Detecting Feature Interactions between
SIP Call Control Services

Mario Kolberg ! and Evan H. Magilt
& Department of Computing Science & Mathematics, University of Stirling, UK

Abstract. The Session Initiation Protocol (SIP) is a strong conteladea call con-
trol protocol for Voice over IP (MolP), and indeed commerciapiementations are
readily available off-the-shelf. SIP supports flexiblevéez provisioning not only
through third parties, but also end-users. Laboratory eepee shows that as these
services are interworking they are subject to the featurraction problem. Fea-
ture interactions may considerably delay service deploymedihence are a threat
to rapid service provisioning.

This paper investigates the feature interaction proble8ifibased services and
investigates the application of a pragmatic approach. Tinigme approach does
not require any detailed information about the services arté can be applied
in a competitive market. Furthermore, the approach is paatiuktrong in de-
tecting interactions between distributed services - a keyacteristic of SIP-based
services.

Keywords. Feature Interactions, Runtime Approach, SIP, VolP

1. Introduction

One of the main drivers for the success of SIP is the relgtigaby provisioning of ser-
vices. Third party service providers and even end users mayde services. Once fully
tested and deployed, each service functions well on its blemever, as was discussed
by Lennox and Schulzrinne [1], when SIP services interwheirtcombined behaviour
may not be acceptable. This phenomenon already known fiaitibnal telephony net-
works is known as feature interactions or service inteoasti2].

1.1. Basic Terms

Within telecommunications the terms interworking and mgatibility have well under-
stood meanings. Services musterwork to share a (communications) resource, for in-
stance a session. The services may intervegpkicitly through an exchange of informa-
tion with each other, ommplicitly through changing the session. In the second case, the
services often have no knowledge that the other exists.

When services interwork to share communication resourbeg,drecompatible if
the joint behaviour of the resource is acceptable. Howéf/gre joint behaviour is not

1Correspondence to: Mario Kolberg, Department of Computingrde & Mathematics, University of
Stirling, Stirling FK9 4LA, United Kingdom; E-mail: mko@csisac.uk

acceptable, i.e. the services are not compatible, thecgsraire said tonteract. Compat-
ibility doesnot refer to coding errors, nor to the adherence of interfacgsaincols, but
to the adequate behaviour of a resource under the jointal@ftmterworking service.

Although services with comparable functionality are atigknown from traditional
telephony network, there are some significant differencesnadeployed on SIP net-
works. SIP has some fundamental differences to tradititelaphony networks and
hence it is necessary to study these problems again in a 8tBxto

Some authors distinguish the concepts of features andcesrvror this paper, the
distinction between feature and service is not significahit is crucial is the concept
of interaction. The termsservice andfeature are used interchangeably.

Clearly, with the increased complexity and number of sewjche problem gets
worse. Neither manual inspection, nor simple testing,raffactable solutions. More
effective approaches addressing the special requireroétits domain are needed.

1.2. Basic Approaches

A substantial body of work [3,4] exists on dealing with faatinteractions. Most ap-
proaches can be categorised as either off-line or on-linefl off-line approaches are
applicable at design-time whereas on-line approachepalied at run-time. The former
being most useful at the early stages of the software lifle¢yhe latter during testing
and deployment [5].

Off-line approaches are often based on the application mohdb methods, and as
such require considerable information of each individudtvgare increment. Increas-
ingly, as the market becomes more competitive, this inféionmanay not be available.
Also, as the number of services increases, the work in ainglymir-wise interactions
increases with the square of the number of services. Withge laumber of services in
an open market, this will quickly become untenable. Howewstfline approaches still
have a role to test services inside a single offering.

In contrast, on-line approaches carry out checks as rafj@early there are com-
puting resource issues, but the major issue is having siifioiformation about the ser-
vices available at runtime. A particular limitation withratime approaches is the ability
to detect interactions between services deployed on differomponents in the network.
The approach presented in this paper is attempting to closegap. A more detailed
discussion on existing approaches can be found in [6] and [2]

2. SIP
2.1. Architecture and Components

Voice over IP uses a number of different protocols. SIP [Tised for 'signalling’. SIP is
concerned with user registration as well as session setogification and termination.
Crucially, SIP does not deal with the media exchange as $ditter protocols are used
in combination with SIP to allow for different media to be Baaged. Indeed SIP can be
used to establish non-telephony sessions.

Within a SIP network there are two basic types of devices davites (user agents)
and servers. User agents are the devices used by end uskrcsetopreceive calls. These

may be SIP phones, or so called soft phones, which are sefiwslementations to be
run on a PC. Note that user agents do not necessarily intediaectly with a user, an
answering machine is also a user agent. User agents argdistied according to their
role in a call: the user agent client places the call, and #e¥ agent server receives
the call. User agents initiate and respond to signallingsamitl and receive media. User
agents are aware of the call state. Unlike traditional tedey, user agents may provide
a number of services, such as Call Waiting, Call Forwardin@;all Screening.

Servers handle the application level control and routin§l&f messages. There are
three different kinds of servers defined in SIP: Registedifeet and Proxy servers.
If a user is to be invited to join a session (call), there is ¢huestion of where the
invitation should be sent to as users may be located at eiffeiP addresses. Users
are addressed by email-like addresses, e.g. sip:mko@aes.sk. This is a public ad-
dress. However, at present, the user may in fact be loca@da@nputer with the name
d25.cs.stir.ac.uk and be logged on as user mk0123. The Slfeszdfor this location
would be sip:mk0123@d25.cs.stir.ac.uk. To link the tworaddes users need to register
with a register server. Register servers work very closétly redirect and proxy servers.

Invitations are sent from the user agent client via a numlbeedirect or proxy
servers to the user agent server. If a redirect server Ex@in invitation for a user, it
checks with the database of the local register server amdnethe address where it
believes the user to be invited can be found. If the user isantutally located at that
address, more information on the user’s location may bdablaifrom that address.

Proxy servers are similar to redirect servers in that thdp tefind the location
of a user. However, a proxy server does not return the fouddead but forwards the
invitation on to that address. In the path an invitation st $em the user agent client to
the user agent server there may be number of rediretproxy servers.

Both proxy and redirect servers can host and execute caltaiaservices in that
they can direct, block, or alter call signalling messagemgequently, SIP offers the
potential for a truly distributed service provisioning.rdees may be deployed on user
agents and redirect and proxy servers. SIP will allow a degf@rogrammability which
is unknown in the PSTN.

2.2. Consequences for Feature Interactions

Services working on the same call may be deployed in a nunfldifferent locations,
which are controlled by separate organisations. Thesenmatons may not be aware
of each other or competing with each other. Thus they arenatined to share detailed
information on their services to avoid interactions. Alsgzause of the large degree of
possible programmability, even end users may design andyddmeir own call control
services, either on their user agent or by uploading thelmetdoical proxy server. Conse-
quently, SIP uses a heavily distributed architecture watirises possibly being deployed
on every component. Any approach to feature interactionSifie needs to take this into
account.

The fact that media packets travel end-to-end, withoutd&iterceptable by inter-
mediate servers means that some services can no longer kerienged transparently.
For instance, "pipe-bending" services, such as forwardirmgll, cannot be performed
without informing the other party of the new address wheey tthould send the media
packets to [1].

Further, the increased numbers of possible addressessmoahplicate some ser-
vices. In the traditional telephony network a phone numizar loe used to identify a
party for call screening. In SIP this is much harder to achiev

The next section provides details of an approach which iSegige to SIP. Section 4
discusses the application of the approach to SIP.

3. The Applied Approach

The algorithm is based on the pragmatic approach presemtid]. iHere it is adapted
to operate in a SIP environment. The approach concentratéRenestablishment of
connections and does not require detailed information tatheuinvolved services, but
operates at a higher level.

Thus it can be applied in a competitive business environmdmdre no detailed
technical information will be available. And secondly, tygplicability of the approach
is independent of the network architecture. The approastaliaady been employed in
a PSTN setting [2] and also as a filtering approach [8].

3.1. Overview

The behaviour of a service is described in two parts: thgerigng party and a connection
type. The latter consists of two parts: the original conio&cto be set up before the
service is activated and the connection set up after théceenas been triggered.

| TP:B; (A, B)— (A, C)]

Figure 1. Description of Call Forwarding Unconditional

An example should illustrate this. Call Forwarding Uncdiugtial (CFU), which
redirects all incoming calls to a predefined third user, @addscribed as shown in Fig. 1.
Assume party A is the originator, B the terminator, and C thaypwhere the call is
redirected to. The behaviour has two parts, separated byiaalen. In the first part, the
notation TP.: X indicates that X is the triggering party, istcase it is B because CFU
is triggered at the terminating end of a call. In the secont, patation (X, Y)— (U,
V) indicates the connection type. (X, Y) is called the orainonnection and (U, V) is
the connection after activating the service. For each ggiB] A is the source and B
the destination. The call starts with A attempting to cotted. However, because of
CFU, A is connected to C instead. So the connection type i8]A;y (A, C).

Treatments are an important aspect of this approach. Tezdisrare announcements
or tones triggered by the network to handle certain conktduring a call, for example
when a call is screened or blocked.

Clearly, this way of describing services abstracts from aswmerable amount of
service behaviour. The presented results show that opittiese details is not an issue.

3.2. Interaction Analysis

Interaction cases are found by analyspairs of services. Two service descriptions are
compared according to five rules. If a service pair fulfilly af the five rules, then the
pair is said to interact. In the following, each of the rulesansidered in turn.

Rule 1 — Single User - Dual Service Control: If both services have the same trigger-
ing party and either the original connections or the resgltonnections are iden-
tical, the pair interacts. Examples are given in Figure 2 3haded portions indi-
cate the key parts of the descriptions.

CFB: TP B; (AJB) — (A, C) AR: TPIA; (B,A)— (A/B) |
Cw: TP:B: (A B) — (A B)| @ | HL: TPzA: (A B)— (A, B) | ®

Figure 2. (a) Call Forwarding Busy & Call Waiting and (b) Automatic Riveck & Hotline

Rule 2 — Connection Looping: If the original connection of the first service is identical
to the resulting connection of the second service, and tiggnat connection of
the second service is identical to the resulting connecifahe first service then
a connection loop occurs. Further, the triggering partesdnto be different. As
both services are trying to divert the connection in a cacway, a loop occurs
(ref. Figure 3). Again, the shaded portions indicate thatidal connections.

CFB: TP.: B;[(A, B) — [(ANG)
CFU: TP.: C;(AlE) — (A, B)

Figure 3. Call Forwarding Busy and Call Forwarding Unconditionaliséed

Rule 3 — Redirection and Treatment: This type of interaction is detected if the result-
ing connection of the first service matches the original eation of the second
service and the second service connects to a treatmenleFuone of two con-
ditions need to be met. Firstly, the originating party of thréyinal connection
and the originating party of the resulting connection of fingt service need to
be identical and the terminating parties be different (Bi@)). Or secondly, the
originating party of the original connection needs to matehterminating party
of the resulting connection and the terminating party ofdahiginal connection is
the originating party of the resulting connection (Fig. (b
In other words, one service establishes a connection bgrdithwarding (not to a
treatment) or reversing a connection. The resulting canmeds the original one
of the second service, which redirects the call to a treatniéns scenario is a
potential problem as the connection which is set-up by tdé&eetion service is
prevented by the treatment service.

Rule 4 — Diversion and Reversing: This rule specifies that an interaction is detected if
the resulting connection of the first service matches thgirmal connection of the
second service. Furthermore, for one of the two servicesptiginating party of

CFB: TP.:C;[® C) — (A, B) AR: TP.:B; (AB) — [(B,A) b
oCs: TP.: A/(A, B) — [mmiean| @ | ocs: 1. B:(B,A)— [Emmean|

Figure 4. (a) Call Forwarding Busy & Originating Call Screening anjl flutomatic Ringback & Originating
Call Screening

the original connection is identical with the originatingrfy of the resulting con-
nection and the terminating parties of the two connectioesdéferent. For the
other service, the originating party of the original corti@tneeds to be the ter-
minating party of the resulting connection and the terniiggparty of the original
connection needs to be the originating party of the regyttonnection.

Here one service forwards a call and the other reversesih&luig may happen in
either order, i.e. one service forwards a call which is sgbeatly reversed to the
originator by the other service. In this case the originafdhe original connection
will receive a reversed call from someone they never rung.

CFB: TP.: C; (A, C)— [(A/B)

AR: TP.:B;[AlB) — (B, A) (b)
AR: TP.: B; (A, B) — KBIA)

| cFB: TP: A/(B, A) — (B, C)

—~~
—

Figure 5. (a) Call Forwarding Busy & Automatic Ringback and (b) Autoradingback & Call Forwarding
Busy

Alternatively, a reversed call is forwarded. In this cassgeavice reverses a call
which is subsequently forwarded by the other service to @l tharty. Conse-
quently, the returned call is reaching a person which neleaegl a call in the first
place. Figure 5 contains two example interaction scenarios

Rule 5 — Treatment and Subsequent Missed Call Handling: This type of interaction
occurs if the original connections for both services arafidal. For one service
the triggering party must also be the originating party égioal connection and
the terminating party of the resulting connection is tremiimFinally, the trigger-
ing parties of both services need to be different.
This type of interaction is concerned with call control seeg which are prevented
from functioning by another service which connects the tak treatment. An
example of this type of interaction is given in Figure 6.

CFB: TP.: B; [(AlB) — (A, C)
OCS: TP.: A;(AIB) — (A, Treat)

Figure 6. Call Forwarding on Busy and Originating Call Screening séed.

Finally, it is important to note that the descriptions aresoper service base, not
per services pair. It is only the algorithm which combines tvervice descriptions to
pairs. This greatly reduces the complexity, because wherseevices are introduced no
existing descriptions need to be changed.

4. Using the Approach in SIP
4.1. SIP Services

Fundamentally, services can be provided in two ways: SIP PPand SIP CGI [10].
SIP CPL is a XML-based language and is restricted in its fonelity, but safe. SIP CGI
offers full access to SIP messages and also the use of extiatadases which are im-
portant for a number of services, such as forwarding anceaang. Thus the discussion
in this paper is targeted at SIP CGl services.

4.2. Application of the Approach in SIP

SIP is a distributed protocol, with services being locatedaaious locations through
which a SIP message travels. Hence, the approach and diptgaapplication of the
algorithm has to be distributed as well.

The basic idea is that each service which gets activateddsslits Triggering Party
and Connection Type into the message. If there is alreadyoomeore entries in the
message, these are checked against the description of riteatcservice. Thus the al-
gorithm is executed wherever necessary and a central éeatanager is not required.
This is possible as SIP is an extensible protocol. Addititveaders carrying additional
information may be defined and included with messages. Timyrdefined header to
carry the required information for this approach is calhtype.

For this approach, each service needs to be surrounded bgoarcoThe cocoon
contains the connection type for the service and the logith®interaction algorithm.

When a message arrives at a server (or user agent), the mgetagmssed to the
deployed services. As the services are surrounded by cectitm message is actually
sent to the cocoon, but from there it is sent immediately &odérvice proper. At this
point, the cocoon does not check or alter the message.

Once the service proper is finished with execution the pitiynaltered message
is passed back to the cocoon. With the message, the servide aa indication to the
cocoon, whether the service actually was triggered by thesage, i.e. it altered the
message (e.g. CFU), or was armed to execute at some eveatfitdhne (e.g. AR).

This indication is important as the services may only gejgered by some mes-
sages, e.g. some calls are not forwarded or not screenesioffén depends on service
specific data, such as screening lists. Services which la@en triggered cannot cause
any interactions. Hence the following algorithm does nact be executed for such
services. If the service was triggered by the message, twoahecks the message for
a header calle€ontype. These headers contain the descriptions of services whiad h
already been active in that transaction.

If such a header is not found, no other service has previdiesdy active and hence
a service interaction cannot have occurred. In this cagectlcoon inserts a Contype
header into the message which contains the descriptioneofeffated service. For in-
stance, for the Call Forwarding Unconditional service désed in Section 4.1 the header
is depicted in Figure 7.

The header contains a number of fields: the ID field shows whéhice is rep-
resented by the header. Currently this is a simple stringtdavoid duplicate names
unique identifiers can be used in future implementations. T field contains the trig-

ConType: ID=CFU; TP=sip:bob@d254203.cs.stir.ac.uk;
OrigFrom=chris@discus.cs.stir.ac.uk; OrigTo=bob@ @&Z&4cs.stir.ac.uk;
FinalFrom=chris@discus.cs.stir.acuk; FinalTo=alic&@4P03.cs.stir.ac.uk

Figure 7. SIP Header for CFU

gering party, and the remaining four fields correspond tddhefields used to construct
the connection type.

If a Contype header is found in the message, the data fronh#sater is extracted
and together with the description of the local service fetd ithe service interaction
algorithm. If no service interaction is detected, and nohieir Contype header is found
in the message, the Contype header for the current servioseged into the message
and the message is sent on to its destination.

If, however, a service interaction is detected, it need®teelolved also at run-time.
Currently, a basic solution has been implemented: if amécteon occurs, the outcome of
the second service is discarded, and the call proceedslad gervice was not activated
at all. This is a basic resolution approach, and clearly retaborated approaches, such
as presented in [11,12] could be used. Also policies may w&viad finding the best
solution. Resolution approaches may be tuned to achieweugagoals, such as finding
the solution with the most executed services, or executingeavices subscribed to by
the party who pays for the call, or, in a private environméaat $ervices belonging to
the organisation may have priority over services of theviddial. In a way all these
approaches implement a priority system. Our approach ghesighest priority to the
service executed first.

Alice Proxy (CFU) Proxy (CFB) Bob

INVITE Chris
CFU Triggered

INVITE Bob,

Contype: CFU| \rv1TE Bob

Contype CFU

486 Busy
Contype CFU

CFB Triggered

FI detected
between
CFU arlnd CFB

Figure 8. Message flow with CFU and CFB

However, not all services involved in a session setup aggeried by the INVITE
message sent by the user agent client. For instance, witltasgitriggered on busy re-
sponses there will be INVITE messages and also busy respaessages involved in the
call setup. For such cases, response messages also neetkia the Contype headers
which were added to the corresponding INVITE. Thus if a ugenaserver receives an
INVITE request with Contype headers, the Contype headexd teebe copied into the
response message. This way, cocoons for services trighgreesponse messages are
also aware of services that previously have been operatinge INVITE. Clearly, if
a service which is triggered by a response message issues INNETE request, then

the cocoon needs to copy any Contype headers from the respmtise new INVITE
message. The approach of copying headers from the requestgonse message is a
common approach taken in SIP. For instance, the standardh®&8er is also used in this
way. The interaction between CFU and CFB is shown as an exaofigluch a message
flow in Figure 8.

In the example, Alice tries to invite Chris, however, at tbedl proxy server the
INVITE gets forwarded by a CFU service to Bob. A Contype heaslattached to the
INVITE message and set on. The message then passes thraughdbnd proxy and
is sent to Bob’s user agent. However, as Bob is busy, a 486 Basponse is returned.
This response also contains the CFU Contype header. At thg,fCFB is triggered by
the 486 Busy message. The CFB service forwards all calls ts @Bob is busy. Thus
the cocoon checks for an interaction and using the Contypdéreof the 486 response
message, discovers an interaction and CFB is disregareéethe 486 Busy message is
forwarded back to Alice. The descriptions of the two sersiseshown in Figure 9.

CFU: TP.: Chris;(Alice, Chris) — [(AlicENBob)
CFB: TP.: Bob; [(AliEENBEB) — (Alice, Chris)

Figure 9. Call Forwarding Loop

Implementing the approach in SIP extends SIP with an additibeader, Contype.
This extension is in line with the SIP standard and followB 8bnventions. Clearly, in
order for the approach to work, implementations of SIP camepts, especially proxy
servers and user agents, need to be aware of the new headgkaaise of the informa-
tion provided. However, if a message with a Contype headesgsthrough a SIP com-
ponent which does not support the header, it simply ignar&sis is one of the funda-
mental principles of SIP to allow for extensions. Thus, a porent which does not sup-
port this extension does not fail to work properly, and dogtspnevent other component
which support the header from using the information.

5. Experimentation

The approach has been implemented in a SIP testbed. SER gs3thosen as proxy
server, and a Pingtel SIP phone [14] and kphone [15] were aseder agents.

Currently, it is difficult to get access to implementationsieh support the provi-
sioning of services generally, and even more so implemientatvhich support the CGl
interface. However, SER offers a proprietary interfacedaviding services. This in-
terface provides access to full SIP messages and in printifd is the same as a CGl
interface would offer. Thus the implementation discussest is using the proprietary
interface offered by SER and not the CGI interface.

The approach was tried with a number of service combinatidnfortunately, there
are no call control services available off-the-shelf. Thursple service prototypes were
developed to carry out the experimentation.

In the next two sections two example interactions are desdrand it is demon-
strated how the approach can deal with them. Section 6 preaesummary of all sce-
narios tried and a discussion on the results.

5.1. ASmple Example

In the following the approach is applied to the interactietvieen Call Forwarding and
Terminating Call Screening. An overview is depicted in FeO.

Proxy server d254203.cs.stir.ac.uk Proxy server discus.cs.stir.ac.uk UAC chris@discus.cs.stir.ac.uk

IP address: 139.153.254.203
TCS from chris@discus.cs.stir.ac.uk

(2) Invitation for

IP address: 139.153.254.50

139.153.254.222

CFU to alice@d254203.cs.stir.ac.uk

>

» SIP: alice@d254203.cs.stir.ac.uk

(1) Invitation for \
. SIP: bob@d254203.cs.stir.ac.uk \

Figure 10. Applying the Algorithm to the Interaction between CFU andSIC

e

There are two proxy servers involved: discus.cs.stirkaand d254203.cs.stir.ac.uk.
The public address of the user agent client (Pingtel phanehiis@discus.cs.stir.ac.uk
and is thus associated with the first proxy server. In thead@nChris attempts to invite
Bob to a session, however, due to a forwarding service on teeffioxy server, the
invitation is redirected to Alice at the second proxy senidice has a terminating call
screening service deployed on the second proxy server itis ©Gn the screening list.

Initially, the user agent client sends a INVITE message titénto the first proxy
server (payload and some unrelated headers have beend)mitte

I NVI TE si p: bob@254203. cs.stir.ac.uk SIP/2.0
From sip:chris@li scus.cs.stir.ac.uk;tag=1c18932
To: sip:bob@254203. cs. stir.ac. uk

Contact: <sip:chris@39.153.254. 222>

Via: SIP/2.0/UDP 139. 153. 254, 222

At this proxy server, the CFU service is invoked. This chanifpe message in a way
that it is sent to Alice rather than Bob. Furthermore, as éreise changed the message,
the cocoon, inserts a Contype header into the INVITE reqfpestioad and unrelated
headers have been omitted).

I NVI TE sip:alice@?254203.cs.stir.ac.uk SIP/2.0
From sip:chris@liscus.cs.stir.ac.uk;tag=1c18932
To: sip:bob@254203.cs.stir.ac.uk
Contact: <sip:chris@39.153.254.222>
Via: SIP/2.0/UDP 139. 153. 254. 50; br anch=z9hG4bK6d0d. a5da393. 0
Via: SIP/2.0/UDP 139. 153. 254, 222
ConType: | D=CFU; TP=si p: bob@?254203. cs. stir. ac. uk;
Ori gFromechri s@li scus. cs. stir. ac. uk;
Ori gTo=bob@254203. cs. stir. ac. uk;
Fi nal Fromrchri s@li scus. cs. stir. ac. uk;
Fi nal To=al i ce@254203. cs. stir. ac. uk

At the second proxy server, the TCS service is called. Aftecetion, the service
notifies the cocoon that it was triggered and the cocoon chinekINVITE message for

an existing Contype header. The message contains the CFtyg@oheader and thus
the cocoon applies the service interaction algorithm toGR& and TCS descriptions.
As a result an interaction was detected by rule 3. Thus theraof the TCS service is
discarded and the INVITE is forwarded to Alice. The approlak successfully handled
the interaction.

5.2. A more complex Example
This section provides an example where the second serviciggered by a response

message. The example used is the interaction between &tirginCall Screening and
Call Forwarding. Figure 11 shows the setup.

Proxy server discus.cs.stir.ac.uk
IP address: 139.153.254.50
_OCS bob@d254203.cs.stir.ac.uk

UAC bob@d254203.cs.stir.ac.uk
139.153.254.203:5062

UAC chris@discus.cs.stir.ac.uk
139.153.254.222

Figure 11. Service Interaction between OCS and CFU.

When considering service interactions, one issue whichténafiscussed with Orig-
inating Call Screening is its actual purpose. That is, ghaubnly prevent Chris from
dialing Bob’s number (perhaps because of additional costs beimajvied), or is it in-
tended that Chris is natonnected to Bob. If the aim is the former, then checking IN-
VITE messages is sufficient and no interaction between tloestwvices exists. In this
paper, this service is then referred to as Originating D@ak&ning (ODS). However, if
the goal is the latter, 200 OK responses sent in reply to INBM@quests are checked by
the service. This functionality is assumed in this section.

In the scenario, OCS is called on the first proxy server witttalts to Bob being
allowed. OCS checks the destination of the INVITE requedtifess in the first line of
the message) and since the request is directed towards tleesquest is not screened.
The cocoon is notified that OCS did not take any actions andehére cocoon is not
including a Contype header for the OCS service. Thus the TEhessage is sent on
unchanged.

At the second proxy, the call forwarding service is called inedirects the INVITE
towards Bob. The cocoon inserts a Contype header for the @Rlice. This INVITE
message is then delivered to Bob’s user agent server whigomes with 200 OK
message signalling that he accepts the invitation. ThisQRQesponse message also
contains the CFU Contype header from the INVITE request. 20 OK message is
then sent back to the first proxy where the 200 OK responseagegsggers the OCS
service again.

SIP/2.0 200 OK
Via: SIP/2.0/UDP 139. 153. 254. 50; br anch=z9hG4bKaf de. 6e4854d4. 0
Via: SIP/2.0/UDP 139. 153. 254, 222
ConType: | D=CFU; TP=sip:alice@?254203.cs.stir.ac. uk;
Ori gFronechri s@li scus. cs. stir.ac. uk;
OigTo=al i ce@?254203. cs. stir. ac. uk;
Fi nal Fromrchri s@li scus. cs. stir. ac. uk;
Fi nal To=bob@I254203. cs. stir.ac. uk
For war ded- To: <si p: bob@?254203. cs. stir.ac. uk>
From <sip:chris@i scus.cs.stir.ac.uk>;tag=1c8060
To: <sip:alice@?254203.cs.stir.ac.uk>;tag=1A8019B3
Contact: "root" <sip:root@39.153.254.203:5062;transport=udp>
Record- Route: <sip:alice@39.153.254. 203; ftag=1c8060; | r=Ir>,
<sip:alice@39.153. 254.50; ftag=1c8060; | r=Ir>

However, there is an issue with the response sent by Bob agdt ot necessarily
reveal that the response is sent from Bob and not from Alibe.To header in the request
and response is not changed by the forwarding service. I8lthstandard, the To header
is defined as the address of the invited user the session sttdpd off with. Indeed,
if the To header is changed by the forwarding service, the agent client does not
recognise related responses.

In SIP, the party the invitation was finally delivered to igmdified by the Contact
header. However, from the address given in this header tipossible to derive who
the other party is. The address in the contact header reflexts/stem username at the
address given, not the SIP username. The SIP username asybtlm username do not
relate to each other. For instance, in the example abovegatiact header contains the
address root@139.153.254.203:5062.

The second option of finding out the SIP name of the user agewesis checking
the Record-Route header. Proxy servers put the SIP addréss Record-Route which
they have been dealing with. In the above response the heatleshows entries for
Alice. This is because both proxy servers received an INVIGiEAlice. However, if
there was a third proxy server (IP address 139.153.2542Bgichain, the Record-Route
would look like:

Record- Route: <sip:alice@39.153.254. 203; ftag=1c17644;1r=lr>,
<sip:alice@39.153.254.50; ftag=1cl17644;1r=lr>
<si p: bob@39. 153. 254. 23; ft ag=1c17644; | r=lr >

Thus if the forwarding happens on any proxy server exceplatan the chain, the
Record-Route header can be used by the OCS service. Holwevayse of the limitation
this cannot be used as a general solution.

There does not appear to be any header defined in SIP whichiesithe SIP ad-
dress of the invited party. However, for the screening sertd work, this information
is required. To overcome this issue another header was defihieh contains the SIP
address of the user agent server. The header is dadledarded-To and is inserted into
a message whenever a service redirects an INVITE requeslisésssed above for the
Contype header, the Forwarded-To header is also copied thieniNVITE request to

responses generated by the user agent server. The respomge above contains the
Forwarded-To header.

When the OCS service checks the reply, it will find the Forwesd@ie header with
Bob’s address. Because calls to Bob are not allowed, theocdsmotified that OCS was
active on the message. The cocoon will apply the serviceadatien algorithm to the
data in the Contype header for the CFU service and the dathéddCS service and an
interaction will be detected by rule 3. As OCS is the latestise to execute, its actions
will be disregarded, i.e. the call will be setup in this exdenp

6. Case Study
6.1. Selected Services

For the case study nine common services were selected. @hre&all Forwarding Un-
conditional, Call Forwarding Busy, Originating Call Scnégg, Terminating Call Screen-
ing, Voice Mail System, Automatic Ringback, Do Not DistuHntline, and Group Ring-
ing.

Following the modelling approach from Section 3.1 the catina type for each of
the services was developed. Table 12 contains the speicifisaif the services. As can
be seen from the table, some services which are actually difierent are modelled in a
rather similar way. For instance, the services OCS and T@& dnly in their triggering

party.

Service Triggering Party Connection Type
CFU B (A,B) — (A, C)
CFB B (A,B) — (A, C)
OoCs A (A, B) — (A, Treat)
TCS B (A, B) — (A, Treat)
VMS B (A, B) — (A, Treat)
AR B (A, B) — (B, A)
DND B (A, B) — (A, Treat)

GR B (A, B) — (A, C)
HL A (A, B) — (A, B)

Figure 12. Specifications of the case study services

Furthermore, some rather different services have iddméscriptions. For instance,
TCS, DND and VMS are very different from another. Howevegrethough the three
services are quite different, they have some commonalitiesese are captured by the
notation of the approach. For instance, with all three sewvit is not the intended party
who answers the call, but a network treatment. Thus at theerhtevel of abstraction,
the services exhibit the same interaction. For instancé] ®@H interact with all three
services because a forwarded call is not answered by thediedeparty, but rather by
a network treatment. Clearly, at a lower level of abstraxtierhaps when considering
network messages the interactions may be different.

6.2. Results and Discussion

Table 13 provides details of the detected interactionksIshow a successfully handled
interaction, an 'x’ symbolises an interaction which is netatted by the approach (see
below). Double entries in the table refer to multiple caktisarios between two services
exhibiting interactions.

CFU [cFB | ocs | Tcs [vMs [AR [DND | HL | GR |
EE N N | V[V B

CFU Vx X N X N
CFB o 7 i8] N

e \ N N
TCS v Ax q VX J X

VMS V' x v X N V' x
R = T T

DND N V' x
GR

Figure 13. Results of SIP case study.

All the "x’-entries in the table are referring to a singleusswith the approach. This
only concerns single component interactions, i.e. botices are deployed on the same
proxy where the services are triggered by an INVITE requmsgtpne service drops the
INVITE and generates a response message (e.g. Terminasihgs&eening). In this
case an interaction can only be detected if the service dggpe INVITE is triggered
second. This is because the cocoon of the first service neeidsltide the Contype
header in the INVITE and the cocoon of the second servicesieesee that header and
execute the algorithm. However, if the service droppinglMI TE request is triggered
first the second service will not be triggered at all and heheecocoon stays inactive.
This also applies to scenarios where both services dropitfgeting message.

However, it could be argued that interactions between sesuleployed on the same
server (or UA) are in fact not interactions in SIP. This isduese deployed services are
usually configured in a list, i.e. the first service is exeddiest followed by the next
service and so on. It could be argued that this list represenlicit priorities. That is the
order of the services in the list represent user prefereridess if one service prevents
subsequent services from executing, it is likely to be initiberest of the user.

In SIP, interactions between two services may occur in idifiecall scenarios. For
instance, the interaction between HL and OCS can be sindlilatsvo different scenar-
ios. Firstly, the arguably more traditional setup wherentsmrvices are deployed on the
same location. However, the interaction can also sucdgssf verified when HL and
OCS are deployed on different locations, i.e. Hotline oruther agent client and OCS on
the local proxy server. The reason is that the approach weitkspublic SIP addresses.
The public SIP address of a user is identical regardless efiven the user agent or the
local proxy are considered.

SIP offers some differences to PSTN services and poses ssmesi The most im-
portant one is the possibility of identifying a single usgréonumber of different SIP
addresses. This leads to difficulties in identifying a paety. for screening purposes.

Related to this is the issue of identifying a party from a cese message. This was
rather surprising. The use of the To header appears redyrsdamessages belonging to
a session can also be identified by the Call-Id header. Thadimt¢tion of the Forward-To

header solved this problem. Arguing whether the usage dbtReéheader is ideal as it is
or even changing their meaning is beyond the scope of thisrpap

Another issue is that in SIP services which handle the busditon will be trig-
gered differently than in the PSTN. Assuming that the sexwire deployed on a proxy
server, they are not triggered by the INVITE message, buhby86 Busy response sent
by the user agent server. Due to this fact a number of Singlepgdaent interactions
known from the PSTN do not exists in SIP. This applies to extgons which involved a
service which handles a busy condition and a other servicehwtriggered regardless
of the party being busy. The message flow for the classic elelbgtween TCS and CFB
is depicted in Figure 14.

Alice Proxy (CFB,TCS) Bob Chris

INVITE Bob
403 Screened

Figure 14. SIP Call Scenario between CFB and TCS

In this scenario Alice tries to call Bob. Bob has a CFB servitech redirects all
calls while he is busy to Chris. Furthermore, Bob has a TC&8icewhich screens all
calls from Alice. If Alice calls Bob while he is busy the cakts screened and there is
no conflict with the CFB service. This is because the TCS serig triggered by the
INVITE request. Thus the CFB service which waits for a 486 \Bresponse is hever
triggered. The CFB messages which are not sent because ocaeChown by dashed
lines. Thus in SIP, there is no interaction in this scenario.

7. Summary and Further Work

This paper has discussed the feature interaction probléweka SIP call control ser-
vices. A pragmatic approach has been implemented. The agipdoes not require de-
tailed service knowledge. This is essential in an open antpetitive market environ-
ment as expected for SIP services.

As was shown in the experimentation, the approach can dasilnplemented on
a SIP platform. The approach only requires service infoionadt a very abstract level,
which is readily available.

The approach requires extensions to the SIP protocol. Hemvne extensions are in
line with the rules for SIP extensions as defined by the Sldstal. For the approach to
work fully, all components involved in a session setup ne@eslipport these extensions.
However, if some components do not support the extensiessjans can still be setup
but with limited feature interaction handling.

The particular strength of the approach is the detectiontefactions between ser-
vices deployed omlifferent SIP components. As often there will be a number of SIP
components involved in a session setup, distributed seswidll be common practise. As
shown in the experiments, the presented approach is abnttiéhall these scenarios.

Clearly, the presented approach has some weaknessesrdeserhe Single Com-
ponent interactions. However, as discussed above, singipanent interactions may not
represent undesired behaviour as in PSTN. This is becaesethices are configured in
a list which may represent users preferences (most impgaéamice first).

Once an interaction is detected it also needs to be resdlvéius paper a resolution
approach based on the order of invocation has been adoptéte Event of an interac-
tion, the service invoked last will be disregarded. Thisrapph incurs minimal overhead
and in principal constitutes a priority based approach.eM@aborated priority schemes
and also the use of policies to help select the service whaigma are disregarded, can
be adopted in the future.

In summary, the presented approach closes a major gap dswsdb handle in-
teractions between services deployed on different comyerag runtime. This will be
necessary if distributed call control architectures, sa$IP, are to be successful.

References

[1] J. Lennox and H. Schulzrinne. Feature interaction in internet tetgpho[3], pages 38-50,
May 2000.

[2] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec. Hybsolutions to the feature
interaction probelm. 1fi4], pages 295-312, June 2003.

[3] M. Calder and E. Magill, editorsFeature Interactions in Telecommunications and Software
Systems VI. 10S Press (Amsterdam), May 2000.

[4] D. Amyotand L. Logrippo, editord=eature I nteractionsin Telecommunications and Software
Systems VII. IOS Press (Amsterdam), June 2003.

[5] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Featinteraction: A critical
review and considered forecaStomputer Networks: The International Journal of Computer
and Telecommunications Networking, 41(1):115-141, 2003.

[6] D. O. Keck and P. J. Kuehn. The feature and service interactiobl@m in telecommuni-
cations systems: A surveylEEE Transactions on Software Engineering, 24(10):779-796,
October 1998. IEEE.

[7] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, Jr&eteR. Sparks, M. Handley,
and E. Schooler. SIP: Session initiation protod@équest for Comments (Standards Track)
3261, 2002. Internet Engineering Task Force.

[8] M. Kolberg and E. H. Magill. A pragmatic approach to service interacfittering be-
tween call control service€omputer Networks: The International Journal of Computer and
Telecommunications Networking, 38(5):591-602, 2002.

[9] J. Lennox, X. Wu, and H. SchulzrinneCall Processing Language (CPL): A Language for
User Control of Internet Telephony Services, RFC 3880. Internet Engineering Task Force,
2004.

[10] J. Lennox, H. Schulzrinne, and J. Rosenb&gmmon Gateway I nterface for SIP, RFC 3050.
Internet Engineering Task Force, 2001.

[11] M. Rizzo and A. Garyfalos. Using SIP to negotiate over user requénts in personalized
Internet Telephony services. Proceedings of SP 2000. Upper Side Conferences, Paris,
January 2000.

[12] M. Kolberg and E. Magill. Handling incompatibilities between servicgdayed on ip-based
networks. InlEEE Intelligent Networks Workshop 2001 (IN2001), Boston, USA., May 2001.

[13] SER SIP Express Routdnt t p: / / www. i pt el . org/ ser.

[14] Pingtel SIP Phoneht t p: / / www. pi ngt el . com

[15] Kphone SIP User Agentit t p: / / www. wi r | ab. net/ kphone.

