## **Neural Nets** The Hype and the Reality – from an industrial perspective

Graham Hesketh CEng MIEE Team Leader ~ Information Engineering Strategic Research Centre Rolls-Royce, Derby

## **Gratuitious Equations**



## About me

### Mathematician at heart

➤ A-level Maths, Further Maths and Physics (Leigh Grammar School, 73-74)

### Physicist by training

 Physics / Physical Electronics Degree (1st Class Hons, Bath, 75-79)

### Information Engineer by vocation

- ► AEA Technology (UKAEA, Harwell, 79-97)
- Rolls-Royce (Strategic Research Centre, Derby, 97-present)
- Chairman of NCAF (Natural Computing Applications Forum, formerly the Neural Computing Applications Forum) - active committee member for 10 years

## **Early History**

- In the 1930's Turing, McCulloch, Pitts and Hebb began to research ways to mimic the operation of the human brain.
- The seminal year for the development of the "science of mind" was 1943 when McCulloch and Pitts modelled a simple neural network with electrical circuits.
- First learning rule (Hebb 1949).
- The first neurocomputers (electromechanical)

  - ⇒ Perceptron Mark I (Rosenblatt 1958)
  - ⇒ Adaline & LMS learning (Widrow & Hoff 1959)
- Widrow founded the first neurocomputer company: the Memistor Corporation.
- Era of neurocomputing had begun!

## **Middle History**

- In 1969 Minsky and Papert published *Perceptrons* in which the glaring limitations of the simple perceptron were exposed.
- After this there followed 13 years of hibernation known as the "disillusioned years", during which there was virtually no financial support. Nevetheless, some research continued – in 1974 Werbos introduced backpropagation and in 1975 Fukushima created the first multi-layered network, the Cognitron.
- The turning point came in 1982 when Hopfield delivered his seminal paper to the National Academy of Sciences. In the same year Kohonen described his self-organizing feature map.
- In 1985 Parker and Le Cun rediscovered backpropagation and in 1986 Rumelhart and McClelland popularised it in their famous book Parallel Distributed Processing.
- From 1987 onwards there has been an explosion in research on neural networks, new journals, conferences, applications, products, industrial initiatives, and start-up companies.



- Non-profit making organisation founded 1990 as a support group for users of NeuralWorks software
- Hosts three 2-day meetings per year at varied UK locations (from Exeter to Strathclyde) Next one is Swansea 15-16 Sep 2004
- Promotes exchange of ideas and information between academics and industrialists – helped to de-hype the NN revolution
- Has led to successful partnerships

## ESPRIT 2 Project – ANNIE (1989)

- Visual inspection of the quality of solder joints
  - Early efforts had 20 x 20 pixel inputs feeding directly into a vanilla MLP
  - Later work succeeded with "shared weights"



- Robot guidance for collision avoidance
- ReNDeR Reversible Non-linear Dimensionality Reduction





## The CounterMatch Saga

Involving ...

- A world-class neural network application (dynamic signature verification)
- A heart-warming tale of bureaucratic intransigence



# Concept

 1990 – 1991
 Professor Colin Windsor was developing an elastic matching neural network for gas chromatography (MatchFinder)



I hereby confirm order number [110349]

February 1992
 Applied the technique to signatures and proved the feasibility



# Elastic Matching Neural Network

- Dynamic Signature Verification
   collects signatures in real-time
- Does not extract features
   matches whole signatures
- Very tolerant of "natural" variations
- Sensitive to deliberate or "unnatural" variations



# Initial Development

## • April 1992

- Rewritten in C
- LCD signature capture tablet
- Trained neural network model

### September 1992

- Internal trial at Harwell
- Live television demonstration on "Tomorrow's World"

BBC Presenters Howard Stableford and Judith Hann





### History of Countermatch: Harwell Trial Results



# Exploitation (1)

#### • 1993

Shown to financial, retail and government sectors

#### Reservations

- Large scale (did not want to be first)
- Concerned about public reaction
- ⇒ No statistics to validate performance in the public domain



# Exploitation (2)

#### • December 1993

Seen by the UK Employment Service

#### Requirements

- Inking pen writing on standard forms
- Networked signing stations dealing with thousands of clients
- Very simple interface
- Must not disrupt the normal operations of the office





# Details

#### • September - November 1994

- Two offices: Liverpool and Tyneside
- ⇒ 6 PCs in each office
- Signing every two weeks
- ⇒ 8,000 clients in total
- 36,000 signature verifications
- Worlds largest and most realistic public trial of signature verification



# Results

- 95% of all sign-on cases accepted
  - 94% of all successful sign-ons required only one signature attempt
- Around 7 rejections per day (out of a total of over 300 sign-ons)
- Of the rejections, only 2-3 per fortnight were Countermatch failures (false reject figure of around 0.1%)



# Benefits

- Identified fraudulent clients
- Had noticeable deterrent
   effect
- Reduced clerical error
- Boosted morale
- Was easy to install and use
- Fitted existing procedures
- Client reactions were favourable (well, those from the genuine clients anyway)



# Update (1996)

- One year later both offices were still using the software (neither wanted to stop)
- 20,000 clients had been enrolled
- 190,000 signature verifications had been performed
- Every verification was logged for subsequent auditing

## **Update (1997)**

- Government changed the Benefits system
- Returned Unemployment Benefit and Income Support to the Benefits Agency
- Removed the financial incentive from the ES to implement the system

## **UK Government Support**

- In the mid 1990's the DTI provided Neural Computing: Learning Solutions
  - This produced the DTI Best Practice Guidelines for Neural Computing Applications
  - Thoroughly reworked and republished as A Guide to Neural Computing Applications by Lionel Tarassenko
- Around the same time EPSRC launched Neural Computing – the Key Questions
  - A managed programme of academic/industrial research projects

## Sharp LogiCook (1995)

- The world's first neural network controlled microwave oven (R-4N76).
- Sharp's first product to be developed outside of Japan (with Tarassenko from Oxford Uni).
- Sharp UK's most successful microwave oven in the medium price range for two consecutive years.



## **Oxford BioSignals**



- Successful spin-out from Oxford University led by Lionel Tarassenko
- BioSleep and BioSomnia products for EEG sleep analysis
- BioSigns a multi-parameter monitoring device for Intensive Care Units using neural networks to fuse different physiological parameters
- QUICK Technology™ designed for jet engine health monitoring
- Won the Rolls-Royce Chairman's Team Award for Technical Innovation in 2001

| Engine type: .<br>Serial Number:                 |        | S        | Test Date:<br>Test Time: |                                                                                                   |          |         |
|--------------------------------------------------|--------|----------|--------------------------|---------------------------------------------------------------------------------------------------|----------|---------|
| Play O 1: AVM                                    | O Time | O Events | O None                   | Show traces                                                                                       | Zoom Out | 1:13 [m |
| 480-<br>450-<br>390-<br>360-<br>330-<br>300-<br> |        |          |                          | Events<br>■ 01:04:05.8 IP Lockplate<br>■ 01:04:05.8 Step Chag(1i)<br>■ 01:04:02.1 Fractional(0.5i | )        |         |
| 270-<br>240-                                     |        |          |                          |                                                                                                   |          |         |
| 210-<br>180-                                     |        |          |                          | <u> </u>                                                                                          |          |         |
| 150-<br>120-                                     |        |          |                          | HINK                                                                                              |          | _       |
| 90-<br>60-<br>30-                                |        |          |                          |                                                                                                   |          | >       |
| 0-<br>01:03:28.9<br>View                         | 01:04: | :05.6    | 01:04:42.4               |                                                                                                   |          |         |

## **Rolls-Royce 3-shaft engine**



## **Engine Health Monitoring - Overview**



## **Engine Health Monitoring - process**



### **Delta TGT values with model correction**



### Delta LP shaft speed – original data



### Delta LP shaft speed – corrected by model



### Repeated evidence (DN2) from same flight



### Delta IP shaft speed - original data



## **EHM - Vibration**

- A <u>key</u> parameter!
  - Out of balance
  - Bearing failures
  - Physical damage to rotating components
  - → Fluids (e.g. oil) in drums
  - Seal rubs

## ZMod



## **Novelty Detection – the motivation**

### The problem stated

## With high-integrity systems such as jet engines, conventional fault detection methods have limited capability

- the most important examples (i.e. the abnormalities) are very rare
- some of the fault conditions may not have been seen before

### Solution

## Learn a description of normality and test for *novelty* against this

"... leading-edge methods of computational intelligence will be developed ... to perform comprehensive whole engine data analysis and interpretation, with high confidence levels"

Phil Ruffles, Director of Engineering and Technology, Rolls-Royce



gine type: rial Number:

Filename:

STATUS:

Test Date: Test Time:

# QUINCE

Version 1.1



Copyright 1996–9 Oxford University Engineering Department



gine type:Pegasus [408] ial Number:12334/

Filename: vam200/Demo/ex01.dgu STATUS: Below Limits Test Date: 05/12/91 Test Time: 15:16:10

#### Vibration Diagnosis

#### **Engine Acceptable**

Copyright 1996–9 Oxford University Engineering Department



gine type:PEGASUS [406/105] ial Number:11064/ Filename: vam200/Demo/ex04.dgu STATUS: Above Limits Test Date: 01/07/9 Test Time: 08:01:13

#### Vibration Diagnosis



#### Copyright 1996–9 Oxford University Engineering Department

engine has not satisfied the contractual requirements. Recommended action: rebalance the HP turbine.

| ЦС | LAUILLIC |
|----|----------|
|    |          |

gine type:PEGASUS [406/105] rial Number:11064/ Filename: vam200/Demo/ex04.dgu STATUS: Above Limits Test Date: 01/07/93 Test Time: 08:01:13

#### Feature Analysis Summary

|            | DH Vertical  |              |              |              |
|------------|--------------|--------------|--------------|--------------|
|            | Acceleration | Deceleration | Acceleration | Deceleration |
|            | 1250 Hz      | 1250 Hz      | 1250 Hz      | 1250 Hz      |
| Shape      | Weak         | Weak         | Weak         | Strong       |
| Broadband  | Weak         | Strong       | Not done     | Not done     |
| Dropout    | Strong       | Weak         | Strong       | Strong       |
| Sideband   | Strong       | Strong       | Strong       | Strong       |
| Multiple   | Absent       | Absent       | Absent       | Absent       |
| Fractional | Strong       | Strong       | Strong       | Strong       |
| Sum/Diff   | NYA          | NYA          | NYA          | NYA          |
| Fixed Freq | Absent       | Absent       | Absent       | Absent       |
| Noise      | Absent       | Absent       | Absent       | Absent       |


ape analysis : shape is novel. Novelty level: Weak



opout analysis :1 feature found. Class: Strong



eband analysis :1 feature found. Class: Strong



eband analysis :1 feature found. Class: Strong



gine type:PEGASUS [406/105] tial Number:11064/

#### Filename: vam200/Demo/ex04.dgu STATUS: Above Limits

Test Date: 01/07/93 Test Time: 08:01:13

#### Symptoms Table

|                     | HP table | LP table |
|---------------------|----------|----------|
| First EO            | Weak     | Absent   |
| Second EO           | Absent   | Absent   |
| Multiples EO        | Absent   | Absent   |
| Half EO             | Strong   | Not done |
| Fractional EO       | Not done | Not done |
| Divergent sidebands | Strong   | Not done |
| Parallel sidebands  | Not done | Not done |
| Sub EO              | Not done | Not done |
| Fixed frequency     | Absent   | Not done |
| Sum or difference   | Not done | Not done |
| Constant EO         | Absent   | Absent   |
| Beating EO          | Not done | Not done |
| High spectral       | Absent   | Not done |
| Resonant amp step   | Weak     | Not done |
| EO step             | Absent   | Not done |
| Discrete tone       | Not done | Not done |
| Template match      |          |          |

# **Commercial NN Success Stories (US)**

- SmartPackets using ANN in WiFi packet sizing
- SurfControl Web Filter
- Mars Express (Mission to Mars)
- HNC lending decision system
- Fair Isaac
- Symantec Norton Antivirus
- Babel Speech Recognition Solution
- Checkmate Intrusion Protection, Psynapse Technologies
- ... many others
- Estimated that over 80% of Fortune 500 companies have neural net R&D programs

## What would we really like?

| W Microsoft Word - Document16    |                                             |    |
|----------------------------------|---------------------------------------------|----|
| 📲 🚰 Eile Edit View Insert Format | Tools Table Window Help                     |    |
| D 😅 🖬   🖨 🖪 🖤   % 🖻              | Undo Stupid Changes                         | 12 |
| Normal 🔹 Times New Roman         | Take Back <u>Fl</u> ippant Comment <b>Z</b> |    |
| <b>E</b> A                       | ; <u>C</u> reate Brilliant Idea ·           |    |
| Ī                                | E <u>x</u> tend Deadline                    |    |
| tor −x <sup>®</sup>              | Read <u>B</u> osses' Minds                  |    |
|                                  | Adjust <u>S</u> ubordinate's Attitude       |    |
|                                  | Terminate Smart-Ass IT Technician           |    |
|                                  | Increase Salary                             |    |
|                                  | Find Better Client                          |    |
|                                  | Reclaim Wasted Evenings                     |    |
|                                  | Extend <u>W</u> eekend                      |    |
|                                  | Find <u>P</u> erfect Mate                   |    |
|                                  |                                             |    |
|                                  |                                             |    |

### What have we nearly got now?



#### **Avoidable frustration?**



# **Profits for all?**

- Sports betting software (dogs, horses, football ...)
- Countless examples, many purporting to use neural networks
- Often use NN as a marketing tool
- Some have scientific credibility e.g. McCabe's Artificially Intelligent Tipster (MAIT) Reviewed in NewScientist.com, Dec 2002 <u>http://www.newscientist.com/news/</u> news.jsp?id=ns99993172





# The Ultimate Hype?



Lotto Sorcerer is a premier lottery number analysis and lottery prediction software. It uses advanced statistical analysis and fifth-generation artificial intelligence (neural network) algorithms to detect winning patterns and weighted influences in prior lottery draws, and then advises you, based on the best winning strategy. If there is a pattern to previous winning numbers based on hot and cold numbers, Lotto Sorcerer will find that pattern, and recommend numbers to play accordingly.

http://www.satoripublishing.com/LS/ENG/

# Summary

- The neural network bandwagon has been a bumpy ride
- The pioneering Wild Frontier of the 80's and early 90's has given way to a more structured and principled approach
- Companies now recognise and accept the limitations, but they still expect to realise tangible benefits and they are actively pursuing them
- There is one last person to credit ... the man who has been most responsible for raising public awareness of neural networks ...

## "I'll be back"



No, it's not Chris Bishop!



#### "I'll be backpropagating my errors"