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ABSTRACT 
Clustering only the records in a database (or data matrix) gives 
a global view of the data. For detailed or a local view, 
biclustering is required i.e. clustering the records and the 
attributes simultaneously. In this paper, a new graph theoretic, 
crossing minimization based biclustering technique is proposed.   
The performance of the proposed technique is compared with a 
recently reported classical biclustering technique of Cheng & 
Church [4] demonstrating notably better results. A white noise 
model is also used to demonstrate the robustness of the 
proposed technique. 

 
INTRODUCTION & BACKGROUND 
Different applications, sensors etc. are constantly recording 
data in a diverse set of application domains such as agro 
informatics, bio informatics, e-commerce etc. A call made by a 
phone, an email sent/received, money drawn from an ATM 
machine, web browsing, payment made by a credit card, using 
electrical appliances etc. all result in data recording or 
transaction logging. The data is usually logged in a database (or 
a data matrix) and has been historically analyzed in “two” 
dimensions [13] (i) record dimension i.e. rows and (ii) the 
attribute dimension i.e. columns. The objective is discovery of 
interesting patterns; this is achieved by either comparing rows 
in the data matrix or columns in the data matrix. Common 
objectives pursued when analyzing the data matrix include: 
 
1. Grouping of records according to multiple attributes 

(unsupervised learning). 
2. Classification of a new record based on its attributes and 

the attributes of other records, with known classification 
(supervised learning). 

3. Grouping of attributes based on the attributes of a number 
of records. 

4. Classification of a new group, given the attributes of 
records in that group.  

 
Traditional (one-way) clustering techniques can be used to 
group either records or attributes; therefore, objectives 1 and 3 
can be pursued directly, while objectives 2 and 4 can be 
pursued indirectly. 
 
Application of traditional clustering algorithms for detailed data 
analysis and pattern discovery has significant problems. 
Consider the case of hundreds and thousands of items being 
sold at a super market. Typically the items procured by men 
will have a high level of mutual exclusivity as compared to 
items procured by women. Discovering such similar local 
grouping of attributes (or items) may be the key to uncovering 
many interesting and useful patterns that are not apparent 

otherwise. It is therefore highly desirable to move beyond the 
one-way clustering paradigm, and to develop algorithmic 
approaches capable of discovering local patterns in data 
matrices i.e. biclustering. 
 
One-way clustering methods can be applied to either the rows 
or the columns of the data matrix, separately. Biclustering 
methods, on the other hand, perform simultaneous clustering of 
rows and columns. This means that clustering methods give a 
global view while biclustering algorithms give a local view. 
When clustering algorithms are used, each record in a given 
cluster is evaluated using all the attributes. This may actually 
distort the cluster, as all attributes may not be contributing 
towards that cluster. Similarly, each attribute in an attribute 
cluster is characterized by the activity of all the records, which 
may not always be true. However, each record in a bicluster is 
selected using only a subset of the attributes and each attribute 
in a bicluster is selected using only a subset of the records [4].  
 
The goal of biclustering techniques is thus to identify 
subgroups of records and the subgroups of attributes, by 
performing simultaneous clustering of both rows and columns 
of the data matrix, instead of clustering rows and columns 
separately, and more or less independently. Therefore, 
biclustering approaches are the key technique to be used when 
one or more of the following situations apply: 
 
1. Only a small set of the records are active in a pattern of 

interest.  
2. An interesting group is active only in a subset of the 

attributes. 
 
For these reasons, biclustering algorithms should identify 
groups of records and attributes, as per the following 
restrictions [13]: 
 
• A cluster of records should be defined with respect to only 

a subset of the attributes. 
• A cluster of attributes should be defined with respect to 

only a subset of the records. 
• The clusters should not be exclusive and/or exhaustive: a 

record or attribute should be able to belong to more than 
one cluster or to no cluster at all and be grouped using a 
subset of attributes or records, respectively. 

 
In this paper we will deviate from the third restriction, as only 
mutually exclusive clusters will be considered. Additionally, 
robustness in biclustering algorithms is especially relevant 
because of high level of noise in the data, which makes the use 
and requirement of intelligent tools crucial. 
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2.0 PREVIOUS WORK  
Biclustering was introduced in the seventies by Hartigan [9]. 
Crossing minimization paradigm was first used for clustering 
by Abdullah and Brobst [2], but only for one-way clustering. 
Although the complexity of the biclustering problem depends 
on the exact problem formulation, and specifically, on the 
quantification measures for bicluster evaluation, almost all 
interesting variants of this problem are NP-complete. 
Therefore, instead of coming up with exact algorithms, the 
pragmatic approach would be to come up with heuristics or 
approximation algorithms. In this regard, the researchers have 
used different approaches to solve this problem, which can be 
divided into five classes as follows (in view of space constraint 
details are not given here, interested reader is referred to [13]):  
 
1. Divide and Conquer 
2. Greedy Iterative Search 
3. Exhaustive Bicluster Enumeration 
4. Distribution Parameter Identification 
5. Iterative Row and Column Clustering Combination 

3.0 DEFINITIONS, AND MODEL FORMULATION  
 
The input data for a clustering problem is typically given in one 
of the two forms as described by [8]: 
 

• Data matrix (or object-by-variable structure) S is an n 
× p matrix, where corresponding to each of the n 
objects there are p variables, also called measurements 
or attributes. Usually n >> p. 

 
• Similarity (or dissimilarity) matrix (or object-by-object 

structure) is an n × n symmetric matrix, which 
contains the pair-wise similarity (or dissimilarity) that 
is usually computed from p for all pairs of n objects.  

 
Because of the nature of the problem, in this paper, only data 
matrix will be considered.  

 
Let S correspond to the matrix representation of a weighted 
bipartite graph, such that each row of the data matrix 
corresponds to a vertex of the bipartite graph in one partition, 
and each attribute of the data matrix corresponds to a vertex of 
the bipartite graph in the other partition. Note that S is unlikely 
to be symmetric. To get a simple graph from a weighted graph, 
edge weights are discretized. This consequently converts S into 
a binary data matrix denoted by SB. Note that the 
transformation of S to SB is like a double edged sword, as this 
may result in removal of weak and un-interesting relationships, 
even noise. However, this can also result in loss of actual data 
too, as it is very difficult to differentiate between noise and 
data.  
 
Let the bipartite graph (bi-graph) corresponding to SB be 
denoted by GB, most likely GB will not consist of pure clusters 
and zero noise. However, to facilitate defining the model, it is 
first assumed that the data matrix consists of pure disjoint 
clusters and zero noise, with perfect grouping of rows and 

columns corresponding to the clusters. Such a data matrix is 
denoted by S*B and the corresponding bi-graph denoted by 
G*B(V0, V1, E). G*B will be a union of bipartite graph cliques 
i.e. Ki, j and V0, V1 is the bipartition of vertices of G*B such that 
V0 ∩ V1 = ∅. E is the edge set such that e = |E|. As two-way 
clustering (or biclustering) is being considered in this paper i.e. 
clustering the rows and columns of S, therefore, i ≥ j for Ki, j 
and n = |V1| + |V0|. Density of GB is denoted by δ i.e. δ(GB) = 
e/(|V1| × |V0|).  
 
Let a bi-graph drawing (or layout) of G*B be obtained by 
placing the vertices of V0 and V1 on distinct locations on two 
horizontal lines y = 1 i.e. TOP (top partition) and y = 0 i.e. BOT 
(bottom partition) in the XY-plane, respectively. The vertices of 
every clique are located on consecutive x-coordinates for TOP 
and BOT partitions i.e. in the same neighborhood. Now draw 
each edge with one straight-line segment which connects the 
points on y = 0 and y = 1 where the end vertices of the edges 
were placed. This will result in a bi-graph drawing, in which 
only those edges intersect, that belong to the same clique. Let 
ϕ* be the bi-graph drawing corresponding to G*B and the order 
of vertices in the bipartitions V0 and V1 is denoted by π*0 and 
π*1, respectively. Note that for Ki, j (as a convention) it will be 
assumed that the vertices in bi-partition i will be placed in TOP 
and the vertices in j will be placed in BOT. For more on graph 
drawing reader is referred to [3].  
 
Let the order of vertices in the bipartitions V0 and V1 of GB be 
denoted by π0 and π1, respectively. Let Φ(G) denote the set of 
all possible bi-graph drawings of the bi-graph GB. Thus the 
optimum biclustering problem is defined as: given a bi-graph 
GB (V0, V1, E) find ϕ* among Φ (G) with relative permutation 
of vertices π*0 and π*1.  
 
Relative permutation of vertices means vertices of a cluster 
remain in their cluster neighborhood, and do not cross cluster 
boundaries. For example, if vertices labeled {2, 5, 9, 1} and {3, 
7, 6, 4, 8} correspond to two clusters C1 and C2, then the 
relative ordering of vertices within the cluster is unimportant. 
However, cluster quality deteriorates when noise causes (say) 
vertex 5 to move from C1 to C2.  
 
Figure-1(a) shows a G*B that consists of K4,8 ∪ K4,4 ∪ K8,2 with 
n = 16 + 14 and e = 64. Figure-2(a) shows the corresponding 
SB. 

 
Figure-1(a): G*B = K4,8 ∪ K4,4 ∪ K8,2 with 232 crossings 

 
Real data sets will always have noise and disorder. Therefore, 
as a first step towards modeling non-ideal data sets, the vertices 
in each bipartition of G*B are now randomly permuted. Figure-
1(b) shows the G*B of Fig-1(a) with vertices randomly 
permuted. Figure-2(b) shows the corresponding SB. 
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Figure-1(b): GB obtained after randomly permuting G*B 

resulting in 894 crossings  
 

Now the second step towards non-ideal data sets i.e. 
“contamination” of GB by randomly adding edges (white noise) 
between v ∈ V0 (i.e. TOP) and u ∈ V1 (i.e. BOT) with 
probability αE < ½ . Similarly, edges are also randomly 
removed (white noise) from each of Ki, j with probability αI < ½ 
resulting in GB such that αE = αI. The effect of these operations 
on SB would be replacement of 1’s by 0’s for αE and 
replacement of 0’s by 1’s for αI (the original 0’s not the 
converted 0’s).  
 
The effect of white noise is demonstrated in Figure-2(c) that 
shows the input S*B of Figure-2(a) with αE = 0 and αI = 0.25, 
note that the corresponding effect on GB will be removal of 
edges. Figure-2(d) shows S*B of Figure-2(a) with αE = 0.25 
and αI = 0, note that the corresponding effect on GB will be 
addition of edges across cliques. The collective effect of αE =  
αI = 0.25 is shown in Figure-2(e) which is S*B with noise. 
Permuting the vertices of the bi-graph corresponding to Fig-
2(e) generates an isomorphic graph drawing, and the 
corresponding data matrix is shown in Figure-2(f). Note that 
Figure-2(f) without color or grey coding (showing cluster 
classification) would correspond to real data. The objective of 
this paper is to demonstrate the working of a technique, that 
takes as input SB similar to Fig-2(f), and using a CMH reorders 
the rows to generate an output similar to Fig-2(e) i.e. S*B. 
 

 
 
Let G+

B denote the isomorphic graph as a result of using 
Crossing Minimization Heuristic (CMH) on GB and the 
corresponding bi-graph drawing be ϕ+. S+

B is a visualization of 
the clustering solution generated after running CMH on G+

B. 
Note that for n and e in hundreds ϕ (similar to Figure-1(b)) is 
visually meaningless and only S+

B makes sense. However, 

when n and e are in thousands, screen resolutions prohibit 
displaying S+

B (similar to Figure-2(b)) completely, and then 
only results extracted using statistical means are meaningful 
(please see section 3).  
 
For the sake of understanding, the proposed solution in rather 
oversimplified form is given as a five step procedure as 
follows: 

1. Discretize S to obtain SB. 
2. Run a CMH on GB corresponding to SB to get G+

B 
3. Extract clusters from G+

B. 
4. Analyze clusters.  

 
Example-1 
In this example the working of the proposed solution is 
demonstrated using a variant of MaxSort CMH [2] i.e. MinSort 
(MS). Details of the heuristic are given in section 2.4. Figure 
3(a) shows a simple input data matrix S i.e. a table consisting 
of 16 rows (R1 to R16) and ten columns or variables (V1 to 
V10). Note that the last row in Fig-3(a) shows the average 
value of each column. 
 

 
Fig-3(a): Input i.e. S 

 

 
Fig-3(b): SB based on average value 

Figure-3(b) shows SB obtained after using a discretization 
threshold of average value of each column (or row) of Fig-3(a) 
i.e. replacing values > average by 1 and others by 0. The 
corresponding bipartite graph drawing is shown in Figure-3(c). 
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Fig-3(c): Bipartite graph drawing corresponding to Fig-3(b) 
 

 
Fig-3(d): Bipartite graph drawing obtained after running 

MS on Fig-3(c) 
 

Figure-3(d) shows an isomorphic graph drawing of GB obtained 
after running MS (MinSort) Heuristic on Figure-3(c). Figure-
3(d) also shows two clusters extracted i.e. C1, and C2 shown by 
dotted lines. Figure-3(e) is the S+

B corresponding to Fig-3(d), 
while Fig-3(e) is the final solution with clusters identified by 
bold boxes. Observe that clustering in Fig-3(e) corresponds to 
perfect row matches for the table shown in Fig-3(a). 
 

 
Fig-3(e): Discretized output 

 

 
Fig-3(f): Final output 

4.0 DATA DISCRETIZATION 
Discretization is critical to the proposed solution, as it reduces 
the complexity of the problem. Discretization is achieved by 
partitioning continuous variables or attributes into discrete 

values or categories. Recognize that weighted graph 
corresponding to S will always be a clique with quadratic 
number of edges. Working with S will force considering each 
and every edge of the un-discretized graph, hence a highly 
undesirable Ω(n2) time complexity. Thus the viable way out is 
discretization of S leading to SB. Note that even algorithms 
with quadratic time complexities are unacceptable for most 
KDDM (Knowledge Discovery by Data Mining) applications 
according to Fayyad and Uthurusamy [6].  
 
As this work deals with unsupervised clustering, therefore, 
supervised discretization methods such as Fuzzy discretization, 
Entropy Minimization discretization etc will not be considered. 
Instead unsupervised discretization methods will be covered i.e. 
making use of information about the distribution of values of 
attributes without class information. For a detailed comparison 
of different discretization methods please see Yang and Webb 
[15]. The discretization methods applicable to the problem are 
discussed in the subsequent sub-sections. 
 
4.1 Equal Width Discretization (EWD) 
EWD divides the number line between vmin and vmax into k 
intervals of equal width. Thus the intervals have width w = (vmax 
-  vmin)/k and the cut points are at vmin + w; vmin + 2w… vmin + (k 
- 1)w. k is a user predefined parameter and is set as 2 in this 
work. Here vmin and vmax are minimum and maximum values, 
respectively.  
 
4.2 Equal Frequency Discretization (EFD) 
EFD divides the sorted values into k intervals so that each 
interval contains approximately the same number of instances. 
Thus each interval contains n=k (possibly duplicated) adjacent 
values. k is a user predefined parameter and is set as 2 in this 
work.  
 
Note that for small values of k more information about the 
original data is ignored. On the other hand, large values of k 
will result in too few points per interval to get a reasonable 
estimate of the frequency of each interval. Both EWD and EFD 
are deemed simplistic, and potentially suffer from critical 
information loss due to the formation of inappropriate interval 
boundaries, since k is determined without reference to the 
properties of the given data. Furthermore both techniques are 
vulnerable to outliers that may drastically skew the range.  

5.0 CROSSING MINIMIZATION HEURISTICS 
 
Crossing minimization problem has been studied for over two 
decades, and its two variants i.e. one-layer and two layers are 
known to be NP-Complete problems, please see Garey and 
Johnson [7]. There are basically three types of crossing 
minimization heuristics, (i) the classical ones that do not count 
the crossings, hence are very fast and yet give good results such 
as BaryCenter Heuristic BC by Sugiyama et al [14] and Median 
Heuristic (MH) by Eades and Wormald [5]. Then there are (ii) 
crossing counting heuristics that use a diverse set of 
approaches, such as greedy, tabu-search, simulated annealing, 
genetic algorithms, etc. and work by counting the number of 
crossings, hence carry the counting overhead. Lastly (iii) meta-
heuristics i.e. use the classical heuristics to generate the initial 
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arrangement of vertices, and then improve upon it using other 
heuristics. For a detailed study see Marti and Laguna [12].  
 
5.1 MaxSort Heuristic  
It reorders the vertices on the changeable layer according to the 
MaxSort weight [1] or representative value defined as follows: 

 
otherwise0

0  |adj(v)| if 
))((

)(






≠=
wPMax

vMaxSort  

Here v is a vertex on the changeable layer, adj(v) is the set of 
neighbors of v on the fixed layer, and P(w) is the position of w 
on the fixed layer. In this work, instead of using MaxSort i.e. 
sorting on maximum value, its variant MinSort (MS) will be 
used i.e. sorting on minimum value, as it provides better results 
as compared to MaxSort. In MS* a variant of MS, vertices with 
same MinSort weight are sorted in ascending order based on 
|adj(v)|. Note that for BC and MH, vertices on the changeable 
layer are reordered based on their barycenter (average) and 
median values, respectively. 
 
Example-2 
In this example working of the MS heuristic is demonstrated 
for a simple bi-graph. 
 

 
Figure-4(a): Input  Figure-4(b): Intermediate result   Figure-4(c): Output 
 
Figure-4(a) shows a bi-graph with 5 crossings. First the vertices 
in the fixed layer (indicated by the arrow) are assigned ordering 
i.e. 1, 2, and 3. Subsequently the orderings for the changeable 
layer are generated based on the minimum value resulting in 
reordering of vertices to 2, 3 and 1 as shown in Figure-4(b) 
BOT bipartition. This process is repeated till equilibrium is 
reached i.e. no further change in orderings. The final non-
optimal output is shown in Figure4(c); with two crossings. 
 
For a GB numbering the vertices in the TOP and subsequently 
sorting vertices in the BOT, and then repeating this process for 
the BOT has the effect of two forces that are alternated until an 
equilibrium state is reached. An equilibrium state corresponds 
to the final output that does not change with further application 
of that CMH. 
 
5.2 How biclustering occurs 
As a consequence of crossing minimization the edge lengths are 
decreased, and vertices come closer. If arbitrary vertices come 
close, then edge length will not decrease. Meaning, vertices 
with high interconnectivity come together in a neighborhood, 
thus enhancing clustering. The effect of noise is “moving” the 
vertices in the “wrong” neighborhood. Therefore, need to have 
robust estimators of position. Although Median is a robust 
estimator, and works well too, but the corresponding MH is 
slow. Thus the performance deteriorates for large problems. 

6.0 BICLUSTER QUANTIFICATION  
To quantify the biclustering solution for a bicluster Ci with ri 
rows and ai attributes the following notation is proposed: 
 
Let the total number of 1’s present in a cluster be Ti1 
Let the maximum number of 1’s in a cluster be Mi1 ( = ri x ai) 
Let the maximum possible number of 1’s be Pi1 ( = α Mi1) 
The accuracy of the bicluster extracted will be Ai = Ti1/Pi1 
represented as a percentage. 
 
Hence the accuracy of the solution will be the weighted sum of 
Ai for all i divided by sum of Ti1 for all i. Note that the 
percentage can be greater than 100% too, since Pi1 is a probable 
measure, as the actual values are generated randomly. 
 
In the following analysis, only those bicluster extractions are 
considered for which the bicluster extracted only consist of 
elements from a single bicluster. Based on the above bicluster 
quantification criterion, the following table is generated for 
simulated data consisting of K32,32 ∪ K64,32 ∪ K64, 128 

 

 Table-1: Quantification of biclustering under noise 

7.0 COMPLEXITY ANALYSIS OF CRA_CMH 
Cheng and Church [4] were the first to apply biclustering to 
gene expression data. Given a data matrix S a maximum 
acceptable mean squared residue score δ >0 was used, the goal 
was to find δ-biclusters i.e. subsets of rows and subsets of 
columns with a score no larger than δ. 
 
This goal was achieved by using several greedy row/column 
removal/addition algorithms that were then combined into an 
overall approach that made it possible to find a given number of 
δ-biclusters. The obvious disadvantage of their technique being 
large number of iterations, which in turn translates to a slow 
solution.  Figure-5(b) shows the randomly permuted input with 
α = 10% while Fig-5(b) shows the output using the Cheng and 
Church (C&C) technique.  Interestingly, for α = 0% Cheng and 
Church technique required several iterations before termination, 
while our technique terminated in just a single iteration! 
 
Figure-5(c) shows perfect biclustering using MH. The time 
taken was orders of magnitude less than the Cheng and Church 
technique. Note that biclustering is represented by grouping of 
1’s. 
 

 
Fig-5(a): Randomly permuted input data matrix 
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Fig-5(b): Bi-clustered output using C&C with 300 iterations 

 

 
Fig-5(c): Bi-clustered output using crossing minimization 

 
 
8.0 APPLICATIONS 
Cheng and Church [4] applied biclustering to two gene 
expression data matrices, specifically to the Yeast 
Saccharomyces Cerevisiae cell cycle expression data with 
2,884 genes and 17 conditions and the human B-cells 
expression data with 4,026 genes and 96 conditions. 
 
Dhillon [10] used biclustering to perform simultaneous 
clustering of documents and words by considering a word-by-
document matrix with the rows corresponding to words, the 
columns to documents, and a non-zero element indicating the 
presence of word in the document.  
 
Movie recommendation data matrices have been biclustered to 
recommend movies to interested viewers [11]. 
 
9. CONCLUSIONS 
Biclustering is a hard, yet interesting problem with diverse 
applications. There are a number of ways of performing 
biclustering, but this work is a first attempt at using the 
crossing minimization paradigm. Our proposed technique 
works well as compared to the traditional biclustering 
technique recently developed by Cheng & Church, requiring 
relatively fewer and faster iterations. In addition, we have also 
utilized a white noise based model to demonstrate the 
robustness of the proposed clustering technique.  
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