
Detecting Feature Interactions between
SIP Call Control Services

Mario Kolberg a,1 and Evan H. Magilla

a Department of Computing Science & Mathematics, University of Stirling, UK

Abstract. The Session Initiation Protocol (SIP) is a strong contenderas a call con-
trol protocol for Voice over IP (VoIP), and indeed commercial implementations are
readily available off-the-shelf. SIP supports flexible service provisioning not only
through third parties, but also end-users. Laboratory experience shows that as these
services are interworking they are subject to the feature interaction problem. Fea-
ture interactions may considerably delay service deploymentand hence are a threat
to rapid service provisioning.

This paper investigates the feature interaction problem inSIP-based services and
investigates the application of a pragmatic approach. This runtime approach does
not require any detailed information about the services and hence can be applied
in a competitive market. Furthermore, the approach is particularly strong in de-
tecting interactions between distributed services - a key characteristic of SIP-based
services.

Keywords. Feature Interactions, Runtime Approach, SIP, VoIP

1. Introduction

One of the main drivers for the success of SIP is the relatively easy provisioning of ser-
vices. Third party service providers and even end users may provide services. Once fully
tested and deployed, each service functions well on its own.However, as was discussed
by Lennox and Schulzrinne [1], when SIP services interwork their combined behaviour
may not be acceptable. This phenomenon already known from traditional telephony net-
works is known as feature interactions or service interactions [2].

1.1. Basic Terms

Within telecommunications the terms interworking and incompatibility have well under-
stood meanings. Services mustinterwork to share a (communications) resource, for in-
stance a session. The services may interworkexplicitly through an exchange of informa-
tion with each other, orimplicitly through changing the session. In the second case, the
services often have no knowledge that the other exists.

When services interwork to share communication resources, they arecompatible if
the joint behaviour of the resource is acceptable. However,if the joint behaviour is not

1Correspondence to: Mario Kolberg, Department of Computing Science & Mathematics, University of
Stirling, Stirling FK9 4LA, United Kingdom; E-mail: mko@cs.stir.ac.uk



acceptable, i.e. the services are not compatible, the services are said tointeract. Compat-
ibility doesnot refer to coding errors, nor to the adherence of interfaces orprotocols, but
to the adequate behaviour of a resource under the joint control of interworking service.

Although services with comparable functionality are already known from traditional
telephony network, there are some significant differences when deployed on SIP net-
works. SIP has some fundamental differences to traditionaltelephony networks and
hence it is necessary to study these problems again in a SIP context.

Some authors distinguish the concepts of features and services. For this paper, the
distinction between feature and service is not significant,what is crucial is the concept
of interaction. The termsservice andfeature are used interchangeably.

Clearly, with the increased complexity and number of services, the problem gets
worse. Neither manual inspection, nor simple testing, offer tractable solutions. More
effective approaches addressing the special requirementsof this domain are needed.

1.2. Basic Approaches

A substantial body of work [3,4] exists on dealing with feature interactions. Most ap-
proaches can be categorised as either off-line or on-line. Briefly, off-line approaches are
applicable at design-time whereas on-line approaches are applied at run-time. The former
being most useful at the early stages of the software lifecycle, the latter during testing
and deployment [5].

Off-line approaches are often based on the application of formal methods, and as
such require considerable information of each individual software increment. Increas-
ingly, as the market becomes more competitive, this information may not be available.
Also, as the number of services increases, the work in analysing pair-wise interactions
increases with the square of the number of services. With a large number of services in
an open market, this will quickly become untenable. However, off-line approaches still
have a role to test services inside a single offering.

In contrast, on-line approaches carry out checks as required. Clearly there are com-
puting resource issues, but the major issue is having sufficient information about the ser-
vices available at runtime. A particular limitation with run-time approaches is the ability
to detect interactions between services deployed on different components in the network.
The approach presented in this paper is attempting to close this gap. A more detailed
discussion on existing approaches can be found in [6] and [2].

2. SIP

2.1. Architecture and Components

Voice over IP uses a number of different protocols. SIP [7] isused for ’signalling’. SIP is
concerned with user registration as well as session setup, modification and termination.
Crucially, SIP does not deal with the media exchange as such.Other protocols are used
in combination with SIP to allow for different media to be exchanged. Indeed SIP can be
used to establish non-telephony sessions.

Within a SIP network there are two basic types of devices, enddevices (user agents)
and servers. User agents are the devices used by end users to place or receive calls. These



may be SIP phones, or so called soft phones, which are software implementations to be
run on a PC. Note that user agents do not necessarily interface directly with a user, an
answering machine is also a user agent. User agents are distinguished according to their
role in a call: the user agent client places the call, and the user agent server receives
the call. User agents initiate and respond to signalling andsend and receive media. User
agents are aware of the call state. Unlike traditional telephony, user agents may provide
a number of services, such as Call Waiting, Call Forwarding,or Call Screening.

Servers handle the application level control and routing ofSIP messages. There are
three different kinds of servers defined in SIP: Register, Redirect and Proxy servers.
If a user is to be invited to join a session (call), there is thequestion of where the
invitation should be sent to as users may be located at different IP addresses. Users
are addressed by email-like addresses, e.g. sip:mko@cs.stir.ac.uk. This is a public ad-
dress. However, at present, the user may in fact be located ata computer with the name
d25.cs.stir.ac.uk and be logged on as user mk0123. The SIP address for this location
would be sip:mk0123@d25.cs.stir.ac.uk. To link the two addresses users need to register
with a register server. Register servers work very closely with redirect and proxy servers.

Invitations are sent from the user agent client via a number of redirect or proxy
servers to the user agent server. If a redirect server receives an invitation for a user, it
checks with the database of the local register server and returns the address where it
believes the user to be invited can be found. If the user is notactually located at that
address, more information on the user’s location may be available from that address.

Proxy servers are similar to redirect servers in that they help to find the location
of a user. However, a proxy server does not return the found address but forwards the
invitation on to that address. In the path an invitation is sent from the user agent client to
the user agent server there may be number of redirectand proxy servers.

Both proxy and redirect servers can host and execute call control services in that
they can direct, block, or alter call signalling messages. Consequently, SIP offers the
potential for a truly distributed service provisioning. Services may be deployed on user
agents and redirect and proxy servers. SIP will allow a degree of programmability which
is unknown in the PSTN.

2.2. Consequences for Feature Interactions

Services working on the same call may be deployed in a number of different locations,
which are controlled by separate organisations. These organisations may not be aware
of each other or competing with each other. Thus they are not inclined to share detailed
information on their services to avoid interactions. Also because of the large degree of
possible programmability, even end users may design and deploy their own call control
services, either on their user agent or by uploading them to the local proxy server. Conse-
quently, SIP uses a heavily distributed architecture with services possibly being deployed
on every component. Any approach to feature interactions for SIP needs to take this into
account.

The fact that media packets travel end-to-end, without being interceptable by inter-
mediate servers means that some services can no longer be implemented transparently.
For instance, "pipe-bending" services, such as forwardinga call, cannot be performed
without informing the other party of the new address where they should send the media
packets to [1].



Further, the increased numbers of possible addresses can also complicate some ser-
vices. In the traditional telephony network a phone number can be used to identify a
party for call screening. In SIP this is much harder to achieve.

The next section provides details of an approach which is applicable to SIP. Section 4
discusses the application of the approach to SIP.

3. The Applied Approach

The algorithm is based on the pragmatic approach presented in [8]. Here it is adapted
to operate in a SIP environment. The approach concentrates on the establishment of
connections and does not require detailed information about the involved services, but
operates at a higher level.

Thus it can be applied in a competitive business environmentwhere no detailed
technical information will be available. And secondly, theapplicability of the approach
is independent of the network architecture. The approach has already been employed in
a PSTN setting [2] and also as a filtering approach [8].

3.1. Overview

The behaviour of a service is described in two parts: the triggering party and a connection
type. The latter consists of two parts: the original connection to be set up before the
service is activated and the connection set up after the service has been triggered.

TP.: B; (A, B)→ (A, C)

Figure 1. Description of Call Forwarding Unconditional

An example should illustrate this. Call Forwarding Unconditional (CFU), which
redirects all incoming calls to a predefined third user, can be described as shown in Fig. 1.
Assume party A is the originator, B the terminator, and C the party where the call is
redirected to. The behaviour has two parts, separated by a semicolon. In the first part, the
notation TP.: X indicates that X is the triggering party, in this case it is B because CFU
is triggered at the terminating end of a call. In the second part, notation (X, Y)→ (U,
V) indicates the connection type. (X, Y) is called the original connection and (U, V) is
the connection after activating the service. For each pair (A, B) A is the source and B
the destination. The call starts with A attempting to connect to B. However, because of
CFU, A is connected to C instead. So the connection type is (A,B) → (A, C).

Treatments are an important aspect of this approach. Treatments are announcements
or tones triggered by the network to handle certain conditions during a call, for example
when a call is screened or blocked.

Clearly, this way of describing services abstracts from a considerable amount of
service behaviour. The presented results show that omitting these details is not an issue.



3.2. Interaction Analysis

Interaction cases are found by analysingpairs of services. Two service descriptions are
compared according to five rules. If a service pair fulfills any of the five rules, then the
pair is said to interact. In the following, each of the rules is considered in turn.

Rule 1 – Single User - Dual Service Control: If both services have the same trigger-
ing party and either the original connections or the resulting connections are iden-
tical, the pair interacts. Examples are given in Figure 2. The shaded portions indi-
cate the key parts of the descriptions.

CFB: TP.: B; (A, B) → (A, C)
CW: TP.: B; (A, B) → (A, B)

(a)
AR: TP.: A; (B, A)→ (A, B)
HL: TP.: A; (A, B)→ (A, B)

(b)

Figure 2. (a) Call Forwarding Busy & Call Waiting and (b) Automatic Ringback & Hotline

Rule 2 – Connection Looping: If the original connection of the first service is identical
to the resulting connection of the second service, and the original connection of
the second service is identical to the resulting connectionof the first service then
a connection loop occurs. Further, the triggering parties need to be different. As
both services are trying to divert the connection in a circular way, a loop occurs
(ref. Figure 3). Again, the shaded portions indicate the identical connections.

CFB: TP.: B; (A, B) → (A, C)
CFU: TP.: C;(A, C) → (A, B)

Figure 3. Call Forwarding Busy and Call Forwarding Unconditional revisited

Rule 3 – Redirection and Treatment: This type of interaction is detected if the result-
ing connection of the first service matches the original connection of the second
service and the second service connects to a treatment. Further, one of two con-
ditions need to be met. Firstly, the originating party of theoriginal connection
and the originating party of the resulting connection of thefirst service need to
be identical and the terminating parties be different (Fig.4(a)). Or secondly, the
originating party of the original connection needs to matchthe terminating party
of the resulting connection and the terminating party of theoriginal connection is
the originating party of the resulting connection (Fig. 4(b)).
In other words, one service establishes a connection by either forwarding (not to a
treatment) or reversing a connection. The resulting connection is the original one
of the second service, which redirects the call to a treatment. This scenario is a
potential problem as the connection which is set-up by the redirection service is
prevented by the treatment service.

Rule 4 – Diversion and Reversing: This rule specifies that an interaction is detected if
the resulting connection of the first service matches the original connection of the
second service. Furthermore, for one of the two services, the originating party of



CFB: TP.: C; (A, C) → (A, B)
OCS: TP.: A; (A, B) → (A, Treat)

(a)
AR: TP.: B; (A,B) → (B, A)
OCS: TP.: B; (B, A)→ (B, Treat)

(b)

Figure 4. (a) Call Forwarding Busy & Originating Call Screening and (b) Automatic Ringback & Originating
Call Screening

the original connection is identical with the originating party of the resulting con-
nection and the terminating parties of the two connections are different. For the
other service, the originating party of the original connection needs to be the ter-
minating party of the resulting connection and the terminating party of the original
connection needs to be the originating party of the resulting connection.
Here one service forwards a call and the other reverses the call. This may happen in
either order, i.e. one service forwards a call which is subsequently reversed to the
originator by the other service. In this case the originatorof the original connection
will receive a reversed call from someone they never rung.

CFB: TP.: C; (A, C)→ (A, B)
AR: TP.: B; (A, B)→ (B, A)

(a)
AR: TP.: B; (A, B) → (B, A)
CFB: TP.: A; (B, A) → (B, C)

(b)

Figure 5. (a) Call Forwarding Busy & Automatic Ringback and (b) Automatic Ringback & Call Forwarding
Busy

Alternatively, a reversed call is forwarded. In this case, aservice reverses a call
which is subsequently forwarded by the other service to a third party. Conse-
quently, the returned call is reaching a person which never placed a call in the first
place. Figure 5 contains two example interaction scenarios.

Rule 5 – Treatment and Subsequent Missed Call Handling:This type of interaction
occurs if the original connections for both services are identical. For one service
the triggering party must also be the originating party of original connection and
the terminating party of the resulting connection is treatment. Finally, the trigger-
ing parties of both services need to be different.
This type of interaction is concerned with call control services which are prevented
from functioning by another service which connects the callto a treatment. An
example of this type of interaction is given in Figure 6.

CFB: TP.: B; (A, B) → (A, C)
OCS: TP.: A; (A, B) → (A, Treat)

Figure 6. Call Forwarding on Busy and Originating Call Screening revisited.

Finally, it is important to note that the descriptions are ona per service base, not
per services pair. It is only the algorithm which combines two service descriptions to
pairs. This greatly reduces the complexity, because when new services are introduced no
existing descriptions need to be changed.



4. Using the Approach in SIP

4.1. SIP Services

Fundamentally, services can be provided in two ways: SIP CPL[9] and SIP CGI [10].
SIP CPL is a XML-based language and is restricted in its functionality, but safe. SIP CGI
offers full access to SIP messages and also the use of external databases which are im-
portant for a number of services, such as forwarding and screening. Thus the discussion
in this paper is targeted at SIP CGI services.

4.2. Application of the Approach in SIP

SIP is a distributed protocol, with services being located at various locations through
which a SIP message travels. Hence, the approach and especially the application of the
algorithm has to be distributed as well.

The basic idea is that each service which gets activated includes its Triggering Party
and Connection Type into the message. If there is already oneor more entries in the
message, these are checked against the description of the current service. Thus the al-
gorithm is executed wherever necessary and a central feature manager is not required.
This is possible as SIP is an extensible protocol. Additional headers carrying additional
information may be defined and included with messages. The newly defined header to
carry the required information for this approach is calledContype.

For this approach, each service needs to be surrounded by a cocoon. The cocoon
contains the connection type for the service and the logic for the interaction algorithm.

When a message arrives at a server (or user agent), the messagegets passed to the
deployed services. As the services are surrounded by cocoons, the message is actually
sent to the cocoon, but from there it is sent immediately to the service proper. At this
point, the cocoon does not check or alter the message.

Once the service proper is finished with execution the potentially altered message
is passed back to the cocoon. With the message, the service sends an indication to the
cocoon, whether the service actually was triggered by the message, i.e. it altered the
message (e.g. CFU), or was armed to execute at some event in the future (e.g. AR).

This indication is important as the services may only get triggered by some mes-
sages, e.g. some calls are not forwarded or not screened. This often depends on service
specific data, such as screening lists. Services which have not been triggered cannot cause
any interactions. Hence the following algorithm does not need to be executed for such
services. If the service was triggered by the message, the cocoon checks the message for
a header calledContype. These headers contain the descriptions of services which have
already been active in that transaction.

If such a header is not found, no other service has previouslybeen active and hence
a service interaction cannot have occurred. In this case, the cocoon inserts a Contype
header into the message which contains the description of the related service. For in-
stance, for the Call Forwarding Unconditional service discussed in Section 4.1 the header
is depicted in Figure 7.

The header contains a number of fields: the ID field shows whichservice is rep-
resented by the header. Currently this is a simple string, but to avoid duplicate names
unique identifiers can be used in future implementations. The TP field contains the trig-



ConType: ID=CFU; TP=sip:bob@d254203.cs.stir.ac.uk;
OrigFrom=chris@discus.cs.stir.ac.uk; OrigTo=bob@d254203.cs.stir.ac.uk;
FinalFrom=chris@discus.cs.stir.acuk; FinalTo=alice@d254203.cs.stir.ac.uk

Figure 7. SIP Header for CFU

gering party, and the remaining four fields correspond to thefour fields used to construct
the connection type.

If a Contype header is found in the message, the data from thatheader is extracted
and together with the description of the local service fed into the service interaction
algorithm. If no service interaction is detected, and no further Contype header is found
in the message, the Contype header for the current service isinserted into the message
and the message is sent on to its destination.

If, however, a service interaction is detected, it needs to be resolved also at run-time.
Currently, a basic solution has been implemented: if an interaction occurs, the outcome of
the second service is discarded, and the call proceeds as if that service was not activated
at all. This is a basic resolution approach, and clearly moreelaborated approaches, such
as presented in [11,12] could be used. Also policies may be involved finding the best
solution. Resolution approaches may be tuned to achieve various goals, such as finding
the solution with the most executed services, or executing all services subscribed to by
the party who pays for the call, or, in a private environment the services belonging to
the organisation may have priority over services of the individual. In a way all these
approaches implement a priority system. Our approach givesthe highest priority to the
service executed first.

INVITE Chris

INVITE Bob

Contype CFU

486 Busy

Contype CFU

Alice Proxy (CFB) BobProxy (CFU)

INVITE Bob

Contype: CFU

FI detected

between

CFU and CFB

CFU Triggered

CFB Triggered

INVITE Chris

INVITE Bob

Contype CFU

486 Busy

Contype CFU

Alice Proxy (CFB) BobProxy (CFU)

INVITE Bob

Contype: CFU

FI detected

between

CFU and CFB

CFU Triggered

CFB Triggered

Figure 8. Message flow with CFU and CFB

However, not all services involved in a session setup are triggered by the INVITE
message sent by the user agent client. For instance, with services triggered on busy re-
sponses there will be INVITE messages and also busy responsemessages involved in the
call setup. For such cases, response messages also need to contain the Contype headers
which were added to the corresponding INVITE. Thus if a user agent server receives an
INVITE request with Contype headers, the Contype headers need to be copied into the
response message. This way, cocoons for services triggeredby response messages are
also aware of services that previously have been operating on the INVITE. Clearly, if
a service which is triggered by a response message issues a new INVITE request, then



the cocoon needs to copy any Contype headers from the response to the new INVITE
message. The approach of copying headers from the request toresponse message is a
common approach taken in SIP. For instance, the standard VIAheader is also used in this
way. The interaction between CFU and CFB is shown as an example of such a message
flow in Figure 8.

In the example, Alice tries to invite Chris, however, at the local proxy server the
INVITE gets forwarded by a CFU service to Bob. A Contype header is attached to the
INVITE message and set on. The message then passes through the second proxy and
is sent to Bob’s user agent. However, as Bob is busy, a 486 Busyresponse is returned.
This response also contains the CFU Contype header. At the proxy, CFB is triggered by
the 486 Busy message. The CFB service forwards all calls to Chris if Bob is busy. Thus
the cocoon checks for an interaction and using the Contype header of the 486 response
message, discovers an interaction and CFB is disregarded, i.e. the 486 Busy message is
forwarded back to Alice. The descriptions of the two services is shown in Figure 9.

CFU: TP.: Chris;(Alice, Chris)→ (Alice, Bob)
CFB: TP.: Bob; (Alice, Bob) → (Alice, Chris)

Figure 9. Call Forwarding Loop

Implementing the approach in SIP extends SIP with an additional header, Contype.
This extension is in line with the SIP standard and follows SIP conventions. Clearly, in
order for the approach to work, implementations of SIP components, especially proxy
servers and user agents, need to be aware of the new header to make use of the informa-
tion provided. However, if a message with a Contype header passes through a SIP com-
ponent which does not support the header, it simply ignores it. This is one of the funda-
mental principles of SIP to allow for extensions. Thus, a component which does not sup-
port this extension does not fail to work properly, and does not prevent other component
which support the header from using the information.

5. Experimentation

The approach has been implemented in a SIP testbed. SER [13] was chosen as proxy
server, and a Pingtel SIP phone [14] and kphone [15] were usedas user agents.

Currently, it is difficult to get access to implementations which support the provi-
sioning of services generally, and even more so implementations which support the CGI
interface. However, SER offers a proprietary interface forproviding services. This in-
terface provides access to full SIP messages and in principle this is the same as a CGI
interface would offer. Thus the implementation discussed here is using the proprietary
interface offered by SER and not the CGI interface.

The approach was tried with a number of service combinations. Unfortunately, there
are no call control services available off-the-shelf. Thussimple service prototypes were
developed to carry out the experimentation.

In the next two sections two example interactions are described and it is demon-
strated how the approach can deal with them. Section 6 presents a summary of all sce-
narios tried and a discussion on the results.



5.1. A Simple Example

In the following the approach is applied to the interaction between Call Forwarding and
Terminating Call Screening. An overview is depicted in Figure 10.

Proxy server discus.cs.stir.ac.uk
IP address: 139.153.254.50

CFU to alice@d254203.cs.stir.ac.uk

Proxy server d254203.cs.stir.ac.uk
IP address: 139.153.254.203
TCS from chris@discus.cs.stir.ac.uk

(1) Invitation for

SIP: bob@d254203.cs.stir.ac.uk

(2) Invitation for

SIP: alice@d254203.cs.stir.ac.uk

UAC chris@discus.cs.stir.ac.uk
139.153.254.222

Figure 10. Applying the Algorithm to the Interaction between CFU and TCS.

There are two proxy servers involved: discus.cs.stir.ac.uk and d254203.cs.stir.ac.uk.
The public address of the user agent client (Pingtel phone) is chris@discus.cs.stir.ac.uk
and is thus associated with the first proxy server. In the scenario, Chris attempts to invite
Bob to a session, however, due to a forwarding service on the first proxy server, the
invitation is redirected to Alice at the second proxy server. Alice has a terminating call
screening service deployed on the second proxy server with Chris on the screening list.

Initially, the user agent client sends a INVITE message to invite to the first proxy
server (payload and some unrelated headers have been omitted).

INVITE sip:bob@d254203.cs.stir.ac.uk SIP/2.0
From: sip:chris@discus.cs.stir.ac.uk;tag=1c18932
To: sip:bob@d254203.cs.stir.ac.uk
Contact: <sip:chris@139.153.254.222>
Via: SIP/2.0/UDP 139.153.254.222

At this proxy server, the CFU service is invoked. This changes the message in a way
that it is sent to Alice rather than Bob. Furthermore, as the service changed the message,
the cocoon, inserts a Contype header into the INVITE request(payload and unrelated
headers have been omitted).

INVITE sip:alice@d254203.cs.stir.ac.uk SIP/2.0
From: sip:chris@discus.cs.stir.ac.uk;tag=1c18932
To: sip:bob@d254203.cs.stir.ac.uk
Contact: <sip:chris@139.153.254.222>
Via: SIP/2.0/UDP 139.153.254.50;branch=z9hG4bK6d0d.a5da393.0
Via: SIP/2.0/UDP 139.153.254.222
ConType: ID=CFU; TP=sip:bob@d254203.cs.stir.ac.uk;

OrigFrom=chris@discus.cs.stir.ac.uk;
OrigTo=bob@d254203.cs.stir.ac.uk;
FinalFrom=chris@discus.cs.stir.ac.uk;
FinalTo=alice@d254203.cs.stir.ac.uk

At the second proxy server, the TCS service is called. After execution, the service
notifies the cocoon that it was triggered and the cocoon checks the INVITE message for



an existing Contype header. The message contains the CFU Contype header and thus
the cocoon applies the service interaction algorithm to theCFU and TCS descriptions.
As a result an interaction was detected by rule 3. Thus the action of the TCS service is
discarded and the INVITE is forwarded to Alice. The approachhas successfully handled
the interaction.

5.2. A more complex Example

This section provides an example where the second service istriggered by a response
message. The example used is the interaction between Originating Call Screening and
Call Forwarding. Figure 11 shows the setup.

Proxy server discus.cs.stir.ac.uk
IP address: 139.153.254.50

OCS bob@d254203.cs.stir.ac.uk

Proxy server d254203.cs.stir.ac.uk
IP address: 139.153.254.203
CFU to bob@d254203.cs.stir.ac.uk

(1) Invitation
for

SIP: alice@
d254203.cs.stir.ac.uk

(2
)

In
v
it

at
io

n
fo

r

S
IP

:
al

ic
e@

d
2
5
4
2
0
3
.c

s.
st

ir
.a

c.
u
k

UAC chris@discus.cs.stir.ac.uk
139.153.254.222

(3)
Invitation

for

S
IP

:
bob@

d254203. cs.stir.ac.uk

UAC bob@d254203.cs.stir.ac.uk
139.153.254.203:5062

Figure 11. Service Interaction between OCS and CFU.

When considering service interactions, one issue which is often discussed with Orig-
inating Call Screening is its actual purpose. That is, should it only prevent Chris from
dialing Bob’s number (perhaps because of additional costs being involved), or is it in-
tended that Chris is notconnected to Bob. If the aim is the former, then checking IN-
VITE messages is sufficient and no interaction between the two services exists. In this
paper, this service is then referred to as Originating Dial Screening (ODS). However, if
the goal is the latter, 200 OK responses sent in reply to INVITE requests are checked by
the service. This functionality is assumed in this section.

In the scenario, OCS is called on the first proxy server with nocalls to Bob being
allowed. OCS checks the destination of the INVITE request (address in the first line of
the message) and since the request is directed towards Alice, the request is not screened.
The cocoon is notified that OCS did not take any actions and hence the cocoon is not
including a Contype header for the OCS service. Thus the INVITE message is sent on
unchanged.

At the second proxy, the call forwarding service is called and it redirects the INVITE
towards Bob. The cocoon inserts a Contype header for the CFU service. This INVITE
message is then delivered to Bob’s user agent server which responds with a200 OK
message signalling that he accepts the invitation. This 200OK response message also
contains the CFU Contype header from the INVITE request. The200 OK message is
then sent back to the first proxy where the 200 OK response message triggers the OCS
service again.



SIP/2.0 200 OK
Via: SIP/2.0/UDP 139.153.254.50;branch=z9hG4bKafde.6e4854d4.0
Via: SIP/2.0/UDP 139.153.254.222
ConType: ID=CFU; TP=sip:alice@d254203.cs.stir.ac.uk;

OrigFrom=chris@discus.cs.stir.ac.uk;
OrigTo=alice@d254203.cs.stir.ac.uk;
FinalFrom=chris@discus.cs.stir.ac.uk;
FinalTo=bob@d254203.cs.stir.ac.uk

Forwarded-To: <sip:bob@d254203.cs.stir.ac.uk>
From: <sip:chris@discus.cs.stir.ac.uk>;tag=1c8060
To: <sip:alice@d254203.cs.stir.ac.uk>;tag=1A8019B3
Contact: "root" <sip:root@139.153.254.203:5062;transport=udp>
Record-Route: <sip:alice@139.153.254.203;ftag=1c8060;lr=lr>,
<sip:alice@139.153.254.50;ftag=1c8060;lr=lr>

However, there is an issue with the response sent by Bob as it does not necessarily
reveal that the response is sent from Bob and not from Alice. The To header in the request
and response is not changed by the forwarding service. In theSIP standard, the To header
is defined as the address of the invited user the session setupstarted off with. Indeed,
if the To header is changed by the forwarding service, the user agent client does not
recognise related responses.

In SIP, the party the invitation was finally delivered to is identified by the Contact
header. However, from the address given in this header it is not possible to derive who
the other party is. The address in the contact header reflectsthe system username at the
address given, not the SIP username. The SIP username and thesystem username do not
relate to each other. For instance, in the example above, thecontact header contains the
address root@139.153.254.203:5062.

The second option of finding out the SIP name of the user agent server is checking
the Record-Route header. Proxy servers put the SIP address in the Record-Route which
they have been dealing with. In the above response the headeronly shows entries for
Alice. This is because both proxy servers received an INVITEfor Alice. However, if
there was a third proxy server (IP address 139.153.254.23) in the chain, the Record-Route
would look like:

Record-Route: <sip:alice@139.153.254.203;ftag=1c17644;lr=lr>,
<sip:alice@139.153.254.50;ftag=1c17644;lr=lr>
<sip:bob@139.153.254.23;ftag=1c17644;lr=lr>

Thus if the forwarding happens on any proxy server except thelast in the chain, the
Record-Route header can be used by the OCS service. However,because of the limitation
this cannot be used as a general solution.

There does not appear to be any header defined in SIP which contains the SIP ad-
dress of the invited party. However, for the screening service to work, this information
is required. To overcome this issue another header was defined which contains the SIP
address of the user agent server. The header is calledForwarded-To and is inserted into
a message whenever a service redirects an INVITE request. Asdiscussed above for the
Contype header, the Forwarded-To header is also copied fromthe INVITE request to



responses generated by the user agent server. The response shown above contains the
Forwarded-To header.

When the OCS service checks the reply, it will find the Forwarded-To header with
Bob’s address. Because calls to Bob are not allowed, the cocoon is notified that OCS was
active on the message. The cocoon will apply the service interaction algorithm to the
data in the Contype header for the CFU service and the data forthe OCS service and an
interaction will be detected by rule 3. As OCS is the latest service to execute, its actions
will be disregarded, i.e. the call will be setup in this example.

6. Case Study

6.1. Selected Services

For the case study nine common services were selected. Theseare Call Forwarding Un-
conditional, Call Forwarding Busy, Originating Call Screening, Terminating Call Screen-
ing, Voice Mail System, Automatic Ringback, Do Not Disturb,Hotline, and Group Ring-
ing.

Following the modelling approach from Section 3.1 the connection type for each of
the services was developed. Table 12 contains the specifications of the services. As can
be seen from the table, some services which are actually quite different are modelled in a
rather similar way. For instance, the services OCS and TCS differ only in their triggering
party.

Service Triggering Party Connection Type
CFU B (A, B) → (A, C)
CFB B (A, B) → (A, C)
OCS A (A, B) → (A, Treat)
TCS B (A, B) → (A, Treat)
VMS B (A, B) → (A, Treat)
AR B (A, B) → (B, A)

DND B (A, B) → (A, Treat)
GR B (A, B) → (A, C)
HL A (A, B) → (A, B)

Figure 12. Specifications of the case study services

Furthermore, some rather different services have identical descriptions. For instance,
TCS, DND and VMS are very different from another. However, even though the three
services are quite different, they have some commonalities- these are captured by the
notation of the approach. For instance, with all three services it is not the intended party
who answers the call, but a network treatment. Thus at the chosen level of abstraction,
the services exhibit the same interaction. For instance, CFU will interact with all three
services because a forwarded call is not answered by the intended party, but rather by
a network treatment. Clearly, at a lower level of abstraction, perhaps when considering
network messages the interactions may be different.



6.2. Results and Discussion

Table 13 provides details of the detected interactions. Ticks show a successfully handled
interaction, an ’x’ symbolises an interaction which is not detected by the approach (see
below). Double entries in the table refer to multiple call scenarios between two services
exhibiting interactions.

CFU CFB OCS TCS VMS AR DND HL GR

CFU Ö Ö Ö Ö Ö x Ö x Ö Ö Ö x Ö Ö

CFB Ö Ö Ö Ö Ö Ö Ö Ö Ö

OCS Ö Ö Ö Ö

TCS Ö Ö x Ö Ö x Ö Ö x

VMS Ö x Ö Ö x Ö Ö x

AR Ö Ö Ö

DND Ö Ö x

HL

GR Ö Ö

Figure 13. Results of SIP case study.

All the ’x’-entries in the table are referring to a single issue with the approach. This
only concerns single component interactions, i.e. both services are deployed on the same
proxy where the services are triggered by an INVITE request,but one service drops the
INVITE and generates a response message (e.g. Terminating Call Screening). In this
case an interaction can only be detected if the service dropping the INVITE is triggered
second. This is because the cocoon of the first service needs to include the Contype
header in the INVITE and the cocoon of the second service needs to see that header and
execute the algorithm. However, if the service dropping theINVITE request is triggered
first the second service will not be triggered at all and hencethe cocoon stays inactive.
This also applies to scenarios where both services drop the triggering message.

However, it could be argued that interactions between services deployed on the same
server (or UA) are in fact not interactions in SIP. This is because deployed services are
usually configured in a list, i.e. the first service is executed first followed by the next
service and so on. It could be argued that this list represents implicit priorities. That is the
order of the services in the list represent user preferences. Thus if one service prevents
subsequent services from executing, it is likely to be in theinterest of the user.

In SIP, interactions between two services may occur in different call scenarios. For
instance, the interaction between HL and OCS can be simulated in two different scenar-
ios. Firstly, the arguably more traditional setup where both services are deployed on the
same location. However, the interaction can also successfully be verified when HL and
OCS are deployed on different locations, i.e. Hotline on theuser agent client and OCS on
the local proxy server. The reason is that the approach workswith public SIP addresses.
The public SIP address of a user is identical regardless of whether the user agent or the
local proxy are considered.

SIP offers some differences to PSTN services and poses some issues. The most im-
portant one is the possibility of identifying a single user by a number of different SIP
addresses. This leads to difficulties in identifying a party, e.g. for screening purposes.

Related to this is the issue of identifying a party from a response message. This was
rather surprising. The use of the To header appears redundant, as messages belonging to
a session can also be identified by the Call-Id header. The introduction of the Forward-To



header solved this problem. Arguing whether the usage of theSIP header is ideal as it is
or even changing their meaning is beyond the scope of this paper.

Another issue is that in SIP services which handle the busy condition will be trig-
gered differently than in the PSTN. Assuming that the services are deployed on a proxy
server, they are not triggered by the INVITE message, but by the 486 Busy response sent
by the user agent server. Due to this fact a number of Single Component interactions
known from the PSTN do not exists in SIP. This applies to interactions which involved a
service which handles a busy condition and a other service which is triggered regardless
of the party being busy. The message flow for the classic example between TCS and CFB
is depicted in Figure 14.

INVITE Bob

486 Busy

Alice Proxy (CFB, TCS) Bob

INVITE Bob

INVITE Chris

Chris

403 Screened

Figure 14. SIP Call Scenario between CFB and TCS

In this scenario Alice tries to call Bob. Bob has a CFB servicewhich redirects all
calls while he is busy to Chris. Furthermore, Bob has a TCS service which screens all
calls from Alice. If Alice calls Bob while he is busy the call gets screened and there is
no conflict with the CFB service. This is because the TCS service is triggered by the
INVITE request. Thus the CFB service which waits for a 486 Busy response is never
triggered. The CFB messages which are not sent because of TCSare shown by dashed
lines. Thus in SIP, there is no interaction in this scenario.

7. Summary and Further Work

This paper has discussed the feature interaction problem between SIP call control ser-
vices. A pragmatic approach has been implemented. The approach does not require de-
tailed service knowledge. This is essential in an open and competitive market environ-
ment as expected for SIP services.

As was shown in the experimentation, the approach can easilybe implemented on
a SIP platform. The approach only requires service information at a very abstract level,
which is readily available.

The approach requires extensions to the SIP protocol. However, the extensions are in
line with the rules for SIP extensions as defined by the SIP standard. For the approach to
work fully, all components involved in a session setup need to support these extensions.
However, if some components do not support the extensions, sessions can still be setup
but with limited feature interaction handling.

The particular strength of the approach is the detection of interactions between ser-
vices deployed ondifferent SIP components. As often there will be a number of SIP
components involved in a session setup, distributed services will be common practise. As
shown in the experiments, the presented approach is able to handle all these scenarios.



Clearly, the presented approach has some weaknesses detecting some Single Com-
ponent interactions. However, as discussed above, single component interactions may not
represent undesired behaviour as in PSTN. This is because the services are configured in
a list which may represent users preferences (most important service first).

Once an interaction is detected it also needs to be resolved.In this paper a resolution
approach based on the order of invocation has been adopted. In the event of an interac-
tion, the service invoked last will be disregarded. This approach incurs minimal overhead
and in principal constitutes a priority based approach. More elaborated priority schemes
and also the use of policies to help select the service whose actions are disregarded, can
be adopted in the future.

In summary, the presented approach closes a major gap as it allows to handle in-
teractions between services deployed on different components at runtime. This will be
necessary if distributed call control architectures, suchas SIP, are to be successful.

References

[1] J. Lennox and H. Schulzrinne. Feature interaction in internet telephony. In [3], pages 38–50,
May 2000.

[2] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec. Hybrid solutions to the feature
interaction probelm. In[4], pages 295–312, June 2003.

[3] M. Calder and E. Magill, editors.Feature Interactions in Telecommunications and Software
Systems VI. IOS Press (Amsterdam), May 2000.

[4] D. Amyot and L. Logrippo, editors.Feature Interactions in Telecommunications and Software
Systems VII. IOS Press (Amsterdam), June 2003.

[5] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction: A critical
review and considered forecast.Computer Networks: The International Journal of Computer
and Telecommunications Networking, 41(1):115–141, 2003.

[6] D. O. Keck and P. J. Kuehn. The feature and service interaction problem in telecommuni-
cations systems: A survey.IEEE Transactions on Software Engineering, 24(10):779–796,
October 1998. IEEE.

[7] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler. SIP: Session initiation protocol.Request for Comments (Standards Track)
3261, 2002. Internet Engineering Task Force.

[8] M. Kolberg and E. H. Magill. A pragmatic approach to service interaction filtering be-
tween call control services.Computer Networks: The International Journal of Computer and
Telecommunications Networking, 38(5):591–602, 2002.

[9] J. Lennox, X. Wu, and H. Schulzrinne.Call Processing Language (CPL): A Language for
User Control of Internet Telephony Services, RFC 3880. Internet Engineering Task Force,
2004.

[10] J. Lennox, H. Schulzrinne, and J. Rosenberg.Common Gateway Interface for SIP, RFC 3050.
Internet Engineering Task Force, 2001.

[11] M. Rizzo and A. Garyfalos. Using SIP to negotiate over user requirements in personalized
Internet Telephony services. InProceedings of SIP 2000. Upper Side Conferences, Paris,
January 2000.

[12] M. Kolberg and E. Magill. Handling incompatibilities between services deployed on ip-based
networks. InIEEE Intelligent Networks Workshop 2001 (IN2001), Boston, USA., May 2001.

[13] SER SIP Express Router.http://www.iptel.org/ser.
[14] Pingtel SIP Phone.http://www.pingtel.com.
[15] Kphone SIP User Agent.http://www.wirlab.net/kphone.


