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Abstract

The state of the art of the field of feature interactions in telecommunications services is reviewed, concentrating on

three major research trends: software engineering approaches, formal methods, and on line techniques. Then, the impact

of the new, emerging architectures on the feature interaction problem is considered. A forecast is made about how re-

search in feature interactions needs to readjust to address the new challenges posed by the emerging architectures.
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1. Introduction

We present an overview of research work in the

field of feature interactions in telecommunications

services. Our aim is to provide a comprehensive
introduction to the field, as well as to give a con-

sidered view of the contributions so far and our

own views about directions for future research. We

have not tried to present a complete picture of all

the research activities in the field, for a compre-

hensive survey up to 1998, see [69]. Rather, we try

to bring together some of the major contributions

and trends, assess their impact on the problem,
and point the way ahead for future research.

Much of the research in the area has been

stimulated by the international series of ‘‘Feature

Interaction Workshops’’, starting in 1992 and held

at regular intervals since then. The proceedings

provide a good (though not exclusive) record of
research in this area over the last decade [15,22,

31,36,77].

2. Feature interaction

In software development a feature is a compo-

nent of additional functionality––additional to the
core body of software. Typically, features are ad-

ded incrementally, at various stages in the lifecycle,

usually by different developers. In a traditional

telecommunications service, examples of features

are a call forwarding capability, or ring back when

free; a user is said to subscribe to a feature. Fea-

tures are usually developed and tested in isolation,
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or with a particular service. But when several fea-

tures are added to a service, there may be inter-

actions (i.e. behavioural modifications) between

both the features offered within that service, as

well as with features offered in another service.

While particular interactions may be benign, in
general, interactions can be severely damaging to

system development and to user expectations. A

benchmark on feature interactions in telephony

systems can be found in [25,26]. Major research

challenges include how to predict scenarios in

which there is potential for an interaction to occur,

how to detect that an interaction does indeed

occur, and how to resolve an interaction.
Most authors distinguish features and services

in the above sense, although some merge the two

concepts. For the purposes of this paper, the dis-

tinction between feature and service is not signifi-

cant, what is crucial is the concept of interaction.

As examples of interactions, consider the fol-

lowing. If a user who subscribes to call waiting

(CW) and call forward when busy (CFB) is en-
gaged in a call, then what will happen when there

is a further incoming call? If the call is forwarded,

then the CW feature is clearly compromised, and

vice versa. In either case, the user will not have

their expectations met.

More subtle interactions can occur when more

than one user is involved. For example, consider

the scenario where user A subscribes to originating
call screening (OCS), with user C on the screening

list, and user B subscribes to CFB to user C. If A

calls B, and the call is forwarded to C, as pre-

scribed by B�s feature CFB, then A�s feature OCS
is compromised. Clearly, if the call is not for-

warded, then the CFB feature is compromised.

These kind of interactions can be very difficult to

detect (and resolve), particularly since different
features may be activated at different stages of the

call cycle, and indeed at different locations both

outside and within the network.

Interactions may occur at any point during a

service. This means that with the recent growth in

the number of features and services, there is a

combinatorial explosion in the number of scenar-

ios with the potential for an interaction. In gen-
eral, neither manual inspection, nor simple testing,

offer tractable solutions. More effective appro-

aches addressing the special requirements of this

domain are needed.

The scale and nature of telecommunications

services make them prone for interactions. How-

ever, the problems exist in other domains, such as

computer aided design [101] and process planning
[61]. While we focus on telecommunications net-

works in this paper, we note that this work also

has applications in those domains.

There are three major research trends: software

engineering approaches, formal methods, and on-

line techniques. Software engineering and formal

method approaches are also sometimes referred to

as off-line techniques. Off-line means that the ap-
proach is applied during design-time of features, in

contrast to on-line approaches which are applied

while the features are actually running.

3. Overview of paper

The first half of the paper concentrates on the
state of the art and the three major research areas;

software engineering, formal methods and on-line

techniques. For each of these, in Sections 4–6, re-

spectively, we give an overview of the approach

and the motivation for it, how it is employed, and

the contributions and difficulties that have arisen

as a result. In Section 7 we discuss the overall

contribution and impact of these streams of re-
search.

In the second half of the paper we look to the

future, beginning in Section 8 with a discussion of

emerging architectures and feature interaction in

that context. In the following section we present a

considered forecast about how research in feature

interactions needs to readjust to address the new

challenges posed by the emerging architectures.
We postulate several open questions. Finally, we

present our concluding summary in Section 10.

4. Service and software engineering

Service engineering concerns the creation of

services. As such it includes specification, devel-
opment, testing, and deployment of services. Thus

service creation can be adapted to help remove
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feature interactions before deployment. Yet, ser-

vice creation implies more. It also includes service

management in an operational or deployment

sense, with an enormous ‘‘service surround’’ cov-

ering aspects such as billing, customer records, and

fault management. Despite this potential breadth,
most feature interaction research in this area has

focused on the pre-deployment stages of service

creation. An exception is the contribution of

Georgatsos et al. [45] who discuss the role of the

telecommunications management network (TMN)

over all the management areas, that is, fault

management, configuration management, accoun-

ting, performance, and security. They argue that
TMN can operate in a complementary manner to

address feature interactions. However, as this is an

exception, we focus on the early stages of service

engineering; indeed in practice we focus on the

software engineering aspects.

Historically, service creation has been an exer-

cise in software development. So, it is natural that

developments and lessons from the wider arena of
software engineering have been studied in both

service creation and feature interaction. Indeed,

service development process models borrow heav-

ily from their software development counterparts.

Software engineering is of course a rather general

term, but here we use it to refer to development

models and techniques employed within a devel-

opment model at one or more stages. In particular,
we are interested in models and techniques which

address feature interaction.

Clearly formal approaches can also be part of a

development cycle, and so in this section we in-

clude formal methods where they are used to add

rigour to the service creation process. Typically

this involves the introduction of a particular no-

tation from elsewhere. However we deliberately
exclude formal methods that employ a degree of

reasoning to detect feature interactions. This is a

large and active body of work worthy of separate

consideration in Section 5.

4.1. Why use software engineering?

Services in telecommunications, from a pro-
gramming perspective, are a challenging domain.

They are large, real-time, and subject to frequent

change (albeit with long development times), yet

must exhibit high reliability. This is exasperated by

the distributed nature of both the control and the

data, both within, and surrounding, modern com-

munications networks.

We identify two ways that software engineering
can aid in feature interaction:

• Indirectly. Software engineering has proved ef-

fective for large scale software production. It

is ubiquitous in modern software development,

albeit that the formality of the processes vary.

By building upon this rigour, and using soft-

ware engineering techniques within the service
creation process the potential for constructively

handling feature interaction is greatly en-

hanced. In essence, the rigour that is introduced

mitigates against having unanticipated feature

interaction. While perhaps not detecting or re-

solving feature interaction directly, the feature

interaction literature has embraced this indirect

approach.
• Directly. It is natural that an industry used to

employing software development techniques to

handle specific aspects, such as testing, will also

want to introduce feature interaction stages

within their existing service creation processes.

In this case, a particular method, notation, or

technique is applied directly to tackle feature in-

teraction detection, resolution, or avoidance.

4.2. How are software engineering techniques used?

We characterise applications of software engi-

neering into two major approaches:

• Focussed techniques. Here, a particular tech-

nique used elsewhere in software engineering
is introduced into the service creation process

with a major goal being the elimination of inter-

actions. These are often leading edge tech-

niques, attracting interest in the more general

software engineering area. Typically, specific

notations (defined for other purposes) are intro-

duced.

• Process models. In these processes, software de-
velopment models are adapted to the service

creation role, again with the aim of eliminating

M. Calder et al. / Computer Networks 41 (2003) 115–141 117



feature interactions. These approaches tend to

define a complete development process, or at

least a significant part of it. Here, the emphasis

is on detecting feature interactions at an early

stage in the life cycle.

We discuss each of these in more detail.

4.3. Focussed techniques

Often a service creation or development process

is assumed and then specific techniques from

software engineering are employed within the de-
velopment process to detect and eliminate feature

interactions. Table 1 summarises this body of

Table 1

Specific software engineering approaches

Reference Introduced technique Notation Service creation stage Approach Experimental

results

[16] Layered state transition

system

State machines Specification Detection Case studies

[17] Program families CSP-OZ Requirements Filtering Case studies

[55] Feature composition Labelled transition

system

Design Avoid No

[56] Requirements elicitation Agendas with system

state traces

Requirements Filtering No

[63] Composition of FSA MONDEL Specification Case studies

[68] IN topological relationships IN-style BCMs Specification Filtering Case studies

[70] SDL SDL Specification model-

ling

Indirectly detect Case studies

[78] Filtering Interaction tables Requirements Filtering Yes: industrial

scale

[74,79] Use case driven analysis Service usage models

and use case model

Requirements Filtering Case studies

[83] Filtering Connection equations Requirements Filtering Case studies

[125] Separation and substitut-

ability

– Design No

[5,96] Use case maps UCMs, LOTOS Requirements, design Filtering, detec-

tion

Yes: industrial

scale

[105] Feature oriented program-

ming

JAVA Modelling require-

ments

Detection Case studies

[118] Formal version of CHISEL CHISEL, LOTOS,

SDL

Specification, design Indirectly avoid No

[119] Feature oriented architec-

ture

ANISE, ANGEN,

ANTEST

Specification and test Indirectly avoid No

[124] Pattern languages Communicating FSM Implementation Avoid Yes: industrial

scale

[64,132–134] Feature architecture Diagrammatic Design Avoid Yes: industrial

scale

[135] Architecture and process

models

– Design Avoid Case studies
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work. The table describes the technique or nota-

tion that the work introduces, the notations (or at

least the form of descriptions) that are used, and

the stages in the service creation process where the

technique can be employed. The final column

captures the degree of experimentation reported in
the relevant papers. This ranges from no, through

case studies, to yes: industrial scale.

There is limited overlap within this body of

work. A broad range of approaches have been tried,

although many originate from the object-oriented

software engineering community. It is difficult to

find a strong common thread of approaches across

different research teams, each team would appear
to follow their own area. In other words, there

is limited consensus of approach. However, two

trends are discernable. The first trend as identified

by Hay and Atlee [55], is to provide a service ar-

chitecture that constrains designers to provide

‘‘safe’’ arrangement of features. This includes the

work of Zave and Jackson on DFC [64,132–134],

van der Linden [125], Utas [124], Zibman et al.
[135], Braithwaite and Atlee [16], Hay and Atlee

[55], and to a lesser extend Turner [119]. The second

trend is the value placed upon filtering. A filtering

stage is seen as a cost effective way of handling the

large number of potential interactions by removing

unlikely combination of features and services, hence

only likely candidates are considered at the detec-

tion stage––a costly and time consuming activity. A
number of authors view their approach to be suit-

able as a filter, and so reduce the number of cases

that need to be considered.

4.4. Process models

Two process models have been proposed that

employ specific stages to handle feature interac-
tion. The first approach [28,29] was developed by

Bellcore (now Telcordia) and is aimed at an AIN

environment. It describes in some detail the de-

scription and specification tasks, with the latter

supporting the feature interaction analysis. Both

network and user requirements are used to gen-

erate services and use is made of both public

and proprietary notations and tools. The feature
interaction analysis stage is carried out using a

proprietary method with proprietary tool support.

The second approach [75] assumes an existing

service life cycle and augments it with a separate

process specifically for handling interactions.

This process, called service interaction handling

process, or SIHP, was developed by the P509

EURESCOM project. SIHP introduces feature
interaction filtering, feature interaction detection,

and finally a feature interaction solution stage. It

does not require or proscribe any particular tech-

niques, however it does require a change to the

associated business model. More generally, the

P509 project took a very broad look at feature

interaction, for example the TMN work cited

earlier [45], was carried out within the auspices of
this project.

4.5. Contribution and difficulties

Software engineering techniques offer the po-

tential of a strong, industrial scale approach to

feature interaction. The difficulty is assessing the

effectiveness of this body of work within the con-
text of feature interaction. Intuitively, software

engineering has proved helpful, but it is unclear to

what extent this applies explicitly to the field of

feature interaction. The final column in Table 1

shows the degree of experimentation carried out

for focussed approaches. We would argue that

there is insufficient evidence published to draw

strong conclusions; moreover the papers on pro-
cesses for feature interaction do not report any

experimental results.

While it is tempting to suggest that it is likely

that many companies will follow the software en-

gineering route for large scale approaches, we are

struck by the limited number of industrial scale

papers in this area, indeed many of the contribu-

tions are from purely academic sources. Clear ex-
ceptions are the papers [5,58,64,78,124] which

report industrial scale studies. Filtering offers a

more coherent picture, and while there is diversity

of approach, it would appear to be the preferred

framework. In other words, there is an acceptance

by many that automated approaches are only

suitable for directing a comprehensive manual

analysis.
We now turn our attention to the second major

research trend, formal methods.
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5. Formal methods

Formal methods have been employed in a va-

riety of ways to analyse feature interactions. By

the term ‘‘formal methods’’, we mean the appli-
cation of a wide range of formal description,

modelling and reasoning techniques. These tech-

niques include, for example, classical, constructive,

modal and non-monotonic logics, process alge-

bras, finite and infinite state automata, extended

automata, petri-nets, transition systems and lan-

guages such as SDL, Promela, Z, and LOTOS.

Formal methods have been applied primarily to
the problem of detecting service level interactions,

that is interactions that are independent of an actual

implementation. Thus, the focus has been mainly

on interactions between feature requirements and/

or specifications.While all of the formal approaches

are invariably off-line, they need not necessarily

occur at design-time, prior to implementation; in

many cases specifications are re-engineered or de-
rived from observations of an implemented sys-

tem. In this regard, the application of formal

methods in this domain is rather more liberal and

creative than in other domains.

5.1. Why use formal methods?

There are a number of compelling arguments
for employing a formal approach to feature in-

teraction detection:

• A formal description or model forces assump-

tions and contexts to be made explicit; incorrect

or ambiguous assumptions are often a source of

interactions.

• Operational systems are notoriously poorly
documented. Interrogation of a formal descrip-

tion or model may provide the only answer to a

query about behaviour, short of actually trying

out a query on a live system or testbed.

• Formal descriptions may make it easier to de-

fine classes of interactions in a more abstract

way.

• Automated analysis and reasoning techniques
are usually applicable; there have been great ad-

vances in automated reasoning tools within the

last few years.

Formal methods have been used to both vali-

date expected interactions and detect unpredicted

ones. While clearly the latter is the ultimate goal,

the former is necessary to show proof of concept; it

is probably fair to say that the majority of pub-

lished results are still at the proof of concept stage.

5.2. How are formal methods used?

We characterise applications of formal methods

by three major approaches:

• Properties. In this approach abstract properties

of features and the basic service are defined,
usually in a logic. Interaction is expressed in

terms of that logic, usually as inconsistency or

unsatisfiability.

• Behaviour. In this approach a behavioural de-

scription of features and the basic service is de-

fined. These descriptions have an ‘‘operational’’

feel to them, usually incorporating state and or

temporal aspects, and they are expressed in terms
of variants of automata and transition systems.

Interaction is expressed in a variety of generic

ways such as deadlock, non-determinism, etc.

• Properties and behaviour model. In this ap-

proach, features and the basic service are

defined by both behavioural and abstract prop-

erties. The former is expected to be a model for

the latter. Interactions occur when features
(plus basic service) satisfy their respective prop-

erties individually, but when they are combined,

the conjoined properties are not satisfied.

We note that other classifications of formal

methods approaches have been restricted to two:

our first approach is sometimes referred to as

satisfiability and our third as satisfaction on a

model. We believe that it is important to distin-

guish another approach, behaviour only, as it raises

numerous interesting ways to define interaction.

We give a brief overview of each of the ap-

proaches below. The overview is not meant to be

exhaustive, but rather gives a flavour of each ap-

proach with representative papers. We have not

tried to indicate the relative contribution of each
of the different citations and note that in some

cases, several different aspects of feature detection
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are described within one paper (each being char-

acterised by a different approach). We have usually

picked the most significant aspect, though occa-

sionally we have mentioned more than one aspect
(e.g. in [53,113]).

5.3. Properties only

A number of property only approaches are

summarised in Table 2. Acronyms for the logics

are TLA (temporal logic of actions), LTL (linear

temporal logic), FOL (first order logic), PL

(propositional logic), CTL (computation tree lo-

gic). In nearly all cases, automated reasoning is

used: theorem proving or model checking, as ap-

propriate. For example, the theorem prover PVS is

employed in [48] and the model checker COSPAN
is employed in [40]. In some cases there is also a

bespoke specification (or requirements) language

which is (usually automatically) translated into the

logic, prior to interaction analysis.

5.4. Behaviour only

A number of behaviour only approaches are
summarised in Table 3.

In these approaches there is a wide variety of

ways in which to define interaction, though most

can be expressed as some form of analysis for

reachability, termination, deadlock, non-determi-

nism, or consistency. In many cases, automated

tools have been developed for the analysis, or when

a standard language is employed, then the associ-
ated tools are used. For example, in [104] the model

checker FDR is employed to find deadlocks in CSP

specifications.

Table 2

Interaction detection––formal description of properties only

Reference Property language Interaction detection

[44] Transition rules Realisability

[13] TLA Inconsistency/deadlock

[14] DELPHI (PL) Inconsistency

[41] FOLþ relations Inconsistency

[108] Constructive logic Satisfiability

[48] FOL & TLA Invariant violation,

non-determinism

[40] LTL Inconsistency

Table 3

Interaction detection––formal description of behaviour only

Reference Behaviour language Interaction detection

[113] LOTOS Non-determinism

[8] Interworking (synchronous MSCs) Merge-inconsistency

[12] MSC variant Inconsistent post-conditions inconsistent event ‘‘allowedness’’

[72] Extended FSA Deadlock, livelock, non-deterministic uncontrollable or conflicting state

[112] Control theory Conflicting languages

[7] State transition machines Control/data modification, resource contention, unreachable states

[95] Finite state machines Deadlock, loops, non-determinism

[131] State transition rules Abnormal state/transition disappearance of normal state/transition

[53] State transition diagrams Inconsistent state changes, inconsistent observable actions

[19] Chisel variant/ML Order sensitive, non-determinism

[103] CSP Deadlocks

[2] Constraint programming Model existence

[73] Extended finite state automata Non-termination, variable inconsistency

[88] Finite state automata Language difference
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We note that there are a number of approaches,

loosely known as ‘‘pragmatic’’ and not explicitly

using a formal approach, that could be understood

as having a formally based justification––though

the authors have not made the explicit connection.

For example, the CCM–FCA (call-context model,
feature context assumptions) approach of [100] is

based upon features as sets of tuples. Interactions

are detected by various classes of conflicts, which

could be understood as various types of overlaps

between tuples, or incompatibilities. However,

since this is not made explicit, this work is not

considered here.

5.5. Properties and behaviour

A number of approaches which employ prop-

erty and behaviour descriptions are summarised

in Table 4. MSC is an abbreviation for message

sequence charts.

In all cases, the basic concept of interaction is

the same. If feature F1 satisfies a property /1,
written F1 � /1, and F2 � /2, then when the two

features are combined, denoted F1 � F2, does,

F1 � F2 � /1 ^ /2? If the answer is no, then there is

an interaction. A key aspect is how F1 � F2 �
/1 ^ /2 is verified (is it even decidable?). With the

exclusion of [53], automated reasoning is with

standard, generic tools. However, in nearly all

cases, there are problems with combinatorial state-

space explosion. Only a few approaches (e.g. [24])

are able to perform exhaustive verification, and so

many rely on examination of selected, or incom-

plete behaviours only.

5.6. Contribution and difficulties

The potential contributions of employing for-

mal methods (as described in Section 5.1) are

clearly borne out by the results obtained in the

various applications mentioned above. For exam-

ple, nearly all employ automated analysis tools;

significantly, these are not on the whole bespoke

tools but often industrial strength, generic,
reasoning tools. Many of the authors of (positive)

detection results comment on how formality

has forced them to make explicit aspects of fea-

tures that have previously been ambiguous. In the

words of Hoover and Rochefort [108], initial ‘‘ac-

cidental’’ correctness is a major cause of feature

interactions.

The completeness of any formal approach is an
important issue, depending on how feature inter-

action and the features themselves are defined. The

properties and behaviour approach depends upon

the details of the properties defined and the be-

haviour only approach depends upon the way in

which interaction has been defined. Possibly the

latter approach is more suited to detecting unpre-

dicted interactions, because interaction is defined

Table 4

Interaction detection––formal description of properties and behaviour

Reference Property language Behaviour language Automated reasoning

[32] LTL SDL None

[110] LOTOS LOTOS Simulation

[113] l-calculus LOTOS Restricted model-checking

[47] TLA LOTOS None

[30] MSC SDL Simulation

[66] CTL LOTOS Goal oriented trace execution

[53] Symbolic transition predicates P-EBF Symbolic transition checking

[102] CTL SMV Restricted model-checking

[34] Lustre Linear past temporal logic Random tests

[24] LTL Promela Full model-checking
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by generic criteria. Further, when modelling fea-

tures for interaction detection, getting the right

level of detail and abstraction for feature descrip-

tion is difficult, and has consequences for detection

analysis. For example, under-specification intro-

duces the problems of the frame problem (i.e. what
is not changed by a feature), whereas over-imple-

mentation may introduce false positives.

A common difficult issue is compositionality,

specifically non-monotonicity between new features

and the original service. The crux is that the addi-

tion of new features nearly always requires a mod-

ification of the original service. For many formal

approaches, this presents quite a problem. Velt-
huijsen [128] first articulated the problem and sug-

gested non-monotonic logics as a solution. Most

researchers still remain within monotonic frame-

works, but have introduced special techniques to

cope with the non-monotonicity. A notable con-

tribution is Hall�s proposal of foreground/back-

ground models [53]. Using this distinction, he is

able to add new features that ‘‘perturb’’ the basic
service (i.e. they are non-monotonic extensions) and

most importantly, is able to rule out many spurious

interactions which can now be understood as the

result of interactions between the background be-

haviour of one feature with the foreground behav-

iour of another feature. This is a good example of a

formal approach helping to explain a difficult and

previously poorly understood phenomena.
State space explosion remains a challenge, but

various approaches exploiting symmetry such as

[95] or reduction techniques such as [24], are very

promising.

Some of these difficulties are not unique to

formal approaches, but are shared with other ap-

proaches. If they are overcome, in this context,

what is the contribution of formal approaches, in
particular? The evidence clearly demonstrates that

they force assumptions and contexts to be made

explicit, provide a rigorous yet practical way to

define classes of interactions, and lend themselves

to automated analysis and reasoning techniques,

usually by standardized tools. However, at the end

of the day, the results concern the formal model––

they are only of value if they can be properly
related back to the operational world and the

software development process.

Formal methods are almost exclusively an off-

line technique for dealing with feature interactions,

we now turn our attention to on-line techniques.

6. On-line techniques

On-line techniques are intended to be applied at

service run-time in a network. Here we consider

both live networks and test environments within

laboratories, such as captive offices. Usually on-

line techniques provide a combination of detection

and resolution mechanisms as on-line detection is

only productive if the problem can be resolved at
run-time.

6.1. Why use on-line techniques?

Service engineering and formal methods present

a number of drawbacks, many of which have the

potential to be overcome by using on-line tech-

niques. The following list discusses some major
points.

• On-line techniques are applied to an active sys-

tem in its natural environment. This avoids the

problem of formal method approaches which

operate on a model of the real system.

• Support for a quick time-to-market for new fea-

tures. Extensive testing of all possible scenarios
is not necessary.

• On-line techniques are more future-proof, as

they are part of the system and not the develop-

ment process. This allows to automatically in-

clude all newly deployed services into the

detection and resolution process.

• An increasingly multi-vendor market removes

global knowledge about services in the net-
work––and the possibility to change those

supplied by others. In this context, on-line tech-

niques provide the only way to manage interac-

tions.

• Feature interactions can be detected and re-

solved without tampering with legacy systems.

Formal method approaches fall short here as

system documentation and thus the required de-
tailed information is often not available.
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While some on-line methods have been imple-

mented into commercial products (e.g. Mitel

MediaPath [20]), most on-line techniques have

been applied in testbeds (e.g. Touring Machine [6],

DESK [94]). This might be due to mainly two

reasons: some on-line techniques use detailed per-
service design-time information, such as resolution

tables, while others require changes to the network

architecture to allow interfeature communication.

Clearly, these pre-requisites have an impact on all

four of the possible strengths listed above. A

number of on-line approaches have been devel-

oped so far. In the following, we discuss charac-

teristics of approaches and highlight their strengths
and weaknesses.

A major disadvantage is the processing overhead

that is introduced into the real-time system. Clearly

this is of particular concern on a live network.

6.2. How are on-line techniques used?

On-line techniques can be grouped in a number
of ways. Probably the most important ones are by

the location of control and by the required type of

information.

Two classes of approaches can be identified

considering the location of control:

• Feature manager based approaches. An entity,

usually called the feature manager, is intro-
duced into the network with the capability of

observing and controlling the call processes.

Hence, the control of the call is located with

the feature manager. So far mainly centralised

approaches featuring a single feature manager

have been developed. However, distributed ar-

chitectures for managers are also possible.

• Negotiation based approaches. Individual fea-
tures have the capability of communicating

their intentions to each other and negotiating

an acceptable resolution. Most approaches ad-

vertise a direct communication where the call

control resides with the features. However, if

no resolution is possible the conflict can be for-

warded to a third party to resolve.

Three groups of approaches can be identified

considering how the required information is col-

lected. This categorisation is orthogonal to the

previous one:

• A priori information. Approaches belonging to

this group are applicable at run-time, but they

make use of data collected at design-time. This
information can be in two forms, as a per-service

information or as a matrix relating all services.

Clearly, information on a per-service base is

preferable to information per-service pair. With

the growing number of services the amount of in-

formation grows linearly for the per-service case

but exponentially for the per-service-pair case.

• Isolated on-line environment. The information
for detection and resolution is gathered at

run-time. However, not in the live system but

in a closed environment where special require-

ments can be met. These include the presence

(or absence) of other features. Here the issues

of a poor run-time performance are eased.

• During run-time. These approaches do not re-

quire any special arrangements. The required
information is collected during run-time of the

feature in the target environment.

The way information is gathered is crucial for the

success of on-line techniques. Collecting informa-

tion at run-time is the major advantage over formal

methods and software engineering approaches.

Table 5 provides an overview of approaches.

6.3. Feature manager––a priori information ap-

proaches

A basic feature manager is defined by the ITU-

T standard for intelligent networks [121], however

this only prevents multiple instances of IN and

non-IN services being active in the same call seg-
ment. More advanced approaches use feature

managers to detect and resolve interactions, by

using information about the features and their

potential interactions to allow multiple non-inter-

acting features to be active across the call (in one

or more call segments).

Homayoon and Sing [60] propose such an ap-

proach, whereby the feature manager is provided
with a number of tables describing relations be-

tween two features. The status of one of the features
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is examined and then the activation or use of the
second is allowed or disallowed. Similarly, Cain [21]

proposes a feature manager that only passes an

event to features that are known to be non-inter-

acting based on tables. Activation is not considered.

Fritsche [42] determines at run-time which fea-

tures are ‘‘interested’’ in a proposed event. A spec-

ification of the features is provided to the feature

manager in form of roles, i.e. a feature�s impact on a
device. Features apply changes to devices and the

feature manager observes whether or not roles are

violated (an interaction). Interactions thus found

are resolved by a predefined resolution matrix.

While these approaches extend the ITU-T IN

feature manager, they are limited in their appli-

cability to expanding systems. This is because the

feature manager needs to be provided with (de-
tailed) information on new features. Clearly, this is

a problem if the features are provided by multiple

businesses. This is even worse for the case where

information on feature pairs are required. Fur-

thermore, legacy systems are very hard to handle

by these approaches. The information required by

the feature managers is often simply not available.

6.4. Feature manager––captive environment ap-

proaches

The approaches described above require a pri-

ori data about features and their potential inter-

actions. Since this is a serious drawback with on-
line approaches, approaches which circumvent

that requirement have been developed. One way of

achieving this is to introduce, during run-time, a

separate phase of ‘‘collecting’’ information before

the actual operation of the approach. During this

phase the behaviour of the feature is observed and

the information is stored in a database.

Aggoun and Combes [3] propose a ‘‘pre-
deployment’’ phase where a passive observer

gathers information about the feature behaviour in

the network. The gathered information is then

used by the active observer (essentially a feature

manager) in the operation phase of the service to

detect and resolve interactions.

Similarly, Tsang and Magill [115] gather be-

haviour ‘‘signatures’’ of features in an isolated on-
line environment (with just the feature under

observation being active) and store those in a

database. The feature manager then accesses this

database during live network operation to detect

and resolve interactions.

Approaches in this group are also able to deal

with legacy systems. This is because the behaviour

of the existing system including the legacy func-
tionality can be seen as a feature. The approach

can gather information on the behaviour of the

whole legacy system. However, a potential dis-

advantage of these techniques is that the behaviour

collected during the first phase needs to be stored

Table 5

On-line approaches––detection and resolution

Reference Control Information acquired Experimental results

[92] Feature manager Run time Case study, testbed

[60] Feature manager A priori

[21] Feature manager A priori

[42] Feature manager A priori

[106,107] Feature manager Run time, general rules Case study

[114,115] Feature manager Captive environment Case study, testbed

[3] Feature manager Captive environment

[51,127] Negotiating agents A priori Case study, industrial

[20] Negotiating agents A priori

[4] Negotiating agents A priori Case study, industrial
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centrally in the network, accessible by the feature

manager. With an increasing number of features in

the network it is crucial that the stored informa-

tion in kept to a minimum. Otherwise there is a

scalability issue.

6.5. Feature manager––approaches without restric-

tions

This class of approaches offers the most flexible

way of detecting interactions at run-time. No

special information is required and no ‘‘warm-up’’

phase is needed. However, there are very few ap-

proaches known so far. One likely reason is that
these approaches are the hardest to develop. The

only information the feature manager can collect

are the messages sent in the network. Clearly, these

approaches can handle legacy systems and also

systems with a continuously growing number of

features.

One such approach was devised by Marples and

Magill [92]. The feature manager assumes an in-
teraction to have occurred when more than one

feature attempts to handle an event. They then use

a rollback and commit algorithm to determine

possible resolutions at run-time; their resolution

mechanism is a simple precedence scheme. This

approach has been implemented in the DESK

testbed [93,94]. Ongoing work by Calder et al. [23]

and Reiff [106,107] extends this resolution mech-
anism to apply more sophisticated techniques

based on general, feature independent, rules.

Approaches in this category have the potential

to use the strengths of on-line techniques to the full.

6.6. Negotiation––a priori information approaches

A markedly different alternative is provided by
negotiation approaches. Here, features and re-

sources are represented by agents able to com-

municate with each other to negotiate on their

goals, successful negotiation means that an inter-

action has been resolved. The a priori information

required is hidden in the concept of successful

negotiation––it must be known when goals inter-

fere and when they do not.
In an early paper [127], Velthuijsen evaluated a

number of distributed artificial intelligence tech-

niques to help resolve the feature interaction

problem, several approaches have since been de-

veloped using the techniques. For example, Griff-

eth and Velthuijsen use negotiating agents to

detect and resolve interactions in [51]. A resolution

is a goal acceptable by all parties, and is achieved
by exchanging proposal and counter-proposals

amongst the agents. Different methods for nego-

tiation have been envisioned: direct (agents nego-

tiate directly without a negotiator), indirect (a

dedicated negotiator controls the negotiation and

can propose solutions based on past experience)

and arbitrated (an arbitrator takes the scripts of

the agents and has sole responsibility to find a
solution). They concentrate on indirect negotia-

tion. The approach has been implemented in the

experimental platform ‘‘Touring Machine’’ [6],

although no conclusive report about the success is

provided.

Rather than using direct negotiation, Buhr et al.

[20] make use of a blackboard. Features are rep-

resented by agents which exchange information by
writing to a public data space. Other agents can

change the information written to the blackboard

and a common goal can be negotiated. The success

of the technique is reflected in its use in Mitel�s
MediaPath product. Amer et al. [4] also use the

blackboard technique, but extend their agents to

make use of fuzzy policies. Agents set truth-values

(0–100) to express the desirability of certain goals.
These values are then adapted as the call pro-

gresses, depending on the values of other agents.

In the case of a conflict an event with the highest

truth-value is executed.

Negotiation approaches have a huge potential

flexibility. However, in the existing network ar-

chitecture, feature to feature communication is

very difficult. Thus these approaches often require
a change in the network architectures, e.g. by in-

troducing agent components. Furthermore, often

a negotiation hierarchy is needed to guide the ne-

gotiation.

6.7. Contributions and difficulties

On-line techniques offer strengths which no
other technique possesses. They address both de-

tection and resolution. While this is not often the
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case with other approaches (e.g. formal methods),

automated resolution is especially critical with on-

line techniques. At design-time, manually chang-

ing specifications is sufficient. However, feature

interactions detected at run-time need to be re-

solved instantaneously to keep the integrity of the
network. On the other hand, work reported so far

suggests that run-time resolution is difficult. This is

due, in part, to the limited amount of information

available. Making an informed decision without

much knowledge on the features is hard. Not sur-

prisingly, approaches requiring a priori knowledge

offer the best resolutions.

However, the biggest potential of on-line tech-
niques lies in their ability to cope with additional

services in the network at run-time and thus allow-

ing for open and expandable systems. A priori

knowledge is a major obstacle to use this potential.

Thus, in terms of feature interaction resolution,

many approaches opted for the obvious choice:

terminating the call. However, is this a ‘‘bad’’ res-

olution? A single call is very cheap. Thus terminat-
ing a call might at most annoy the affected users. On

the other hand a complex algorithm finding a good

resolution is possibly very expensive in terms of its

run-time behaviour. Further, the resolution might

still confuse the users and mismatch their expec-

tations. To progress work on this issue work is

ongoing to augment run-time approaches with fea-

ture independent information from off-line tech-
niques to guide the resolution. These approaches are

referred to as hybrids. There is very little published

work on hybrid approaches to date, however, two

examples are the work Calder et al. [23] and Reiff

[106,107] and by Aggoun and Combes [3].

One drawback of run-time techniques is the

strong link to the applied network architecture. If

the network changes the on-line techniques need to
be adapted to the change. Off-line methods may

profit from their abstraction and may not require

major adjustments.

Many run-time approaches use centralised

control and centralised data which is hard to

achieve in current networks. However, this is not a

inherent problem with run-time approaches but

rather with constrains due to the limited signalling
in today�s networks and the state of research. Few

approaches which do not require central control or

data have been developed (e.g. [51]) but appear to

have been difficult to implement.

In summary, no conclusive study of industrial

usage is available. The Touring Machine and

Media Path products appear to be the only in-

dustrial implementations. The feature manager
approaches are mainly academic prototypes, with

the DESK testbed being the closest to a real sys-

tem implementation.

Why on-line techniques are not being used more

widely, despite appearing very promising, cannot

be judged here. We can only speculate that the

feature interaction problems encountered so far

could be handled in a pragmatic fashion at design-
time. The required architectural changes have

proven to be too costly in the past.

7. Overall contributions of previous work

A large number of contributions have been made

by both academia and industry over the past decade
in order to solve, or at least advance, the handling

of the feature interaction problem. The major

streams described above have evolved, each offering

their own benefits, but also influencing the others.

Service engineering is influenced by software

engineering, and offers an attempt to adapt general

practice to help in the development of services. On

the other hand, formal methods have been used
extensively to help finding solutions. Enhanced

system ‘‘architectures’’ have been developed for

run-time solutions.

An obvious question is: Have we made any sig-

nificant advances in solving the feature interaction

problem? The software processes are mostly aca-

demic and case studies have rarely been performed.

There are few operational systems using the run-
time approaches. Formal methods seem promising

but have not yet delivered any clear advances.

Again, most case studies of formal method and run-

time approaches include only a very limited set of

experiments. (An exception is Holzmann and

Smith�s use of SPIN to verify parts of the Lucent

PathStar access server [57–59].) Furthermore, the

tests are performed on known interaction cases.
New interactions, as the ultimate goal of the re-

search, have not been the focus. So, the pessimistic
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answer to this question is that the problem is still

unresolved and we have failed thus far.

However, this is not the true picture, which is

far more complex. While the work using formal

methods has not yielded a clear solution, it has

greatly advanced the understanding of the prob-
lem. It has highlighted the fact that adding fea-

tures to a service is fundamentally non-monotonic

and potential approaches must address this. A

range of new tools and notations has been devel-

oped or advanced, thus the repertoire of powerful

methods increases rapidly and should enable

quicker advances in the future. Interestingly, the

telecommunications industry has encouraged the
use of formal methods, something which cannot be

said in general, for the uptake of formal methods

(except perhaps for safety-critical industries).

Because of an ever growing pressure on the

market, industry is understandably reluctant to

discuss the methods they use. In this context, it

becomes very hard to judge the impact of the

feature interaction work, but we assume that cer-
tain aspects have indeed been taken up and are

used by industry to limit the effect of the feature

interaction problem and to reduce the time to

market. Furthermore, a number of approaches

have competed in two Feature Interaction Con-

tests finding unexpected interactions [50,84,85].

One way to evaluate the contribution is to

compare the effort in the three major areas, we
found a ratio of roughly 1:2:4 of publications in

the areas on-line techniques, software engineering

and formal methods, respectively. On this basis it

might appear that invest/return relation is worst

for the formal methods based approaches, an al-

ternative interpretation is if on-line techniques are

so promising, then why is there a dearth of mate-

rial about them? Indeed, over the past few years,
there has been a decline in the number of papers

concerning on-line techniques presented at the

major conferences. This does seem puzzling.

A major drawback of the current work can be

seen in the strong concentration on POTS––the

plain old telephone service. This concentration is

justified by a good understanding of the problem

in this domain, coupled with the availability of
data and specifications. However, the recent

changes in the telecommunications domain to-

wards open markets, integration of voice and data

and an ever growing requirement for new func-

tionality, leads to new problems and requires

thorough consideration.

The original aim of detecting and resolving

feature interactions in telecommunications net-
works needs to be revised in light of these devel-

opments, raising the question: Are we solving the

right problem? We need to determine how the

changes in the telecommunications world influence

the validity of the problem, and also must adapt the

problem description to reflect those changes. The

results from the POTS world can and should be

applicable. However, this requires a sound under-
standing of the emerging technologies and also a

wider view of the telecommunications domain, in-

cluding both the technologies involved and also

market situations and business behaviour.

The rate of change is very fast and research into

the feature interaction problem is in danger of

lagging behind. Consequently, we now turn our

attention to emerging architectures.

8. Emerging architectures

In recent years telecommunications has changed

rapidly. There are two drivers for this develop-

ment: deregulation of the telecommunications mar-

ket and technological advances. These two forces
are tightly coupled: the technological advances

would not be possible without the deregulation and

similarly the deregulation would not be successful

without the technological changes. In the next two

sections we discuss the impact these two drivers

have on the feature interaction problem. We note

that within the context of emerging architectures,

the emphasis is on services, rather than on features,
per se. Consequently the literature refers to inter-

actions between services; for consistency we main-

tain that terminology here, noting that the

distinction between service and feature is not sig-

nificant when considering the issues of interaction.

8.1. Deregulation of the telecommunications market

Deregulation requires the incumbents to open

up their networks to third parties. In other words,
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third party businesses now have access to the

networks in order to develop and provide services.

This changes the previously very tightly controlled

market into a highly competitive one: offering

services is a very lucrative business and is a major

source of revenues in the telecommunications
market. Beside mass market services, niche mar-

kets can also be targeted. Hence a number of in-

dependent service providers will enter the market

and compete with the traditional operators for a

share in the services market [39]. Networks can

almost be seen as a mere commodity [120]. Hence,

as networks are opened up, a large number of new

businesses are entering, or will enter, the market
[76]. Interestingly, separating switching and service

provisioning to allow service provisioning by in-

dependent providers was an original aim of the

intelligent network. However, the intelligent net-

work did not achieve this.

As a consequence of deregulation, a new scale

of competition is introduced into the market [37].

This has a direct impact on the number of ser-
vices offered on the network (it will be much

higher than in traditional telecommunications

networks). Moreover, because service providers

will want to differentiate each other more and

more, the functionality and thus the complexity

of services will increase dramatically. Addition-

ally, there will be a number of services which are

very similar––but not exactly the same. Further,
due to the stiff competition, in order to survive, a

short time-to-market is essential for the providers

[86,87].

As is common in a competitive business envi-

ronment, businesses do not disclose details about

their products. In other words, service providers

will keep detailed knowledge about their services

private. Hence, service interaction approaches
which do not require detailed service knowledge

are required. This is even more important consid-

ering the huge number of services deployed––it is

virtually impossible to collect detailed information

on all of them! [11,80]. In fact it will even be im-

possible to know just about the existence of all

deployed services, as services will be continuously

deployed. So, due to the new structure of the
market, a number of current feature interaction

approaches may not be universally applicable

anymore. However, in order not to jeopardise the

goals of deregulation, such as a competitive multi-

provider business environment with diverse service

portfolios, the feature interaction problem needs

to be tackled [87].

Given this context, two basic cases of service
interworking (as the base of any service interac-

tion) are distinguished [80]:

• Intra provider portfolio (services of the same

provider).

• Inter provider portfolio (service from different

providers).

For the intra portfolio case, when the consid-

ered services belong to the same service provider,

Kolberg and Kimbler [80] suggest that most of the

known classes of approaches can be applied.

However, for the inter portfolio case, the re-

quirements for any possible approaches are much

harder. This is due to the fact that no detailed

service knowledge is available and no a priori
knowledge on the other deployed services can be

acquired. Hence, interactions between services

belonging to different providers may only be

handled at run-time. Moreover, only run-time

approaches which do not require detailed service

knowledge are applicable [80].

Further, at present a strong move towards

convergence of the technologies of traditional te-
lephony networks and the Internet can be wit-

nessed, initial work on identifying related issues

for feature interaction management has been car-

ried out. Cameron and Lin [27] compare the two

industries:

• Product vs. service focus. In the latter, the ser-

vice provider is responsible for the introduction,
operation, and maintenance of the services and

necessary hardware, in the former, the user is

responsible for the introduction, operation,

and maintenance of software and hardware.

• Degree of regulation. Regulation in the telecom-

munications market is much stricter than in the

Internet market.

• Amount of competition. The Internet market is
much more competitive than the telecommuni-

cations market.
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As a conclusion, Cameron and Lin [27] state that

as the two industries converge, it is likely that the

two markets also converge. Thus, the telecommu-

nications market will become less regulated and

much more competitive with many more businesses

entering and competing for market shares.

8.2. Technological advances

As mentioned earlier, the changes in the market

are both supported and driven by new technolog-

ical developments. We categorise these develop-

ments as:

(1) Development of new network architectures/

protocols, such as SIP.

(2) Introduction of a service layer with application

programming interfaces (APIs), such as JAIN

or Parlay, on top of core networks.

(3) New technologies to provide services in the

core networks, such as active networks.

All developments have a strong impact on the

provided services, including complexity, function-

ality and interworking. Furthermore, the conver-

gence of the traditional public switched telephony

network (PSTN), the Internet and mobile net-

works open up completely new ways of commu-

nication. A number of researchers have reported

on the fundamental changes in new emerging
networks [27,76,80,129] and have identified a

number of paradigm shifts. We list them here with

an indication of the type of development, as given

above.

In the following sections we provide a view on

how these paradigm shifts affect service inter-

working and service interaction handling. Some

paradigm shifts are very closely related; this is es-

pecially true firstly, for the object-orientation and

the use of distributed service logic, and secondly,
for the horizontal services provisioning and the use

of APIs. Hence, these issues have been grouped

into one section.

8.2.1. Object-oriented technologies and distributed

service logic

In the telephony network, the intelligence is

concentrated inside the network and the customer
premises equipment are dumb telephones. The

architecture is based on very few very powerful

service control points which run extremely com-

plex and monolithic software. While the small

number of processors was meant to help software

updates, the structure of the code makes this a

difficult endeavour and third party service provi-

sioning impossible [89].
Today there is a strong drive towards packet-

based networks. As a consequence control will

move from the core of the network to its edges.

However, the network still will not be a dumb

one––only the nature of the provided services will

change. Control and intelligence at the edges will

increase diversity of the end devices. The network

needs to include intelligence to make these incom-
patible endpoints work together [129]. In other

words, while services will increasingly be provided

at the periphery of the network, certain core func-

tionality still needs to be provided by the network.

Clearly, this leads to distributed service logic, both

in the network as well as at its edges. A number of

approaches have been applied to achieve this dis-

tribution.
Object-oriented technologies have been used in

the ROSA project [71] and also by the TINA

consortium defining the TINA architecture [62].

TINA introduced the separation of access, service

and connection management. Because of this

separation, the use of distributed processing envi-

ronments (DPEs) becomes possible, and using

DPEs such as CORBA, the TINA architecture
introduced the concept of distributed service logic.

It is widely accepted that future service plat-

Development 1 2 3

Centralised service logic! dis-

tributed service logic

x x x

Functional! object-oriented x x

Vertical service provisioning

model! horizontal service

provisioning

x x

Circuit switched! packet

switched

x x

Protocols!APIs x
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forms (e.g. JAIN, Parlay) will be based on DPEs

[76].

In such an architecture, many interactions can

be avoided. For example, Kolberg and Magill [82]

demonstrated how the use of DPEs in TINA

eliminates interactions which are traditionally due
to limited network support.

Another way by which service logic is provided

in a distributed way is the development of active

networks [111,130]. Active networks allow for the

switches of the networks to execute customised

programs on the data flowing through them. In

other words, the nodes can perform computations

on, and modify the packet contents. Because a
packet may be altered in many routers on its way

to the destination, active networks greatly in-

crease the distribution of service logic. It is im-

portant to note that while active networks

provide for logic execution inside the network,

the information originates at the network edges.

This is an essential difference to the traditional

networks.

8.2.2. Horizontal service provisioning and applica-

tion programming interfaces

Horizontal service provisioning means that

services will no longer be developed for each net-

work architecture separately, but instead, services

will be developed in a network independent fash-

ion [27]. In other words, the services will operate
on different core networks. This is enabled by the

introduction of a service layer which provides

basic service capabilities, e.g. call control, billing.

Access to these capabilities is via secure and ex-

tensible APIs, replacing the restrictive protocols

used within traditional telecommunications net-

works. A number of industrial consortia have

adopted the layered approach and develop net-
work APIs. Major work include JAIN [35,65],

Parlay [18,99] and 3GPP�s OSA [1] which in turn is

based on Parlay. These APIs are being discussed

and endorsed by a number of other (standard)

consortia, such as the European Telecommunica-

tions Standards Institute (ETSI) [38], VASA

Forum (formerly the IN Forum) [126], and Soft-

switch [109].
The xbind architecture [89] is another example

of a layered architecture using APIs for commu-

nication between the layers. This work was the

base for forming the OPENSIG group [97] and the

IEEE OPENARCH conference series. Subse-

quently, the IEEE P1520 [9,98] standards initiative

for programmable network interfaces was started.

An open architecture in network control is being
defined and standardized.

Initial studies of the feature interaction problem

between services deployed on top of network APIs

can be found in [76,80]. Four different categories

of service interactions according to their location

are identified:

• Interactions between features in the core net-
work, e.g. PSTN, PLMN, H.323.

• Interactions between core network features and

service capabilities in the APIs.

• Interactions between service capabilities in the

APIs.

• Interactions between third party services offered

on top of the APIs.

While the first category contains the interac-

tions known to date, the remaining three classes of

interactions are new with the layering of the ser-

vice architecture as suggested by JAIN and Parlay.

The use of APIs and the classes of interactions are

depicted in Fig. 1.

Active networks also have a heavy impact on

the provisioning of services. Initially they have
been conceived to operate inside routers/switches

in the network. However, subsequently, work

also has addressed application level active net-

works [43,46]. Here the active code operates on

the information exchanged between client and

servers, such as WWW browsers and servers, and

active code is executed on proxy servers. Hence

active networks help to provision services at
various layers––from the network layer to the

application layer. However, while this helps to

increase the distribution of the services, the im-

pact on service interaction handling has not been

studied yet.

The new developments do not only mean new

classes of interactions but also new opportunities

of handling interactions generally. One way of
implementing active networks is to use intelligent

agents [67]. The close link between active networks
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and intelligent agents might be of interest as a

number of feature interaction approaches are

based on agent technology. However, no detailed

study has been reported so far.

The application of DPEs and of object-oriented
technology allow for new ways to control service

interactions. An interesting aspect of architectures

based on DPEs is that the communications be-

tween services is no longer constrained by the

network signalling protocol. Instead, information

according to the offered interfaces can be exchan-

ged. Thus the signalling bottleneck between ser-

vices is not an issue anymore. Services can

communicate with each other, either directly or via

a third component. This means that many signal-

ling limitations experienced in the POTS and IN

environments are removed. This also means that
services are now aware of each other [80,87] (cf.

Fig. 2).

This change offers the potential for radically

different approaches. In previous architectures

features do not communicate: one service is only

aware of other implicitly through the behaviour of

the network. However, in new IP-based architec-
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Fig. 2. Service interworking in DPE-based architectures.
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Fig. 1. Potential interactions and horizontal service provisioning.
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tures peer to peer communication between services

is possible.

8.2.3. Packet switched networks

One of the most important changes in networks

is the migration from circuit switched to packet
switched networks. There is no longer any doubt

that IP will be the ubiquitous transport protocol

[27,76]. While the difference between packet and

circuit switching is not directly linked to the pro-

visioning of services, it allows for the exchange of

multimedia data which is exploited by services.

At present, the work towards Internet tele-

phony has attracted a lot of attention. A number
of standards have been developed: SIP [54] by the

Internet Engineering Task Force (IETF) and

H.323 [122] by the International Telecommunica-

tions Union (ITU). MeGaCo (H.248) [33,123] is

standardized by both, IETF and ITU. Clearly, the

introduction of Internet telephony has a strong

impact on feature interaction management. The

deployment of new services is much more straight-
forward––enabled by concepts such as SIP-CGI

[91]. Even users themselves may deploy services

using languages like the call processing language

(CPL) [90].

The type and amount of media carried over the

network will change drastically. One major change

is the possibility to transmit multimedia data. As a

consequence new services handling and managing
these data are introduced. Tsang et al. [116,117],

Zave and Jackson [134] as well as Blair and Pang

[11] investigate feature interactions connected with

multimedia service, and identify issues connected

to bandwidth competition and quality of service as

crucial.

A major use of active networks is to provide

quality of service management through mobile
agents. While this is still early work it is expected

that the work on mobile agents and active net-

works will impact the work on quality of service

and vice versa.

As discussed in the previous section, in packet-

switched networks using IP as the network archi-

tecture, the signalling bottleneck between services

has been removed. Consequently, services are
aware of each other and may communicate im-

plicitly or explicitly.

8.3. Feature interactions in other emerging technol-

ogies

Feature interactions are not confined to tele-

communications services. In fact, feature inter-
actions are an issue wherever independently

developed software components are required to

work together (see [10] for a study in component

systems). In telecommunications developments

such as Parlay, Jain, and also SIP, which allow for

a wider participation in the creation and deploy-

ment of services, have highlighted the issue. How-

ever, feature interactions are also an issue with
other emerging technologies outside core telecom-

munication applications. This drive is supported by

technologies such as CORBA, DCOM, and JAVA

RMI, which allow for easy communication be-

tween distributed components. Importantly, spec-

ifying (and even standardising) syntactic interfaces

between components (or features, services, agents)

using technologies such as CORBA�s IDL, or
XML, does not prevent feature interactions. What

is needed are semantic specifications. However,

such specification will be complex and are hard to

achieve! Below we list some areas where feature

interactions may be a threat.

Web services are software applications whose

interfaces are defined in Web service description

language (WSDL)––an XML format for describ-
ing network services as a set of endpoints operat-

ing on messages. Grid computing also employs this

model, for example the grid services in open grid

services architecture. As discussed above the in-

terface specifications are insufficient and hence

feature interactions will be an issue between web

services and also between grid services.

Recently, work on networked appliances has
attracted increasing attention. Household (or

business) appliances are networked. This allows

for remote control using services offered by inde-

pendent service providers. These services may in-

terwork either directly via a jointly controlled

appliance or by appliances affecting each others

behaviour. A study has identified several classes of

interactions in this domain [81].
Also developments known as ubiquitous com-

puting and ubiquitous services involve interworking

services from a number of different sources. Here
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people expect to find the same user environment

including services wherever they are. This applies

to the computing environment (have access to the

same applications as at home) and also to the

communications system. The issue is the compat-

ibility of services across domains. Using the mobile
telephony network, when users travel abroad they

expect the same services to be available as in their

home network. Also call legs may span across a

number of national networks and the services in-

volved need to interwork correctly. Again the po-

tential for feature interaction is given.

Another domain where feature interactions will

be an issue are cars. As cars get more intelligent
with new features, the amount of software in-

volved is rising fast. A often referred to example is

where a thief hits the front of a stationary car and

all doors automatically get unlocked. This is be-

cause the safety feature of the car assumes an ac-

cident has occurred and to allow passengers to

escape and paramedics to reach potentially injured

passengers all doors get unlocked. This could be
seen as the security feature (keep all doors locked)

is compromised by the safety feature. Clearly, this

is undesired behaviour of a stationary car with no

passengers inside.

The commonalities between all these examples

are that the services are developed independently

by separate businesses (or perhaps even by end-

users themselves). Consequently, knowing about
the existence of other services or even getting de-

tails on their behaviour is often difficult because of

the competitive nature of the market or simply

because of the number of offered services. Cars

appears to be a closed environment at first glance,

i.e. only a well understood set of services is used

inside a car and hence testing or off-line analysis

may be sufficient to eliminate feature interactions.
However, this hope may be short-lived as there is a

move to connect cars to the Internet. Hence ex-

ternal services may also affect the control of cars.

8.4. Contributions to date

The development and deployment of new net-

work architectures and services is advancing very
rapidly, this is supported by the increasing dere-

gulation of the telecommunications market.

Feature interaction research in the area of

emerging architectures is still at a very early state.

Work so far has focused on the expected changes

and started to look at the likely impact these may

cause. While the removal of the signalling bottle-

neck also removes a large class of interactions,
others remain, or are newly introduced. The major

significant change is that services may communi-

cate with each other, either directly or indirectly.

This is a major departure from the POTS world

and consequently new techniques and approaches

will be required to deal with interactions in the

context. Existing techniques may sometimes still

be applicable, as demonstrated by Hall [52] in
work on interaction between email services.

In the next section we look ahead and revisit the

three classes of approaches discussed earlier in this

paper: software engineering, formal methods, and

on-line techniques. More specifically, we identify

issues which require to be addressed in the future,

and suggest approaches or classes of approaches

which might be applicable.

9. Forecast

Feature interaction is becoming a more impor-

tant issue as the scale and frequency of the prob-

lem increases. A number of powerful drivers have

been noted; the rapidly increasing number of ser-
vices, a requirement for a shorter time-to-market,

a market with multiple vendors employing pro-

prietary services, the possibility of user-created

services, and a continuous service deployment.

Arguably the most drastic change in future

telecommunications systems is the move towards a

competitive business environment. This is cause to

a number of open questions. Because the answers
will impinge on the nature of future approaches to

the feature interaction problem, it is important to

answer the questions before any new technical

feature interaction approach is developed. Some of

those questions are:

• Are providers, vendors and operators of next

generation networks aware of the impact of fea-
ture interactions on their future service offer-

ings? Does the industry care about the problem?
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• What will be the impact of the feature interac-

tion problem on the business model of the open

services marketplace with a much higher num-

ber of third party service providers?

• Who owns the customer? In other words, if
there is a problem involving services from a

number of service providers, who is responsible

for resolving the issue? Possibilities include the

providers involved, the vendors supplying the

services to the providers, the network operator,

and even the users themselves. Clearly, to be

able to answer this question the structure of

the market needs to be understood.

These issues apply to any new multi-vendor,

multi-provider environment, be it SIP, JAIN, or

Parlay. Finding an answer to these questions will

require understanding the business model and the

responsibilities and roles of the entities involved in

developing, selling, and maintaining services.

For instance, in a Parlay environment, if the
network operator is responsible to resolve the in-

teractions, a likely place for an approach is inside

the API framework interface, or if the service

providers are responsible, the services themselves

might need to contain feature interaction handling

functionality. Clearly, the location of the handling

will affect the types of approaches required. Fur-

ther research is needed to find answers to these
open questions. Moreover, the role of the regula-

tor and standardization need to be defined.

Another major issue in the future will be the

compatibility of services associated with the issue of

ubiquitous computing. Users will expect that they

have the same services available whatever handset

they may use and also wherever they are. For in-

stance when travelling to a foreign country, users
will expect that they still have the same services

available as at home and that the services operate in

exactly the same way. Furthermore, users will ex-

pect services to work across networks. Conference

calls may span multiple networks, for instance with

call parties in USA, France and Japan.

In addition, the nature of feature interaction is

changing as the networks which support the ser-
vices are changing. Research in this area needs to

readjust and address the new challenges and op-

portunities. We believe that these issues are af-

fected by four major developments. While all four

set new challenges, it is important to note that the

first two also offer fresh opportunities:

• Richer signalling. This removes the signalling

bottleneck and entire classes of interactions
which dominated the POTS world are simply

avoided.

• Communication between services. This is now

made possible through (increasingly) standard-

ized middleware and API�s and raises the ques-

tions of what (and how) do services need to

‘‘know’’ about each other to detect and resolve

interactions, and who or what mediates?
• Performance in IP networks. Quality of service is

now an issue, not only for traditional POTS-like

services, but interactions between multi-media

services can compromise quality of service guar-

antees.

• Billing. While it was always clear that billing in-

teractions were occurring in the POTS world,

they were generally considered to be a minor
concern and not worth fixing. However, billing

in a multi-vendor environment, with the separa-

tion of service and network providers, is much

more important and has real financial conse-

quences. These are made more acute by the

move towards run-time, electronic bonding, as

opposed to the traditional off-line post-call pro-

cessing for billing in the POTS world.

Consequently, research priorities must be to

• Determine the minimum information that ser-

vices need to communicate to other services in

order to detect and resolve interactions.

• Develop agreed interfaces between services for

the exchange of information.
• Develop quality of service measures from a ser-

vice perspective (rather than a network perspec-

tive, as at present).

• Incorporate performance as a part of the func-

tionality of a service/feature.

• Incorporate billing as a part of the functionality

of a service/feature.

We should not underestimate the difficulties in

achieving the above, each poses a difficult research
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challenge and how best to achieve them is an open

question.

While software engineering approaches such as

filtering, will continue to address feature interac-

tion as it has in the past (albeit on a larger and

more diverse scale), it will need to expand to en-
sure non-functional aspects such as QoS issues are

incorporated into the development process to

handle feature interactions. While it is also highly

likely that software engineering can help capture

the minimum information required by services or

indeed ensure interfaces are used effectively, it

seems unlikely that it will address the study of

these aspects directly. In other words, the tech-
niques employed to detect interactions are often

separate from the network technologies, and so

the scope for software engineering to help are

limited.

Formal methods too will continue to be im-

portant. We note, however, that richer signalling

and communication will, in general, make model-

ling less tractable (e.g. because of richer data
structures). However, due to the changed nature

of some standards (English text rather than for-

mal notations) formal methods may play an in-

creasing role in making the specified behaviour

explicit.

Increasingly, service providers will bundle their

products. That is customers will buy a group of

services from a particular provider. Using off-line
techniques, service providers can check the com-

patibility of services belonging to the same group.

This is the intra portfolio case introduced in the

previous section. Of course, service providers may

want to perform compatibility checks on each

others products. Again, off-line approaches can

help, but we suspect that inter portfolio checks are

unlikely, unless the regulator steps in. However
more importantly from a research perspective,

formal methods may well prove crucial in meeting

the new research priorities of determining the

minimum information required, the definition of

interfaces, the QoS concerns, and billing.

We predict that on-line approaches will become

more important as increasingly services will meet

for the first time on the network. Yet this approach
has not been particularly successful to date. We

believe that this will change with the possibilities

for direct communication and negotiation between

services. With the possibility of agreed inter-

faces, the distributed nature of the negotiation

approaches matches future telecommunications

architectures closely. Thus we expect a great po-

tential especially for negotiating approaches. This
development is helped by protocols such as SIP

which carry information about the call in their

messages. Clearly much more work is required, for

example, to limit the need for a fixed negotiation

path. Expertise from the intelligent agent domain

is likely to have a heavy impact on this work.

Perhaps the greatest gains will be had if these

approaches can work jointly in a hybrid approach.
For example, formal methods could be applied to

an (off-line) analysis of service interfaces to deter-

mine guidelines. For example, as a result of per-

forming the analysis, a guideline might have the

form––a service offering a message ‘‘x’’ or action

‘‘y’’ is likely to interact with a service offering a

message ‘‘u’’ or action ‘‘v’’. At present, this ap-

proach is simply not possible, without agreed in-
terfaces between services.

In summary, we believe that software engineer-

ing approaches will continue to be used, however, it

is unlikely that the emerging networks will alter the

current research directions. The application of

formal methods approaches appears to be limited

to the intra portfolio case. However, formal

methods could help addressing the issues of deter-
mining the minimum information required to be

exchanged between services. Due to the changing

business model, on-line techniques are expected to

rapidly gain importance. Research efforts into the

area of feature interaction should reflect this.

Furthermore, we feel that hybrid approaches, op-

erating an on-line mechanism aided with guidance

from either formal methods or service engineering
approaches could prove profitable, although this

view must be tempered with the limited work on

hybrid approaches to date. However, these views

are framed by our earlier question:Who, if anyone,

is held responsible for the correct interworking of

services?

This question, and its answer(s) is fundamental

to future technical work. Yet we must be clear that
the answer will be determined largely by social,

commercial and possible legal forces.
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10. Summary

We have presented the state of the art of the

field of feature interactions in telecommunications

services, concentrating on three major research
trends: software engineering approaches, formal

methods, and on-line techniques. The contribu-

tions of each are discussed, although there is some

difficulty in assessing the industrial impact. Much

of the work to date concentrates on POTS.

The telecommunications world is changing

rapidly, brought about by market deregulation

and technological advances. We have outlined
some of these changes and the impact of the new,

emerging architectures on the feature interaction

problem was considered. In the emerging archi-

tectures, services will have the ability to commu-

nicate with each other and performance and billing

concerns will gain prominence.

A forecast is made about how research in fea-

ture interactions needs to readjust to address the
new challenges posed by the emerging architec-

tures. From a technical perspective, the main

conclusions are that the exchange of information

between services must be achieved through agreed

interfaces. This in turn will allow for a formal

analysis of those interfaces which will inform

guidelines for use, and the development of a wide

variety of on-line detection, resolution and nego-
tiation techniques. However, crucially, business

relationships and responsibilities for the correct

service interworking still need to be defined.

References

[1] 3GPP, The 3rd Generation Partnership Project. Available

from <http://www.ieee-pin.org>.

[2] R. Accorsi, C. Areces, W. Bouma, M. de Rijke, Features as

constraints, in: [22], May 2000, pp. 210–225.

[3] I. Aggoun, P. Combes, Observers in the SCE and SEE to

detect and resolve feature interactions, in [36], June 1997,

pp. 198–212.

[4] M. Amer, A. Karmouch, T. Gray, S. Mankovskii, Feature

interaction resolution using fuzzy policies, in: [22], May

2000, pp. 94–112.

[5] D. Amyot, L. Charfi, N. Corse, T. Gray, L. Logrippo, J.

Sincennes, B. Stepien, T. Ware, Feature description and

feature interaction analysis with use case maps and lotos,

in: [22], May 2000, pp. 274–289.

[6] M. Arango, L. Bahler, P. Bates, M. Cochinwala, D. Cohrs,

R. Fish, G. Gopal, N. Griffeth, G.E. Herman, T. Hickey,

K.C. Lee, W.E. Leland, C. Lowery, V. Mak, J. Patter-

son, L. Ruston, M. Segal, R.C. Sekar, M.P. Vecchi, A.

Weinrib, S.Y. Wuu, The touring machine system, Com-

munications of the ACM 36 (1) (1993) 68–77.

[7] P.K. Au, J.M. Atlee, Evaluation of a sate-based model of

feature interactions, in: [36], June 1997, pp. 153–167.

[8] J. Bergstra, W. Bouma, Models for feature descriptions

and interactions, in: [36], June 1997, pp. 31–45.

[9] J. Biswas, A.A. Lazar, J.-F. Huard, K. Lim, S. Mahjoub,

L.-F. Pau, M. Suzuki, S. Torstensson, W. Wang, S.

Weinstein, The IEEE P1520 standards initiative for pro-

grammable network interfaces, IEEE Communications

Magazine 36 (10) (1998) 64–70.

[10] L. Blair, T. Jones, S. Reiff-Marganiec, A feature manager

approach to the analysis of component-interactions, in:

Proceedings of FMOODS, 2002.

[11] L. Blair, J. Pang, Feature interaction––life beyond tradi-

tional telephony, in: [22], May 2000, pp. 83–93.

[12] J. Blom, Formalisation of requirements with emphasis on

feature interaction detection, in: [36], June 1997, pp. 61–

77.

[13] J. Blom, B. Jonsson, L. Kempe, Using temporal logic for

modular specification of telephone services, in: [15], May

1994, pp. 197–216.

[14] M. Bostr€oom, M. Engstedt, Feature interaction detection

and resolution in the Delphi framework, in: [31], October

1995, pp. 157–172.

[15] L.G. Bouma, H. Velthuijsen (Eds.), Feature Interactions in

Telecommunications Systems, IOS Press, Amsterdam,

1994.

[16] K.H. Braithwaite, J.M. Atlee, Towards automated detec-

tion of feature interactions, in: [15], May 1994, pp. 36–59.

[17] J. Bredereke, Families of formal requirements in telephone

switching, in: [22], May 2000, pp. 257–273.

[18] F. Bruhns, Parlay––the API for secure and open access to

networking functionality for third party applications out-

side the network, in: Proceedings of the 6th International

Conference on Intelligence in Networks (ICIN 2000),

January 2000.

[19] G. Bruns, P. Mataga, I. Sutherland, Features as service

transformers, in: [77], September 1998, pp. 85–97.

[20] R.J.A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T.

Gray, S. Mankovski, Feature-interaction visualization and

resolution in an agent environment, in: [77], September

1998, pp. 135–149.

[21] M. Cain, Managing run-time interactions between call

processing features, IEEE Communications Magazine

(February) (1992) 44–50.

[22] M. Calder, E. Magill (Eds.), Feature Interactions in

Telecommunications and Software Systems, IOS Press,

Amsterdam, 2000.

[23] M. Calder, E. Magill, S. Reiff-Marganiec, V. Thayanan-

than, Theory and practice of enhancing a legacy software

system, in: P. Henderson (Ed.), Systems Engineering

Business Process Change 2, Springer, London, 2001.

M. Calder et al. / Computer Networks 41 (2003) 115–141 137

http://www.ieee-pin.org


[24] M. Calder, A. Miller, Using SPIN for feature interaction

analysis––a case study, in: Proceedings SPIN 2001, Lecture

Notes in Computer Science, 2057, 2001, pp. 143–162.

[25] E.J. Cameron, N. Griffeth, Y.-J. Lin, M.E. Nilson, W.K.

Schnure, A feature interaction benchmark for IN and

beyond, in: [15], May 1994, pp. 1–23.

[26] E.J. Cameron, N. Griffeth, Y.-J. Lin, M.E. Nilson, W.

Shnure, H. Velthuijsen, Towards a feature interaction

benchmark for IN and beyond, IEEE Communications

Magazine 31 (3) (1993) 64–69.

[27] E.J. Cameron, Y.J. Lin, Feature interactions in the new

world, in: [77], September 1998, pp. 3–9.

[28] J. Cameron, K. Cheng, S. Gallagher, F.J. Lin, P. Russo, D.

Sobirk, Next generation service creation: process, method-

ology and tool integration, in: [77], September 1998, pp.

299–304.

[29] J. Cameron, K. Cheng, F.J. Lin, H. Liu, B. Pinheiro, A

formal AIN service creation, feature interactions analysis

and management environment: an industrial application,

in: [36], June 1997, pp. 342–346.

[30] C. Capellmann, P. Combes, J. Petterson, B. Renard, J.L.

Ruiz, Consistent interaction detection––a comprehensive

approach integrated with service creation, in: [36], June

1997, pp. 183–197.

[31] K.E. Cheng, T. Ohta (Eds.), Feature Interactions in Tele-

communications Systems III, IOS Press, Amsterdam, 1995.

[32] P. Combes, S. Pickin, Formalisation of a user view of

network and services for feature interaction detection, in:

[15], May 1994, pp. 120–135.

[33] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen,

J. Segers, MeGaCo: Protocol version 1.0. Request for

Comments (Proposed Standard) 3015, 2000 Internet Engi-

neering Task Force.

[34] L. de Bousquet, F. Ouabdesselam, J.-L. Richier, N.

Zuanon, Incremental feature validation: a synchronous

point of view, in: [77], September 1998, pp. 262–275.

[35] J. de Keijzer, D. Tait, R. Goedman, JAIN: A new

approach to services in communications networks, IEEE

Communications Magazine (January) (2000) 94–98.

[36] P. Dini, R. Boutaba, L. Logrippo (Eds.), Feature Interac-

tions in Telecommunication Networks IV, IOS Press,

Amsterdam, 1997.

[37] A. Berendt (Ed.), IP Telephony––An Industry at a Turning

Point, Ovum, May 2001.

[38] ETSI, The European Telecommunications Standards In-

stitute. Available from <http://www.etsi.org>.

[39] D. Eyers, Telecom markets and the recession: an imperfect

storm, Report: AV-14-9944, Gartner Research, December

2001.

[40] A. Felty, K. Namjoshi, Feature specification and auto-

matic conflict detection, in: [22], May 2000, pp. 179–192.

[41] M. Frappier, A. Mili, J. Desharnais, Detecting feature

interactions in relational specifications, in: [36], June 1997,

pp. 123–137.

[42] N. Fritsche, Runtime resolution of feature interactions in

architectures with seperated call and feature control, in:

[31], October 1995, pp. 43–63.

[43] M. Fry, A. Ghosh, Application level active networking,

Computer Networks 31 (1999) 655–667.

[44] A. Gammelgaard, J.E. Kristensen, Interaction detection, a

logical approach, in: [15], May 1994, pp. 178–196.

[45] P. Georgatsos, T. Nauta, H. Velthuijsen, Role of service

management in service interaction handling in an IN

environment, in: [36], June 1997, pp. 213–225.

[46] A. Ghosh, M. Fry, G. MacLarty, An infrastructure for

application level active networking, Computer Networks

36 (2001) 5–20.

[47] J.P. Gibson, Feature requirements models: understanding

interactions, in: [36], June 1997, pp. 46–60.

[48] P. Gibson, Towards a feature interaction algebra, in: [77],

September 1998, pp. 217–231.

[49] S. Gilmore, M. Ryan (Eds.), Language Constructs for

Describing Features, Springer, Berlin, 2001.

[50] N. Griffeth, R. Blumenthal, J.-C. Gregoire, T. Ohta,

Feature interaction detection contest, in: [77], September

1998, pp. 327–359.

[51] N.D. Griffeth, H. Velthuijsen, The negotiating agents

approach to runtime feature interaction resolution, in:

[15], May 1994, pp. 217–236.

[52] R. Hall, Feature interactions in electronic mail, in: [22],

May 2000, pp. 67–82.

[53] R.J. Hall, Feature combination and interaction detection

via foreground/background models, in: [77], September

1998, pp. 232–246.

[54] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg,

SIP: Session Initiation Protocol, Request for Comments

(Proposed Standard) 2543, Internet Engineering Task

Force, 1999.

[55] J. Hay, J.M. Atlee, Composing features and resolving

interactions, in: Proceedings of ACM SIGSOFT Confer-

ence 2000, Association of Computing Machinery, 2000, pp.

110–119.

[56] M. Heisel, J. Souqui�eeres, A heuristic approach to detect

feature interactions in requirements, in: [77], September

1998, pp. 165–171.

[57] G. Holzmann, M. Smith, Automating software feature

verification, Bell Labs Technical Journal Lucent Technol-

ogies 5 (2) (2000) 72–87.

[58] G. Holzmann, M. Smith, Software model checking:

extracting verification models from source code, Software

Testing, Verification and Reliability 11 (2) (2001) 65–79.

[59] G.J. Holzmann, M.H. Smith, A practical method for

verifying event-driven software, in: Proceedings of the 1999

International Conference on Software Engineering, May

1999, pp. 597–605.

[60] S. Homayoon, H. Singh, Methods of addressing the

interactions of intelligent network services with embedded

switch services, IEEE Communications Magazine (1988),

42ff.

[61] J.-S. Hwang, W.A. Miller, Hybrid blackboard model for

feature interactions in process planning, Computers and

Industrial Engineering 29 (1–4) (1995) 613–617.

[62] Y. Inoue, M. Lapierre, C. Mossotto (Eds.), The TINA

Book, Prentice Hall Europe, London, 1999.

138 M. Calder et al. / Computer Networks 41 (2003) 115–141

http://www.etsi.org


[63] Y. Iraqi, M. Erradi, An experiment for the processing of

feature interactions within an object-oriented environment,

in: [36], June 1997, pp. 298–312.

[64] M. Jackson, P. Zave, Distributed feature composition: a

virtual architecture for telecommunications services, IEEE

Transactions on Software Engineering 24 (10) (1998) 831–

847.

[65] JAIN. Available from <http://java.sun.com/prod-

ucts/jain>.

[66] J. Kamoun, L. Logrippo, Goal-oriented feature interaction

detection in the intelligent network model, in: [77],

September 1998, pp. 172–186.

[67] S. Karnouskos, Agent populated active networks, in: The

2nd IEEE International Conference on Advanced Com-

munication Technology (ICACT-2000), Muju, Korea,

February 2000.

[68] D.O. Keck, A tool for the identification of interaction-

prone call scenarios, in: [77], September 1998, pp. 276–290.

[69] D.O. Keck, P.J. Kuehn, The feature and service interaction

problem in telecommunications systems: a survey, IEEE

Transactions on Software Engineering 24 (10) (1998) 779–

796.

[70] B. Kelly, M. Crowther, J. King, R. Masson, J. DeLapeyre,

Service validation and testing, in: [31], October 1995, pp.

173–184.

[71] M. Key, S. Leask, A. Oshisanwo, ROSA: An object-

orineted architecture for open services, BT Telecommuni-

cations Journal 8 (4) (1990).

[72] A. Khoumsi, Detection and resolution of interactions

between services of telephone networks, in: [36], June 1997,

pp. 78–92.

[73] A. Khoumsi, R. Bevelo, A detection method developed

after a thorough study of the contest held in 1998, in: [22],

May 2000, pp. 226–240.

[74] K. Kimbler, Towards a more efficient feature interaction

analysis––a statistical approach, in: [31], October 1995, pp.

201–211.

[75] K. Kimbler, Addressing the interaction problem at the

enterprise level, in: [36], June 1997, pp. 13–22.

[76] K. Kimbler, Service interaction in next generation net-

works: challanges and opportunities, in: [22], May 2000,

pp. 14–20.

[77] K. Kimbler, L.G. Bouma (Eds.), Feature Interactions in

Telecommunications and Software Systems V, IOS Press,

Amsterdam, 1998.

[78] K. Kimbler, E. Kuisch, J. Muller, Feature interactions

among pan-european services, in: [15], May 1994, pp. 73–

85.

[79] K. Kimbler, D. Sobirk, Use case driven analysis of feature

interactions, in: [15], May 1994, pp. 67–177.

[80] M. Kolberg, K. Kimbler, Service interaction management

for distributed services in a deregulated market environ-

ment, in: [22], May 2000, pp. 23–37.

[81] M. Kolberg, E. Magill, D. Marples, S. Tsang, Feature

interactions in services for networked appliances, in: IEEE

International Conference on Communications (ICC-2002),

New York, USA, April 2002.

[82] M. Kolberg, E.H. Magill, Service and feature interactions

in TINA, in: [77], September 1998, pp. 78–84.

[83] M. Kolberg, E.H. Magill, A pragmatic approach to service

interaction filtering between call control services, Interna-

tional Journal of Computer and Telecommunications

Networking 38 (5) (2002) 591–602.

[84] M. Kolberg, E.H. Magill, D. Marples, S. Reiff, Results of

the second feature interaction contest, in: [22], May 2000,

pp. 311–325.

[85] M. Kolberg, E.H. Magill, D. Marples, S. Reiff, Second

feature interaction contest, in: [22], May 2000, pp. 293–

310.

[86] M. Kolberg, R. Sinnott, E.H. Magill, Experiences model-

ling and using formal object-oriented telecommunication

service frameworks, International Journal of Computer

and Telecommunications Networking 31 (23–24) (1999)

2577–2592.

[87] M. Kolberg, R.O. Sinnott, E.H. Magill, Engineering of

interworking tina-based telecommunications services, in:

Proceedings of IEEE Telecommunications Information

Networking Architecture Conference, IEEE Press, April

1999.

[88] T.F. LaPorta, D. Lee, Y.-J. Lin, M. Yannakakis, Protocol

feature interactions, in: Proceedings of FORTE-PSTV,

1998.

[89] A.A. Lazar, Programming telecommunication networks,

IEEE Network 11 (5) (1997) 8–18.

[90] J. Lennox, H. Schulzrinne, Call Processing Language

Framework and Requirements, RFC 2824, Internet Engi-

neering Task Force, 2000.

[91] J. Lennox, H. Schulzrinne, J. Rosenberg, Common Gate-

way Interface for SIP, RFC 3050, Internet Engineering

Task Force, 2001.

[92] D. Marples, E.H. Magill, The use of rollback to

prevent incorrect operation of features in intelligent

network based systems, in: [77], September 1998, pp.

115–134.

[93] D. Marples, E.H. Magill, D.G. Smith, An infrastructure

for feature interaction resolution in a multiple service

environment––the application of transaction processing

techniques to the feature interaction problem, in: Proceed-

ings of TINA 95 Conference, 1995.

[94] D. Marples, S. Tsang, E.H. Magill, D.G. Smith, A

platform for modelling feature interaction detection and

resolution techniques, in: [31], October 1995, pp. 185–

199.

[95] M. Nakamura, Y. Kakuda, T. Kikuno, Feature interaction

detection using permutation symmetry, in: [77], September

1998, pp. 187–201.

[96] M. Nakamura, T. Kikuno, J. Hassine, L. Logrippo,

Feature interaction filtering with use case maps at require-

ments stage, in: [22], May 2000, pp. 163–178.

[97] OPENSIG. Available from <http://www.columbia.

edu/opensig>.

[98] IEEE P1520. Available from <http://www.ieee-pin.

org>.

[99] Parlay. Available from <http://www.parlay.org>.

M. Calder et al. / Computer Networks 41 (2003) 115–141 139

http://java.sun.com/products/jain
http://www.columbia.edu/opensig
http://www.columbia.edu/opensig
http://www.ieee-pin.org
http://www.ieee-pin.org
http://www.parlay.org


[100] Y. Peng, F. Khendek, P. Grogono, G. Butler, Feature

interactions detection technique based on feature assump-

tions, in: [77], September 1998, pp. 291–298.

[101] D.-B. Perng, C.-F. Chang, Resolving feature interactions

in 3D part editing, Computer-Aided Design 29 (10) (1997)

687–699.

[102] M. Plath, M. Ryan, Plug-and-play features, in: [77],

September 1998, pp. 150–164.

[103] M. Plath, M. Ryan, Defining features for CSP: reflections

on the feature interaction contest, in: [49], 2000, pp. 202–

216.

[104] M. Plath, M. Ryan, The feature construct for SMV:

Semantics, in: [22], May 2000, pp. 129–144.

[105] C. Prehofer, An object-oriented approach to feature

interaction, in: [36], June 1997, pp. 313–325.

[106] S. Reiff, Identifying resolution choices for an online feature

manager, in: [22], May 2000, pp. 113–128.

[107] S. Reiff-Marganiec, Runtime resolution of feature interac-

tions in evolving telecommunications systems, Ph.D. The-

sis, University of Glasgow, Glasgow, UK, May 2002.

[108] S.M. Rochefort, H.J. Hoover, An exercise in using

constructive proof systems to address feature interactions

in telephony, in: [36], June 1997, pp. 329–341.

[109] Softswitch, The International Softswitch Consortium.

Available from <http://www.softswitch.org>.

[110] B. Stepien, L. Logrippo, Representing and verifying

intentions in telephony features using abstract data types,

in: [31], October 1995, pp. 141–155.

[111] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J.

Wetherall, G.J. Minden, A survey of active networks

research, IEEE Communications Magazine 35 (1) (1997)

80–86.

[112] J.G. Thistle, R.P. Malham�ee, H.-H. Hoang, Feature inter-
action modelling, detection and resolution: a supervisory

control approach, in: [36], June 1997, pp. 93–107.

[113] M. Thomas, Modelling and analysing user views of

telecommunications services, in: [36], June 1997, pp. 168–

182.

[114] S. Tsang, E.H. Magill, Detecting feature interactions in the

intelligent network, in: [15], May 1994, pp. 236–248.

[115] S. Tsang, E.H. Magill, Behaviour based run-time feature

interaction detection and resolution approaches for intel-

ligent networks, in: [36], June 1997, pp. 254–270.

[116] S. Tsang, E.H. Magill, B. Kelly, An investigation of the

feature interaction problem in networked multimedia

services, in: Proceedings of the Third Communication

Network Symposium, July 1996, pp. 58–61.

[117] S. Tsang, E.H. Magill, B. Kelly, The feature interaction

problem in networked multimedia services––present and

future, BT Technology Journal 15 (1) (1997) 235–246.

[118] K. Turner, Formalising the chisel notation, in: [22], May

2000, pp. 241–256.

[119] K.J. Turner, Validating architectural feature descriptions

using LOTOSLOTOS, in: [77], September 1998, pp. 247–261.

[120] S. Uglow, A. Gambhir, Wholesale: New Markets For

Communications Carriers And Service Providers, Ovum,

2000.

[121] International Telecommunications Union, ITU-T Recom-

mendation Q.1204: Intelligent Network Distributed Func-

tional Plane Architecture, ITU-T, 1993.

[122] International Telecommunications Union, ITU-T Recom-

mendation H.323: Packed Based Multimedia Communica-

tions Systems, ITU-T, 1998.

[123] International Telecommunications Union, H.248, 2000.

[124] G. Utas, A pattern language of feature interactions, in:

[77], September 1998, pp. 98–114.

[125] R. van der Linden, Using an architecture to help beat

feature interactions, in: [15], May 1994, pp. 24–35.

[126] VASA, The VASA Forum. Available from <http://

www.vasaforum.org>.

[127] H. Velthuijsen, Distributed artificial intelligence for run-

time feature interaction resolution, Computer 26 (8) (1993)

48–55.

[128] H. Velthuijsen, Issues of non-monotonicity in feature

interaction detection, in: [31], October 1995, pp. 31–42.

[129] D. Vrsalovic, Intelligent, stupid, and really smart network-

ing, ACM netWorker 2 (2) (1998) 44–47.

[130] D. Wetherall, Active networks vision and reality: lessons

from a capsule-based system, ACM Operating Systems

Review 34 (5) (1999) 64–79.

[131] T. Yoneda, T. Ohta, A formal approach for definition and

detection of feature interactions, in: [77], September 1998,

pp. 202–216.

[132] P. Zave, Architectural solutions to feature-interaction

problems in telecommunications, in: [77], September

1998, pp. 10–22.

[133] P. Zave, M. Jackson, A component-based approach to

telecommunication software, IEEE Software 15 (5) (1998)

70–78.

[134] P. Zave, M. Jackson, New feature interactions in mobile

and multimedia telecommunication services, in: [22], May

2000, pp. 51–66.

[135] I. Zibman, C. Woolf, P. O�Reilly, L. Strickland, D. Willis,

J. Visser, Minimizing feature interactions: an architecture

and processing model approach, in: [31], October 1995, pp.

65–83.

Muffy Calder is Professor of Formal
Methods in the Department of Com-
puting Science, University of Glasgow,
where she leads the Formal Analysis,
Theory and Algorithms Research
Group. Her research interests in-
clude modelling and reasoning about
concurrent systems, process algebra,
protocol and service description lan-
guages, protocol analysis, and safety
critical and biomedical applications.
She has led 12 EPSRC research projects
and co-chaired the premier interna-
tional conference on feature interac-

tion. She is a member of the Scottish Science Advisory
Committee, reporting to the Scottish Executive.

Professor Calder has a Ph.D. in Computational Science
from the University of St. Andrews, and a BSc in Computing
Science from the University of Stirling. She has been at Glas-
gow University since 1988, previously she was a researcher at
the Universities of Stirling and Edinburgh.

140 M. Calder et al. / Computer Networks 41 (2003) 115–141

http://www.softswitch.org
http://www.vasaforum.org
http://www.vasaforum.org


Mario Kolberg studied computer sci-
ence at the HTWS Zittau/Goerlitz in
Germany. After spending one year in
the computer science department at
Humboldt University in Berlin, Mario
joined the Communications Division
in the Department of Electronic and
Electrical Engineering at the Univer-
sity of Strathclyde in June 1997. While
at Strathclyde, he mainly worked in
the European Union funded ACTS
TOSCA project on issues related to the
rapid development of distributed tele-
communications services based on the

TINA architecture. In September 2000 Mario moved to the
Department of Computing Science and Mathematics at Stirling
University where he since became a member of academic staff.

Recently, his work concentrated on the EPSRC HFIG
project. His research interests include service creation, feature
interaction management, and networked appliances. Mario is a
member of the Telecommunications Service Engineering Re-
search Group. In parallel to his occupation as a Lecturer,
Mario is finalising his Ph.D. in the area of feature interaction
management.

Evan Magill is Professor of Computing
at the University of Stirling. His main
research interests include telecom-
munications service creation and in
particular feature interaction, telecom-
munications services management,
telecommunications resource alloca-
tion, and telecommunications lan-
guages such as SDL.
With a decade working in industry,

both in Canada and the UK, his career
spans both industry and academe in
both Engineering and Computing Sci-
ence. Professor Magill maintains active

research links with a range of companies.
Professor Magill has run a number of research projects with

EPSRC, EU, and industrial funding. He has co-chaired the

premier international conference on feature interaction, chaired
a number of IEE colloquia, and is a founding member of a
government funded UK-wide network of academics and in-
dustrialists on service creation.

He is the leader of the Telecommunications Service Engi-
neering Research Group within the Department of Computing
Science and Mathematics.

Stephan Reiff-Marganiec was working
in the computer industry in Germany
and Luxembourg for several years.
He obtained a BSc (hons) degree in
Computing Science from the Univer-
sity of Wales, Swansea, where he con-
ducted his undergraduate studies from
January 1996 to 1998. From 1998 to
2001, Stephan was working as a Re-
search Assistant on the EPSRC HFIG
project at Glasgow University, while at
the same time reading for a Ph.D. in
Computing Science. The work per-
formed at Glasgow investigated hybrid

approaches to the feature interaction problem, and the thesis
presents one such approach.

Since 2001 Stephan is a Research Fellow on the ACCENT
project at the University of Stirling, Department of Computing
Science and Mathematics. The project, supported by EPSRC
and industry, investigates emerging features and associated
conflict resolution techniques.

M. Calder et al. / Computer Networks 41 (2003) 115–141 141


	Feature interaction: a critical review and considered forecast
	Introduction
	Feature interaction
	Overview of paper
	Service and software engineering
	Why use software engineering?
	How are software engineering techniques used?
	Focussed techniques
	Process models
	Contribution and difficulties

	Formal methods
	Why use formal methods?
	How are formal methods used?
	Properties only
	Behaviour only
	Properties and behaviour
	Contribution and difficulties

	On-line techniques
	Why use on-line techniques?
	How are on-line techniques used?
	Feature manager--a priori information approaches
	Feature manager--captive environment approaches
	Feature manager--approaches without restrictions
	Negotiation--a priori information approaches
	Contributions and difficulties

	Overall contributions of previous work
	Emerging architectures
	Deregulation of the telecommunications market
	Technological advances
	Object-oriented technologies and distributed service logic
	Horizontal service provisioning and application programming interfaces
	Packet switched networks

	Feature interactions in other emerging technologies
	Contributions to date

	Forecast
	Summary
	References


