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Modelling STDP: sequence learning and recall
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Long term synaptic plasticity underlies many
important learning processes in the brain. Re-
cent physiological data have shown that the pre-
cise relative timings of pre- and post-synaptic
neuron firings at a synapse determine both the
direction of modification (potentiation or depres-
sion), and magnitude of this modification. We
model this form of plasticity using a model based
on calcium dynamics and show that, in addition
to reproducing experimental data for both paired
and triplet spike paradigms, the model allows a
reciprocally connected network of hippocampal
pyramidal neurons to store and recall short tem-
poral sequences.

Introduction

Long term synaptic modification has been repeatedly
shown to be a major basis of memory storage in the
brain. The exact details of how this modification de-
pends on the firing patterns of neurons are critical to
our understanding of memory processes.

Hebb’s postulate is that when one neuron(A) con-
tributes to the firing of another neuron(B), the synaptic
strength between A and B should be increased. This
form of plasticity allows networks to act as autoasso-
ciators, storing patterns and recalling those patterns
from fragments of the original - a form of data based
memory. Previous physiological studies have shown that
so called ”"Hebbian learning” occurs in some biological
neural networks, providing a possible candidate mech-
anism for episodic (memory of specific events in time
and space) memory function. However, most existing
studies focus on a time-symmetrical Hebbian modifica-
tion (so that synaptic strength from A to B increases
whenever A and B fire in close temporal proximity, but
without dependence on the order of firing).

Spike time dependent plasticity

Data from hippocampal neurons examining the effect of
spike timing on changes in synaptic efficacy have shown
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Figure 1: Change in synaptic strength relative to inter-
spike interval (taken from [2])

that the precise timing of pre- and post-synaptic spikes
is critical to the direction and magnitude of the change
in synaptic strength produced by spike association[2].

This spike-time dependent plasticity (STDP) leads to
an increase in synaptic strength if the pre-synaptic spike
at a synapse preceeds the post-synaptic neuron’s firing,
and a decrease in synaptic strength if the reverse is true.
The time window over which the change from negative
to positive strength change occurs is very small (approx
5ms - see figure 1).

This ”causal Hebbian” modification adds an impor-
tant temporal aspect to synaptic plasticity. Not only
does it balance LTP (Long Term Potentiation) and LTD
(Long Term Depression), to prevent overall network ac-
tivity from becoming too high or low, but a reciprocally
connected network of neurons with this form of plastic-
ity should be capable of storing temporal information
about a series of inputs provided to it.

Considerable research has been performed investigat-
ing the exact mechanisms of LTP and LTD and while
these mechanisms involve complex protein signalling
chains, it should be possible to produce a model based
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loosely on these physiological mechanics, which accurat-
ley reproduces the STDP effect, allowing in depth ex-
amination of the overall effects on biological networks of
this form of plasticity.

The hippocampus and temporal

quences

se-

The hippocampus is a widely studied brain region,
thought to be responsible for storage of new episodic
memories[3], without which humans cannot function in
society. For many memories, temporal information is
important and so we might expect the hippocampus to
posess a mechanism of storing and recalling this tempo-
ral information.

Recent research based on rats’ running
experiments[15] has shown that when rats explore
a maze for food reward, during the periods of slow wave
and REM sleep following this exploration, segments of
place cell activity are replayed temporally. These place
cells form while the rats explore as representations of
certain locations in space. That the sequence of neuron
firings is preserved, at least in part, in memory, shows
that the hippocampus is capable of storage and recall of
temporal sequences, confirming other existing data[5].

Modelling STDP

We wish to determine:

e If it is possible to develop a simple model of synaptic
plasticity, based on neurophysiological calcium dy-
namics, that resulted in STDP of the form shown
in [2] (figure 1, and also reproduced other experi-
mental data for which timing is critical[6]).

e Whether use of this model would allow a simple
reciprocally connected network to store and recall
temporal information about a sequence of inputs.

Neuron model

The neuron model used is a leaky integrate-and-fire spik-
ing neuron based loosely on that used in [14]. The neu-
ron incorporates glutamate activated excitatory NMDA
and AMPA mediated currents, GABA activated in-
hibitory GABA4 and GABAp currents and an inacti-
vating after-hyperpolarisation (AHP) current. We sepa-
rate excitatory currents into those that are NMDA and
AMPA mediated because this distinction seems to be
important - NMDA mediated calcium influx is essential
for both LTP and LTD to occur, but the mechanism
by which the potentiation becomes permanent involves
AMPA receptor trafficking[9]. Also the different dynam-
ics of NMDA and AMPA (AMPA response is fast, oc-
curring over approximately 2-5ms, NMDA response is
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much slower, occurring over approximately 120ms) are
important for the temporal response of the network.
The neuron equation used was:

CZ—;/; =Irpax + Ianp
+INMpA + Iampa + Icaa, + 1gaBas (1)
where I pak is a leak current, negative above the
neuron’s resting potential, T4 gp is an inactivating after-
hyperpolarisation current, and the synaptic currents
(NMDA, AMPA and GABA A and B) are modelled
with two channel kinetic variables representing fractions
of open channels, which give rise to positive (NMDA,
AMPA) or negative (FABA4, GABAER) currents.

We posit that STDP arises as the interaction between
two processes with similar mechanisms, one responsible
for potentiation and one for depression. Both of these
processes depend on calcium chains in the postsynaptic
density. When calcium levels are very low, neither pro-
cess produces significant effects. When calcium levels
increase, the depotentiation process dominates and net
LTD is seen. When calcium levels are higher still, the
potentiation process dominates and overall LTP occurs.
The time courses of the reactions involved give rise to
the time-dependent form shown in[2].

We therefore model two separate components, each
of which depends on pre- and post-synaptic firing and
results in the movement of AMPA receptors|[9].

Hence the learning equation developed incorporates a
postive component:

AWrrp = krrpCanupaCarrpCamrrr - (2)
and a negative component:
AWrrp = krrpCanmpaCarrp (3)
such that the resultant learning is given by:
AW = AWrrp + AWrrD (4)

(with kLrp negative). We explain these equations

more fully below.

NMDA dependence

It has been shown that NMDA activity is necessary for
both LTP and LTD, even if the LTP/LTD is achieved
by the movement of AMPA receptors[16, 12]. Therefore,
we incorporate a dependence, Cayprpa, on NMDA me-
diated calcium inflow in our model, as included in equa-
tions (2) and (3).

This variable models a calcium concentration arising
from the opening of magnesium gated NMDA channels.
We simulate the fraction of open channels using a two
kinetic variable system:
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(5)

d

= = dlasz(1—s) = s/r) (6)

Where the sum is over pre-synaptic spike times.
The varible s then represents the fraction of open
dCa A —
channels, and we have “4EMPA = fo, o .8 —
Canmpa/TCanppa where kcgyapa 1S & constant.

Positive terms

The Carrp concentration is dependent on post-synaptic
firing (and hence based on a process involving backprop-
agating spikes from the soma to the dendrites of the
post-synaptic cell):

dCarrp

(o
dt = aCGLTP Zé(t_tz)(og—CaLTp)2—M

TCarrp
(7)
The Cangrr term represents a store of Calcium-
CaM-dependent protein kinase II (CaMKII) which is es-
sential for NMDAR dependent LTP[8]. It is activated by
Ca?*, so we calculate is as:

—Caymkrr
d = + aCacafree
i TCamki1r

dCamkrr

(®)

where ac, and Tcqy, i, are constants and Cayyee is
the concentration of freely available post-synaptic cal-
cium. Capgyr is hypothesised to provide an anchoring
site for AMPA receptors, enhancing synaptic efficacy.

We presume that LTP occurs when the backpropaga-
tion (post-synaptic) activated calcium, NMDA mediated
activity and Cayrkr are co-activated and represent this
in the model by multiplying these components.

Negative terms

The negative term C'aypp also represents post-synaptic
calcium available for synaptic strength change (depen-
dent on backpropagating spike activity), again this cal-
cium density increases with post-synaptic firing, how-
ever the timescale over which it builds up and decays is
longer than for the LTP calcium:

C
Caleak = QCa;n Z 6(t - tz) - M (9)
P TCain
B Carrp
Carrp = kin (Caleak - Caleak,thresh) I (10)
TCarTp

As with the LTP, we require this calcium to be
present simulataneously with NMDA mediated calcium
for synaptic strength change to occur.
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Figure 2: Change in synaptic strength as a function of
time interval between pre- and post-synaptic firing (sim-
ulated)

Parameter choices

Where possible, parameters have been chosen to match
experimental results (for example time constants of
AMPA and NMDA mediated post-synaptic potentials).
Where no experimental data exist, we have chosen val-
ues that produce a learning curve to fit in with that
shown by Bi and Poo.

Result

Adding positive and negative terms using constants
krrp and kr7p chosen to balance the positive and nega-
tive components gives us the final version of the learning
algorithm.

Simulating the change in synaptic strength resulting
from varying the time interval between single pre- and
post-synaptic spikes produces a result (figure 2) very
close to that of [2] (see figure 1).

Storage and recall of temporal se-
quences

To determine whether this form of plasticity is useful
for storing temporal information about sequences, we
simulated a network of reciprocally connected pyramidal
cells, as might be found in the hippocampal CA3 region.

The test network

The test network consisted of 100 reciprocally connected
pyramidal-type cells with a single inhibitory interneu-
ron, reciprocally connected with the pyramidal cells,
with connection strengths chosen to limit overall net-
work activity.

The input sequence consisted of five blocks of five neu-
rons each, presented for 50ms with no interval between
presentations (see figure 3). After network activity had
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died away, we then replayed the first element of the se-
quence to determine whether the network could ”fill in”
the remaining elements.

Results

After an initial learning period consisting of three pre-
sentations of the input patterns, the network responded
to re-presentation of the first pattern by producing the
remaining patterns in sequence (figure 4). The recall
does not preserve precise temporal information, but the
sequence of firings is preserved.

Multiple spike paradigms

An important extension of the paired pre- and post-
synaptic spike paradigm is to multiple spikes. It is not
clear from [2] what change in synaptic efficacy will occur
if, for example, a pre-synaptic spike is followed by a post-
synaptic spike which is then followed by a post-synaptic
spike. Either net potentiation or net depression could
occur here, depending on how the spike pairings inter-
act. An experimental study of this[6] showed that in the
triplet case (single pre-synaptic and dual post-synaptic
spikes comprising the 1/2 case and dual pre-synaptic and
single post-synaptic comprising the 2/1 case), the first
interaction dominates, unless the time interval between
spikes in the first interaction is large (>70-100ms).

Comparing our simulations with the experimental
data shown in[6] and reproduced in figure 5, where the
relative timings between the single and double spikes (t1
being the time interval between the first of two spikes
and the single spike, t2 being that between the second of
two and the single spike) are varied and the net change
in synaptic strength plotted, shows that our model can
reproduce the experimental data in this case (see figures
6 and 7) as well as the model given in[6], but with a
more biologically realistic model.

Discussion and further work

Relation to previous work

A similar model of STDP is given in [13]. The resul-
tant learning form is somewhat different from that of
[2], however, having a significant late LTD phase when
post-synaptic firing occurs more that 25ms after a pre-
synaptic spike. Also, the LTP peak is wider than the
LTD trough, whereas in [2], the LTP peak is high and
short, and the LTD trough long and shallow. These dis-
tinctions may be important, since a network with spon-
taneous uncoordinated firing will develop a net increase
in synaptic strengths if the area under the LTP peak
is larger than that of the LTD troughs (assuming that
each pair of pre- and post-synaptic spikes produces an
independent strength change). Another model is given
in [11], however this model concentrates on modification
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Figure 5: Experimental data and model predictions for
the 1/2 and 2/1 triplet spike paradigms, from [6]
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Figure 6: 1/2 triplet spike paradigm changes in synaptic
strength (red positive, blue negative)
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Figure 3: Presentation of patterns to be learned
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Figure 7: 2/1 triplet spike paradigm changes in synaptic
strength (red positive, blue negative)

of presynaptic vesicle release probablity whereas recent
research seems to suggest that postsynaptic AMPA traf-
ficking is a more likely candidate mechanism for STDP.

There is also the recent work of[10] who use solely a
unified AMPA/NMDA activation analysis (without sep-
aration between LTP/LTD components as would seem
to be countered by the experimental data of [8] and oth-
ers), and is different from out approach where the more
fundamental Ca dependent components are emphasised.
The results of[10], like those of [13] do not entirely repli-
cate the relative sizes of the LTP and LTD peaks shown
in [2], which we believe to be important for overall ac-
tivity balance.

The review article of Abbott and Nelson[1] suggests
other useful properties (besides temporal information
storage) of networks utilising STDP such as increasing
input selectivity and stabilisation of overall network ac-
tivity, and it would be interesting to investigate whether
our model can demonstrate these effects. The review
also highlights other forms of STDP (which occur at
different types of synapses), including symmetrical and

anti-causal learning, which might prove enlightening to
model.

More complex multiple-spike paradigms

The paper of Froemke and Dan[6] exaimines the 2/2
(dual pre- and post-synaptic spikes) paradigm but does
not give explicit data. If such data were available, we
could investigate whether our model can reproduce the
correct results.

Use of temporal memory

The temporal aspect of the learning rule clearly allows
a reciprocally connected network to store temporal in-
formation without assistance. This could be an impo-
rant neural mechanism for sequence learning, both in the
hippocampus and other brain areas, such as neocortex
(to which it is possible that memories are transferred,
and might therefore require storage of temporal infor-
mation).

Possible addition of theta

Our simple network does not include a simulated theta
rhythm. This 5-10Hz oscillation is present in both rat
and human brains (in different forms[4]) during explo-
ration and has been proposed as a method of alternating
between encoding and retrieval in the hippocampus[7].
A simulated theta rhythm could increase the effective-
ness of the learning and allow for more complicated se-
quences.

Speed of replay

The replay of patterns is much faster than the original
rate of presentation, due to the fast dynamics of AMPA
activated synapses. It is possible that a controlling theta
rhythm could slow this recall down, which could be im-
portant for accurate recall.
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Conclusion

We have demonstrated that a model of low level cal-
cium dynamics can reproduce important experimental
results showing STDP in real neurons, both with paired
and triplet spikes. Use of the model in a simple net-
work shows that it provides the capacity for tempo-
ral sequence storage and recall, which is important for
episodic memory.

The model also allows further exploration of the pro-
tein dependent mechanisms underlying the phenomenon
of STDP and should allow simulation of the effects
on these mechanisms of neuromodulation and neuronal
damage, both important to our better understanding of
the function of the brain.
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