
Social care plays a dominant role, though healthcare issues are
also accommodated. This requires a wide range of situations
in the home to be monitored and managed. For a similar
reason, assistive technologies are also important. MATCH is
interfacing to healthcare monitoring devices rather than

developing them.
MATCH is focused on home care services. As a result, the

MATCH approach needs to be seen in the context of home
network architectures rather than healthcare information
systems. The work on smart houses tends to concentrate on
home automation (e.g. appliances, entertainment, security).
Delivery of care is of lesser interest. Smart houses often
emphasise device control, with service provision being
secondary.

OSGi is ideal for MATCH as the approach is vendor-
neutral, device independent, and focused on service provision.
The designers of OSGi envisaged healthcare and self-care as
important applications. Several projects have applied OSGi to
healthcare, e.g. e-HealthCare (ehealth.sourceforge.net), Home
HealthCare (www.ida.liu.se/%7estuha/anna-web/projects/
HHC-overview.htm) and SAPHIRE [20]. However, healthcare
is not the main focus of MATCH. As far as the authors are
aware, its emphasis on social care using OSGi is unique.

[18] defines a widely used standard for exchange of
healthcare information. This is supported by open-source
projects like MIRTH (www.mirthproject.org). A middleware
standard for healthcare information systems is defined in [19].
This addresses middleware for storage and retrieval of shared
healthcare data. The Continua Health Alliance
(www.continuaalliance.org) is particularly concerned to
ensure interoperability of telecare solutions. A number of
specifications have been developed to support healthcare
applications of CORBA (Common Object Request Broker
Architecture). However, all these approaches are exclusively
for healthcare applications (typically electronic patient
records), and so are of only peripheral relevance to MATCH.

Other differentiating factors in MATCH include the use of
ontologies to enhance discovery of home care services, the use
of policies to manage these services, and the fusion of
multiple disciplines (e.g. activity monitoring, home networks,
multimodal interfaces, speech technology, stakeholder
analysis).

B. Open Services Gateway Initiative
OSGi defines a standardised, component-oriented execution
environment for Java applications running on networked
devices. An OSGi application (called a bundle) is a collection
of software components rather than a monolithic chunk of
code. The core of OSGi is a framework that manages the life-
cycle of bundles, as well as providing important common
services. Bundles can be installed, updated, started, stopped,
and removed without stopping the platform. This is an
important advantage for home care applications. Bundles can
share code by exporting and importing packages. They can
also use functionality provided by other bundles at run-time
through a service registry.

On top of the framework, OSGi provides many standard
services such as package administration, device access,
protocol support (e.g. Jini, UPnP, X10), and miscellaneous
capabilities such as an HTTP service and XML parsing.
Remote management supports remote deployment, monitoring
and maintenance of unattended devices. These facilities
greatly simplify the process of developing solutions for home
care.

http://www.ida.liu.se/%7estuha/anna-web/projects/

 3

C. Service Discovery
Service discovery within OSGi is limited to finding an
implementation of a given service interface. LDAP
(Lightweight Directory Access Protocol) may optionally be
used to discriminate among multiple implementations. In a
pervasive environment, it is likely that context information
will be more important for service discovery rather than
properties of the service implementation. Contextual
information includes the characteristics of a service with
respect to its environment. The standard OSGi approach to
service discovery uses simple key/value property pairs that are
registered with the framework along with the service
implementation. This method restricts the description to the
service implementation, i.e. its technical characteristics.
Ambiguities may arise due to inconsistency in concepts. For
example, location may mean the URL from which a bundle
was loaded or the physical location of a device controlled by
the bundle. [9] highlights ambiguity as one of the potential
problems when performing service discovery in OSGi.

Ambiguous descriptions could perhaps be avoided by
using unique URIs to identify service properties. However, it
is hard to make this work in practice. Even in natural
language, similar terms can be used with the same meaning,
and the same term can be used with different connotations. It
is therefore problematic to make automated service discovery
work reliably.

Semantic descriptions are popular for web services.
Semantically-based description languages for web services
include SWSF (Semantic Web Services Framework) and
OWL-S (Web Ontology Language with semantic markup for
services). These aim to support standard ways of describing
services and interacting with them, though at present they are
still under development. Protocols such as UPnP contain
service and device descriptions in an XML format. However
unlike OWL-S, these are fixed and cannot evolve as new
information is added.

Ontologies have become popular as the basis for consistent
communication among agents and web services. RDF
(Resource Description Framework) and its associated RDFS
schema can be used to ascribe meaning to data. DAML+OIL
(DARPA Agent Markup Language plus Ontology Interchange
Language) and OWL allow more expressiveness and
functionality. The OWL-DL description logic supports logical
inference and reasoning, allowing inconsistencies to be
discovered and new information to be inferred.

[10] describes a middleware architecture for enhancing
service descriptions in an OSGi framework, using XML
descriptions of service behaviour. This approach concentrates
more on how a service behaves, rather than on what the
service offers. The solution in the current paper gives a fuller
description of services, including a complete description of
their effects.

The need for context awareness within a networked
environment is emerging as a relatively new area of research.
Some efforts (e.g. [1, 11, 12]) use real-time context
information to aid in system decision-making. Other work
(e.g. [13, 14]) uses ontologies to describe context terms within
the environment. The authors’ approach differs in using

service-oriented context information, instead of just
application or system aspects.

D. Policy-Based Management
Policy-based management has been applied to a number of
areas, including the management of networks/distributed
systems [15, 16] and system configuration [9]. However the
target users of most policy systems are IT professionals who
can be expected to have specialised technical knowledge.

One exception is the policy system developed by the
ACCENT project [17], which was developed for end users to
manage their calls. Call control policies are in ECA form
(Event-Condition-Action). When the given combination of
triggers occurs under defined conditions, the specified actions
are performed. Conditions make use of so-called environment
variables. These may be established by a trigger, by a context
system (e.g. user role, capability), or by the policy server (e.g.
current time, policy preference). A policy wizard allows
policies to be defined by non-technical users using stylised
natural language.

The ACCENT policy system is designed to be neutral with
respect to triggers, conditions and actions. This reflects the
fact that any policy language it supports has a core structure
that is then specialised for different applications. The system
is also designed to be generic in that it deals with ‘servers’ via
a defined API. In call control, the policy system is interfaced
to communications servers that handle with the underlying
networks.

Since the authors had direct access to the ACCENT system,
it was of interest to see if this could be adapted for home care
policies. This has proven to be practicable, though not entirely
straightforward. Triggers may arise from a wide variety of
sensors in the home, while actions may apply to many
different kinds of actuators. In call control, state is implicit
(being managed by a communications server). For home care,
the policy system has to be aware of the system configuration
and state. Call control also does not involve correlation across
different calls, whereas the activities of home devices
typically have to be coordinated.

III. HOME CARE SYSTEM OVERVIEW
A high-level view of the system architecture is shown in
figure 1. Inputs come from sensors in a broad sense: physical
devices as well as logical information sources and user inputs.
Outputs go to actuators that may similarly be physical, logical
or user-oriented. Home services and device control are located
in what OSGi terms a residential gateway. This is linked to the
outside world, typically via a broadband connection to the
Internet. However, for some purposes it is convenient to link
to a cellular network – either directly or via an Internet
gateway. This reflects the strong interest in using mobile
devices for symptom monitoring. These typically make use of
digital phone systems such as GPRS (General Packet Radio
Service) or UMTS (Universal Mobile Telecommunications
System).

Subject to user agreement, information from the home can
be sent to a variety of care providers: health centres, social
work departments, and informal carers. Information can also

 4

flow from care providers to the home. However, many other
Internet-based sources of information can be used in the home

(e.g. weather reports about severe conditions).
An obvious concern with any networked system is

security. Unauthorised access must be prevented to the home
system and the data it collects. OSGi provides a general
security framework that is being extended to meet the needs of
home care. This is coupled with security policies that define
who may configure devices and services, who may use what
data for what purpose, etc.

The home care devices supported include general ones
(e.g. flood detectors, movement sensors) as well as specialised
assistive technology devices (e.g. epilepsy monitors, fall
detectors). The MATCH project is also investigating a range of
modalities such as speech communication, non-speech audio,
haptic (touch) devices, and analysis of tremor and gait. Speech
has obvious applications for input (voice commands) and for
output (synthesised reminders and advice). However, speech
communication for care at home presents particular
challenges. Due to age or illness, users may speak unclearly or
may have hearing limitations. Speech recognition in a home
environment is also difficult. Non-speech interfaces must also
be designed to meet the needs of target users.

With user consent, data about health and lifestyle can be
captured and stored within the home. Policies control what
information may be recorded, processed, and released to
approved third parties. Lifestyle monitoring can make use of
such information to detect significant variations from the
norm, and to determine long-term trends such as deterioration
in user capabilities. Research in activity monitoring and
lifestyle modelling has shown exciting potential. It enhances
the understanding of activities that affect quality of life, and
how changes in these activities influence the independence of
older or infirm people. The results from lifestyle monitoring
allow user needs and well-being to be monitored, so that
external help can be sought in good time. Activity tracking
and modelling are being extended to give users and their
carers more confidence while they are out and about. This
helps users to remain mobile and active.

The home care system is not closed. Instead, it is
connected to external care parties through the Internet or other
data networks. Call centres currently use a restricted range of
services such as telephony. It is planned to extend the range
of services to include aspects such as remote health
monitoring and telecare, remote system management, and
remote configuration. An advantage of the approach is that
the configuration of home devices need not be fixed in
purpose. The project is developing a goal-directed, top-down
approach that configures devices and their combination to
achieve specific purposes. For example, a movement sensor
may be used to support many goals such as security,
monitoring room usage, noting household entry/exit,
controlling lighting, and activating nearby appliances.

IV. SERVICE DISCOVERY

A. Ontology-Based Service Description and Discovery
Home care relies on a variety of services to control devices,
provide care, and support management using policies. There
is a need for service discovery, particularly in support of
automated configuration and goal-directed configuration. As
noted earlier, conventional OSGi service discovery suffers
from problems of inconsistency and ambiguity in service
description. The authors’ preferred approach is to use
ontologies that provide a uniform and semantically-based way
of describing services and the concepts they need. Ontologies
offer the consistency and reusability required. Ontology-based
service descriptions are rich enough to capture context
information about a service, allowing for more expressive
service description and discovery.

Use of ontologies ensures consistency among services
developed by different parties. An ontology describes the
concepts and their relationships within a given domain – here,
home care. Developers can extend this ontology when
creating new services. For example, a generic ontology can
define the characteristics of location. This can then be
specialised for new purposes, e.g. to talk about absolute,
relative or network location.

OWL (and its variants) are appropriate for defining
ontologies in home care. Apart from expressiveness, OWL is
endorsed by the W3C and is well supported by tools.

It is unlikely that a single ontology would be sufficient in
capturing all concepts and properties in a domain that
continues to evolve. This is an issue in home care, where the
configuration of devices and services needs to adapt to the
changing needs of users. Ontologies allow concepts and
properties to be readily modified to match an evolving
domain.

In the area of service description, suppose a new lighting
service were developed after an initial service description
ontology had been created. A developer could use concepts
from the initial ontology as well as concepts created
specifically for the new service. Languages like OWL allow a
base ontology to be imported and extended. Home care is a
rapidly evolving application domain, with new devices and
services constantly under development As an understanding of

Residential
Gateway

Inputs Outputs Storage

Healthcare Social Work Informal Care

Cellular
Network Internet

Figure 1. High-Level Architecture for Home Care

 5

home care evolves, common concepts can be moved from
more specialised ontologies into the shared base.

Currently, service discovery in OSGi is limited to queries
about service properties. An ontology has been developed for
home care services, capturing information about technical
aspects of a service as well as the context of its use. This
supports queries where the effect of a service rather than its
implementation are important. As an example, suppose that an
application wished to control temperature in a room with
windows. The issue here is that room temperature is affected
by more than just heating or air conditioning. Windows let in
sunshine, which heats a room. Windows allow heat to escape
by radiation and conduction. Windows can also be opened to
equalise the internal and external temperatures. A heating
application therefore needs to be able to discover which rooms
in the house have windows, and which of these rooms have
temperature control services.

In a pervasive environment, the authors believe that
current OSGi service discovery mechanisms are too limited.
Context-dependent queries founded on ontology-based service
descriptions provide a more robust and expressive approach.

B. Service Properties
Using the results of service discovery requires an
understanding of how to use the returned services and what
their effect is. A basic approach provides only information
about the interface to a services – its syntax. For example, it
may be discovered how to call a temperature control service,
but other effects of this may not be known. Thus, heating one
room may be countered by trying to cool an adjacent room. A
cost-effective way of cooling a room in summer may be to
open the windows, but this could compromise security.

Such side effects are described using an ontology for
service description. This results in a fuller description of
services, including their primary functions as well as
secondary or side effects. This allows the requester to be more
precise about the home care service required. More
interestingly, it supports automated detection of undesirable
conflicts among services. In a home setting, it is likely that
services will be developed by independent vendors. This is
already the case, with current offerings including services for
security, climate control, energy monitoring, and
entertainment. As already mentioned with temperature control
vs. security, independent services may inadvertently interfere
with each other. This is a well-known issue in telephony,
where it is called the feature interaction problem. In policy-
based management, such interference is referred to as policy
conflict.

OSGi provides a security manager that restricts access to
implementations of a particular interface. While appropriate
for certain service types such as home security, this can be too
coarse-grained for some services. Authorisation and access are
therefore defined as part of the generic service ontology.
Service discovery and usage can then be controlled. An
authorisation hierarchy (lattice) allows finer-grained
management. For example, services with limited privileges are
not allowed to discover or to use more strictly controlled
services. Security is enforced by the service implementation
rather than its interface.

C. Ontologies for Home Care Services
The authors have developed a number of OWL ontologies to
support more precise and expressive service discovery. These
ontologies represent the essential characteristics of home care
services deployed using OSGi. The ontologies are
intentionally abstract. For example, the base ontology
describes general concepts like vendor, location, service type
and environment. These are then defined in more detail by
ontologies specific to these concepts. Thus, the generic notion
of location is extended to allow relationships among rooms to
be expressed (such as ‘next to’). Similarly, the generic notion
of service type is extended to talk about service authorisation
and secondary effects (linked to effects in the environment
ontology). The approach thus gives both an abstract and a
detailed view of the same ideas.

The collection of ontologies is referred to as a service
ontology stack, as illustrated in figure 2. Using these
ontologies, developers can create their own service
descriptions – by customising one of the service type
ontologies provided, or by using concepts from lower-level
ontologies. This allows home care services to be given more
expressive descriptions.

However, the service descriptions cannot be used directly

by OSGi. A semantic service discovery bundle has been
created using the Jena2 Semantic Web Toolkit
(jena.sourceforge.net). Jena stores and reasons about service
ontology descriptions, and supports queries about services.
This bundle works in conjunction with the current OSGi
service registry, as shown in figure 3.

Developer-Defined Ontology

Figure 3. Semantic Service Discovery

 Service Providers Service Users

register
service

discover
service

upload
description

service
usage

OSGi Service
Registry

Semantic Service
Discovery

get
implementation

Base Ontology

Service Type Ontologies

Vendor
Ontology

Location
Ontology

Service Type
Ontology

Environment
Ontology

Figure 2. Service Ontology Stack

 6

A requester can submit queries to the semantic service
discovery bundle. This fully-qualified class
names for matching servic ithin the framework. A
requester ve to include authorisatio ion to
discover services that are strictly controlled. On receiving
fully es, the requester m ection
an l OSG disco g the
se LDAP tains
the desired service implementation. If a service is removed
from the O ework, the semantic service discovery
bundle is not that it can remove th
description from egis

The semantic servic e also provides
methods for a service to ts ontology description,
allowing cont namically.
Using the identifier,
sem

This
provides a set for
each app

 must allo olicy definition in a variety
of applications, domain-specific knowledge must be factored
out. This is achieved by stem called POPPET (Policy
Ontolog g Progra xtensibl ion). This
uses ontol for a fferent reason their use
in service discovery. In this case, ontologies are used to
capture th about home
care. The core APPEL language has its own ontology hat is
ext

wing the user to select pre-defined
pol

er a service is online.

.

 returns results as
e instances w

may ha

qualified class nam

n informat

akes a sel
d performs norma
rvice name and class nam

i service very, supplyin
 query. This obe in an

SGi fram
ified so

 its r
e relevant ontology

try.
e discovery bundl

modify i
ext information to be changed dy

fully qualified class name as a unique
antic service discovery updates obsolete information.

V. POLICY-BASED SYSTEM MANAGEMENT

A. Policy System Design
To support better flexibility and control, home care services
are managed by a policy system. This allows users to
formulate policies for how they wish the care system to
behave. In fact, a user in this context means a range of
stakeholders including end users, care providers and informal
carers. The policy system is part of the residential gateway
shown in figure 1. It is integrated into the OSGi framework,
interacting with it to manage devices and services.

Figure 4 shows the architecture of the policy system. The
inputs and outputs are as discussed for figure 1; they include
physical devices, but also interactions with users and services.

Policies are expressed in a language called APPEL
(ACCENT Project Policy Environment/Language).

 of core constructs. APPEL is then specialised
lication domain by defining the triggers, conditions

and actions in that domain.
The policy store holds policies internally as XML

documents that conform to the APPEL schema. However, the
policy system must support non-technical users. The policy
wizard is therefore vital as an easy-to-use way of creating,
modifying and deleting policies. The wizard allows policies to
be formulated and edited using stylised natural language. The
wizard is web-based, partly because this is now familiar to
many users, and partly because policies can then be edited
remotely. However, it is recognised that a textual web
interface may not be suitable for all users. Other approaches
being considered for the policy wizard include a graphical
interface and a speech-based one.

Since the wizard w p

 a sy
m – E
 very di

y-Parsin
ogies, but

e Translat
from

e concepts and relationships for policies
 t

ended by an ontology for the wizard. Finally, a domain-
specific ontology sits on top of this. The wizard uses POPPET
to discover the specific kinds of policies that may be
formulated in a domain.

The policy wizard offers a number of simplifications for
ease of use. In fact a user need not define policies in order to
benefit from them; the policy system administrator may define
policies on behalf of a group of users. The administrator also
manages user profiles that include user expertise. This affects
how much of the policy language the user sees, a novice user
being presented with just the basics. A range of template
policies is provided, allo

icies rather than having to create them from scratch. These
policies may have a few parameters that the user is expected
to complete (e.g. a name or telephone number). Alternatively,
policies may be parameterised by variables that are
instantiated at run time. These variables are defined separately
from policies, either manually through the wizard or
automatically through the system.

Apart from policies, the policy store holds user profiles,
the system configuration, and the system state. Configuration
information is necessary so that policies can refer
symbolically to things like ‘the front door’, ‘the community
nurse’ or ‘the security service’. System state is needed so that
policies can be interpreted dynamically in context. Status
variables keep track of device and service state, such as
whether a bed is occupied or wheth

The home server provides the communication mechanism
between home devices and the policy system. Components
communicate with the policy system by sending or receiving
events. These contain a trigger name and a set of attributes.
For example, a UPnP passive infrared sensor sends out
movement events with attributes identifying the source of the
event. An X10 dimmer module accepts actions with attributes
such as the house code, the unit code and the dimming level

Policy
Wizard

Policy
Store

Policy
Server

Ontology
Server

Inputs OutputsHome
Server

Figure 4. Policy System Architecture

 7

A policy system input (typically a sensor) causes the home
server to report a triggering event. The policy server retrieves
the policies associated with this trigger. Policies are selected
only if they meet certain conditions. These include what the
policy applies to, the period of validity of a policy, and what
profile the policy belongs to. Policies may be grouped into
categories such as ‘at night’ or ‘on holiday’, allowing sets of
policies to be activated easily. Variables in the selected
pol

cts
are

anguage supports
 instantiated with particular

r defines
the

cifies the external event(s)
tha

, the system state, or
the

 operators such as
and

ased it towards a
s made of the kinds

is considerable
among them from the event point of view.

tes of
trig

ly
infl

e policy
lan

s are used for particular services. For
exa

is maintained
(e.g

e and the time
of the change are all recorded. The term ‘entity’ is used

icies are retrieved from the policy store; this includes
configuration variables and status variables. Policy conditions
are evaluated to determine which policies apply. All enabled
policies then dictate the actions to be performed. In the
absence of conflict, these actions are sent to the home server.
In turn, this causes various outputs (typically to actuators).

The policy server also deals with conflicts among policies
due to contradictory actions. Opposing actions are examples
of simple conflicts (e.g. ‘open the door’ vs. ‘do not open the
door’). However, conflict detection can be much more
sophisticated. For example, ‘open a window’ conflicts with
‘heat the room’ during winter. Conflict handling is
externalised by design. That is, the policy server does not have
built-in rules to detect and resolve conflicts. Instead, confli

defined by higher-level resolution policies. These take
conflicting policy actions as triggers that lead to resolution. A
generic resolution chooses among the conflicting actions
according to some high-level criterion (e.g. a carer’s policy is
preferred to an end user’s policy). A specific resolution
dictates explicitly what actions are taken to handle the
conflict. This might be an automatic response or might
involve a person.

B. The Core Policy Language
The core policy language builds on previous work for call
control [17]. The core is defined by a domain-independent
XML schema. Specific triggers, conditions and actions are not
specified by the core language. Instead, these are added as
extensions in domain-specific schemas. The core language
offers a range of constructs including the following.

Parameterised Policies The l
parameterised policies that are
values for policy variables. This is useful, for example, in
template policies for non-technical users. Policy variables are
also used to give symbolic names to devices that otherwise
have configuration-specific addresses. The system
configuration held in the policy store performs this mapping.

Domains Individual policies apply to whoeve
m. However policies may be defined for domains, i.e.

groups of users such as those in a specific nursing home or in
a category like community nurse.

Modality A policy may define a preference (e.g. must,
should or prefer, along with negative versions of these). This
information implies a weight for the policy that is taken into
account if conflicts have to be resolved.

Rule Combinations Policies comprise rules that may be
combined in various ways, e.g. subject to some condition,
tried in sequence, or executed in parallel.

Rules An optional trigger spe
t may activate a policy. Triggers may be combined with

and/or. An optional condition defines the circumstances in

which a policy may apply. Conditions rely on information
established by triggers, such the device

 time of triggering. Conditions may be combined with
boolean operators. An action gives the effect of a rule.
Actions may be combined with various

/or, though more sophisticated combinations are possible
such as parallel execution.

C. The Policy Language for Home Care
The core policy language has been specialised for the triggers,
conditions and actions required for home care.
1) Triggers
Sensor inputs are handled by a generic device trigger. It would
have been possible to define a range of device-specific
triggers. However, this would have considerably complicated
the policy language. It would also have bi
particular set of device types. A study wa
of devices that are useful in home care This resulted in a
taxonomy of such devices, showing that there
commonality

A single device_in trigger is therefore used, with an
argument that indicates the device (e.g. front_door) and one
that indicates the status (e.g. open). It is preferable to use
symbolic names for devices, mapped to addresses through the
system configuration; however, well-known addresses could
be used (e.g. for the residential gateway itself). Device inputs
establish other values that can be used in policy conditions.

In call control, policies mainly depend on the attribu
gers. This is sometimes sufficient for home care

applications. For example, a policy may just need to know that
the front door has been opened. However, more typically a
home care policy needs to know the overall system state. For
example, movement down the path after the front door is
locked suggests that someone has just left the house.

Unlike call control, home care policies are often strong
uenced by timing. For example, it may be necessary to

issue a warning that the cooker is still on if the user leaves the
kitchen for some period of time. This requires a timer trigger
that needs to know whether the cooker is on or off. The
cooker status established by other triggers is therefore held in
the policy store.

Time-based triggers have been added to th
guage and server. An at trigger happens at a certain point

in time. An every trigger occurs at a fixed time each day. An
after_event trigger is fired if a specified event happens after a
given period of time, while a no_event trigger occurs if this
does not happen. A repeated trigger means a given event re-
occurs a given number of times in some period.

Other trigger
mple, speech input uses a recognise trigger.

2) Conditions
A policy may have a single condition or a combination of
these. A single condition has a parameter (a value established
by a trigger), an operator (that performs the check) and a value
(established by the trigger or known from the system state).
As noted earlier, the status of system entities

. a door is open or a user is watching television). When the
system status is updated, the entity, its new stat

 8

broadly here to include devices, services and people.

tched on
usi

and name and parameter
s. As for inputs, outputs normally use symbolic

ocused on supporting care
 departments is that it is
a comfortable living

se.
Fig

The core policy language defines a limited range of
condition operators that are interpreted according to the kind
of value being checked. Apart from comparison operators like
= and >=, there are in and out operators to check for inclusion
or exclusion. The latter are particularly useful for ranges or
sets (e.g. a time or location check).
3) Actions
Actuators may be of many different kinds, controlled by
different protocols. For example a lamp may be swi

ng X10, or a video recorder may be managed through
UPnP. It is a design goal that the policy system be
independent of particular devices and protocols; it is up to
OSGi to handle these differences. For generality, a single
device_out action is therefore used. This carries arguments
that give the device identifier, comm
names/value
names for devices.

Other actions are used for particular services. For example,
speech output uses a speak action.

D. Policy Examples for Home Care
To make the policy language concrete, the following examples
show how it can be used to control a variety of devices in
support of home care. The policy language is more widely
used, e.g. for managing services and for defining higher-level
goals. The example policies are shown in XML form, but
omitting some ‘red tape’ such as the obvious closing tags.

Although the policy system is f
at home, the experience of social work
vital to provide end users with
environment. It is therefore often important to protect the
home as well as its occupants. To this extent, some of the
policy examples here would be useful in any home.
1) Medical Care Policies
Older people, especially those with dementia, are prone to
waking in the middle of the night and leaving the hou

ure 5 shows how the user can be advised to return to bed
using synthesised speech (say, of a family member).

Although
policies
have an
XML form internally, users do not see this. The example
below is rendered in stylised natural language as follows:
when the front door opens; if the time is between 11PM and
7AM, and the main bed is unoccupied; speak a message in the
hallway ‘it is night time, go back to bed’.

This example illustrates several points about the policy
language. Triggers and actions have fixed values such as
device_in or speak. For proper validation, arguments must be
carried as XML attributes (arg1, arg2, etc.). Policy variables
are distinguished from literal values by a colon prefix, e.g.
:front_door or :master_bed. Combinators like and are binary,
so a compound condition must be constructed from pairs of
sub-conditions.

2) Home Appliance Policies
Home appliances can be controlled by a variety of means. For
example, X10 allows standard electrical appliances such as
cookers or washing machines to be switched on/off through
mains wiring. UPnP allows home entertainment devices to be
controlled via an in-house network. Policies can dictate how
these appliances are used. Such policies can be conveniences
for the user, saving them from having to remember to do
things. However, policies can also be used to avoid potentially
dangerous situations. For example, if a user needs supervision
while cooking then the cooker should not turn on unless a
helper is present.

The example in figure 6 describes a situation in which
someone has a home help call every evening to cook dinner.
To save time, a policy turns on the oven at 7PM and sets it for
200°C. This ensures it is warmed up for the home help calling.

Figure 5. Night Wandering Policy

<policy_rule>
 <trigger arg1=":front_door" arg2="open">
 device_in(arg1,arg2)
 <conditions>
 <and/>
 <condition>
 <parameter>time
 <operator>in
 <value> ..07:00:00 23:00:00
 <condition>
 <parameter>:master_bed
 <operator>eq
 <value>unoccupied
 <action ar g1=":hallway"
 ar o back to bed"> g2="it is night time, g
 speak(arg1,arg2)

Figure 7. Night-Time Movement Policy

<policy_rule>
 <triggers>
 <or/>
 <trigger arg1=":hallway" arg2="movement">
 device_in(arg1,arg2)
 <trigger arg1=":lounge" arg2="movement">
 device_in(arg1,arg2)
 <condition>
 <parameter>time
 <operator>in
 <value>24:00:00..06:00:00
 <action arg1=":alarm" arg2="on" arg3="period=20">
 device_out(arg1,arg2,arg3)

 9

3) Security Policies
Figure 7 shows a policy that turns on an alarm for 20 minutes
if there is movement in the hallway or lounge between
midnight and 6AM.
4) Entertainment and Communications
Home care policies are also valuable in supporting everyday
activities. For example, someone with limited dexterity,
impaired dexterity or weakened cognitive abilities may find it
difficult to operate appliances like washing machines, video
recorders or telephones.

As an entertainment example, the policy in figure 8 states
that the user wishes to record channel 3 for one hour, starting
at 9PM on 31st May 2006. (Date and time formats follow
XML schema conventions.)

VI. EVALUATION

A. Current Status
Knopflerfish [12] has been used as an open-source
implementation of OSGi Release 4. Jena and Protégé
(protege.stanford.edu) have been used to create ontologies in
support of service discovery and policies. The existing
ACCENT policy system has been re-used, though it required
packaging the policy server as an OSGi bundle. An event
service is supported directly by OSGi version 4, significantly
reducing the development effort. Using OSGi as the
foundation for home care services has been a positive
experience, with particular benefits gained from the clean
separation of services, devices and protocols.

The semantic service discovery bundle has been developed
and deployed within OSGi, allowing experimentation with
complex service queries. An initial service ontology stack has
been used to create descriptions of home care services. Using
a set of basic service type ontologies, evaluation of semantic
service discovery has demonstrated its expressiveness.
Currently, queries may be single, multiple (fixed-content) or
complex combinations.

Practical evaluation of the approach has been conducted in
a laboratory that serves as a home environment. Various
wireless sensors are used to detect movement, flooding,
smoke, bed occupancy, and door opening. A standard wireless
receiver has been interfaced to a PC using a USB adapter. An
OSGi bundle was written to read the wireless sensor inputs.
For output, OSGi bundles have been written to control X10
appliances (on, off, dim), to control UPnP alarm devices, to
interface with SIP (Session Initiation Protocol, used for
Internet telephony), and to send text messages for mobile
telephones.

The policy examples given earlier have been tried in
practice, though some devices had to be simulated by software

in the meantime. It has been found that policies are conducive
to flexibility and ease of change. The approach of other
developers typically requires programming a PIC
(Programmable Interface Controller), FPGA (Field
Programmable Gate Array), or custom code for a service. In
contrast, a wide variety of policy-based services can be
created without having to write any software. For
development purposes, policies can be entered in XML
format. However, the wizard is the primary means for
ordinary users to define policies.

B. Future Work
The efficiency and scalability of semantic service discovery
will be investigated as descriptions become more
comprehensive. An issue here will be maintaining only the
most relevant or current information in the ontological
knowledge base. The greater precision of service description
will be exploited to detect potential interference and how to
handle this. It is planned to extend the framework with a
service that identifies and resolves interference before services
are instantiated.

The conflict detection and resolution techniques developed
by ACCENT will be of value in this role and for handling
policy conflict. This will be important in enhancing the
robustness of home care services. Conflict handling allows
interference to be detected statically (at definition time) or
dynamically (during execution). So far, most effort has gone
into dynamic handling as this is the more challenging issue.
However, it is believed that similar ideas can be extended to
static handling as well.

Of necessity, resolution requires ignoring certain policy
actions. If this is required, the policy system must be able to
explain why this happened. The use of synthesised speech is
an obvious possibility here. Different schemes will also be
investigated for achieving the best possible resolution. For
example, denying an action may be associated with a certain
penalty. The policy server also allows for pre-negotiation and
post-negotiation (negotiating a conflict before or after
committing to particular policy actions).

Automated configuration and goal-directed configuration
will be investigated. The former is desirable for simple on-site
installation. The latter will be useful for refining high-level
goals into more operational objectives. It is anticipated that AI
planning techniques will be used for this aspect. The
composition of OSGi services into new services will also be
studied.

Remote management and security are important future
goals. The corresponding capabilities of OSGi will be
enhanced to make them suitable for home care. Secure
definition of policies is already supported. Management
policies will be defined to allow control of services and access
to data. It will be crucial to manage what data may be used for
what purposes. This includes whether data may be exported
out of the home, and how it may be analysed. Health and

Figure 6. Oven Warming Policy

<policy_rule>
 <trigger arg1="19:00:00">every(arg1)
 <action arg1=":oven" arg2="on"
 arg3="temperature=200">
 device_out(arg1,arg2,arg3)

Figure 8. Video Recording Policy

<policy_rule>
 <trigger arg1="2006-05-31T21:00:00">at(arg1)
 <action arg1=":video_recorder" arg2="record"
 arg3="channel=3,period=01:00:00">
 device_out(arg1,arg2,arg3)

 10

lifestyle data must obviously be kept confidential, and be
processed in an authorised manner by identified individuals.

ACKNOWLEDGEMENTS
The authors thank their colleagues on the MATCH project at
Stirling (Louise Bellin and Julia Clark) for their advice. The
authors are also grateful to their collaborators at the
Universities of Dundee, Edinburgh and Glasgow who are
creating home care facilities that complement the work
reported here. Numerous external partners in MATCH have
been very helpful in providing insights into health and social
care, as well as into device technologies. Gemma Campbell at
Stirling was responsible for developing the POPPET system.

REFERENCES
[1] A Middleware Infrastructure to Enable Active Spaces. M.

Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell and K. Nahrstedt, IEEE Pervasive Computing,
1(4):74–83, Oct.–Dec 2002.

[2] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste. Project
Aura: Toward Distraction-Free Pervasive Computing, IEEE
Pervasive Computing,1(2):22–31, Apr.–Jun. 2002.

[3] A. Helal, W. Mann, H. Elzabadani, J. King, Y. Kaddourah and
E. Jansen. Gator Tech Smart House: A Programmable Pervasive
Space, IEEE Computer, 38(3):50–60, March 2005.

[4] J. E. Bardram. Applications of ContextAware Computing in
Hospital Work – Examples and Design Principles, Proc. ACM
SAC '04, Nicosia, Cyprus, Mar. 2004.

[5] M. Drugge, J. Hallberg, P. Parnes, and K.Synnes. Wearable
Systems in Nursing Home Care: Prototyping Experience, IEEE
Pervasive Computing, 5(1):86–91, Jan.–Mar. 2006.

[6] J. E. Bardram. The Personal Medical Unit – A Ubiquitous
Computing Infrastructure for Personal Pervasive Healthcare. In
T. Adlam, H. Wactlar, and I. Korhonen, eds., Proc. 3rd.
Ubiquitous Computing for Pervasive Healthcare Applications,
Nottingham, UK, Sep. 2004.

[7] D. Marples and P. Kriens. The Open Services Gateway
Initiative: An Introductory Review, IEEE Communications
Magazine, 39(12):110–114, Dec. 2001.

[8] C. Lee, D. Nordstedt and S. Helal. Enabling Smart Spaces with
OSGi, IEEE Pervasive Computing, 2(3):89–94, Jul.–Sep. 2003.

[9] M. Burgess. A Site Configuration Engine, USENIX Computing
Systems, 8(3):309–337, 1995.

[10] Y. Qin, H. Hao, Li Jun, G. Jidong and L. Jian. An Approach to
ensure Service Behaviour Consistency in OSGi. Proc. 12th
Asia-Pacific Software Engineering Conference, pp. 185–192,
2005.

[11] A. Ranganathan, J. Al-Muhtadi and R. H. Campbell. Reasoning
about Uncertain Contexts in Pervasive Computing
Environments, IEEE Pervasive Computing, 3(2):62–70, Apr.
2004.

[12] X. Wang, J. S. Dong, C. Y. Chin, S. R. Hettiarachchi and D.
Zhang. Semantic Space: An Infrastructure for Smart Spaces,
IEEE Pervasive Computing, 3(3):32–39, Jul. 2004.

[13] E. Christopoulou, C. Goumopoulos, I. Zaharakis and A.
Kameas. An Ontology-based Conceptual Model for Composing
Context-Aware Applications, Proc. 6th. International
Conference on Ubiquitous Computing, Nottingham, UK, 2004.

[14] X. H. Wang, T. Gu, D. Q. Zhang and H. K. Pung. Ontology
Based Context Modelling and Reasoning using OWL, Proc.
IEEE International Conference on Pervasive Computing and
Communication, Orlando FL, USA, Mar. 2004

[15] J. Lobo, R. Bhatia and S. Jaqvi. A Policy Description Language.
Proc. American Association for Artificial Intelligence, Orlando
FL, USA, Jul. 1999.

[16] N. Damianou, N. Dulay, E. Lupu and M. Sloman. Ponder: A
Language specifying Security and Management Policies for
Distributed Systems, Technical Report, Imperial College,
London, UK, 2000.

[17] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P.
Perry and J. Ireland. Policy Support for Call Control, Computer
Standards and Interfaces, 28(6):635–649, Jun. 2006.

[18] ANSI. Application Protocol for Electronic Data Exchange in
Healthcare Environments, ANSI/HL7 V2.5, American National
Standards Institute, Washington DC, USA, 2003.

[19] CEN. Medical Informatics – Healthcare Information Systems
Architecture - Part 1: Healthcare Middleware Layer, ENV
12967-1, European Committee for Standardization, Delft,
Netherlands, 1998.

[20] A. Hein, O. Nee, D. Willemsen, T. Scheffold, A. Dogac and G.
B. Laleci. Intelligent Healthcare Monitoring based on Semantic
Interoperability Platform - The Homecare Scenario, Proc. 1st
European Conference on eHealth, Fribourg, Switzerland, Oct.
2006.

	Introduction and Motivation
	Background
	Research Challenges
	Approach

	Background and Related Work
	Positioning of The Research
	Open Services Gateway Initiative
	Service Discovery
	Policy-Based Management

	Home Care System Overview
	Service Discovery
	Ontology-Based Service Description and Discovery
	Service Properties
	Ontologies for Home Care Services

	Policy-Based System Management
	Policy System Design
	The Core Policy Language
	The Policy Language for Home Care
	Triggers
	Conditions
	Actions

	Policy Examples for Home Care
	Medical Care Policies
	Home Appliance Policies
	Security Policies
	Entertainment and Communications

	Evaluation
	Current Status
	Future Work

