
A Platform for Parallel Operation of VLSI
Neural Networks

J. Fieres*, A. Gr̈ubl*, S. Philipp*, K. Meier, J. Schemmel, F. Schürmann
University of Heidelberg, Kirchhoff Institute for Physics,
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

E-mail: sphilipp@kip.uni-heidelberg.de
http://www.kip.uni-heidelberg.de/vision

phone: +49-6221-549897
*These authors contributed equally to this work.

Abstract— This paper presents a platform for the
parallel operation of VLSI neural networks allowing to
seamlessly map neural network topologies on distributed
resources. The scalable approach provides fast isochronous
communication channels transporting the neuron signals
between single network modules. The network modules
are printed circuit boards hosting a programmable logic
with an embedded microprocessor core, memory, and a
VLSI neural network ASIC. Currently, the modules are
equipped with a mixed-signal neural network ASIC. For
its McCulloch-Pitts type neurons a biologically inspired
higher-level model of perception is adopted and demon-
strated.

I. I NTRODUCTION

In recent years researchers in the field of artificial
neural networks (ANN) have intensified their efforts in
reconsidering the biological origin of neural networks.
As a consequence more biologically plausible neuron
models and learning strategies are investigated. Indepen-
dently, higher-level models of perception were adopted
with rather abstract network models [1] and recently
with physiologically inspired models [2].

Within the SenseMaker [3] consortium, a European
project, neuroscientists, psychologists, engineers and
physicists work in collaboration in order to gain in-
sight into the principles of information processing in
neural systems. The goal is to design and implement
an electronic system capable of merging sensory input
of different modalities to generate a perceptual repre-
sentation of the outside world. Through the course of
this three year project several stages of hardware neural
systems are developed. The mixed-mode neural network
ASIC (application specific integrated circuit) HAGEN
is used as the basis for the investigation of higher-
level concepts and has been published earlier [4]. In
this paper individual network modules are presented
which consist of programmable logic with an embedded
microprocessor core and a neural network ASIC. A ded-
icated backplane hosts 16 of these modules and allows
high-speed communication between them. Due to the

underlying network model and the provided signaling
protocol a closed formula for the network response can
be given. This allows not only to operate the mod-
ules in parallel but also to use the distributed neurons
together in a larger network topology. A backplane
fully equipped with network modules using the HAGEN
ASICs provides about 4k McCulloch-Pitts neurons and
512k synapses. Eventually, this platform is ready to host
a spiking neural network ASIC which will also allow to
examine biological low-level principles.

The paper is organized in three sections. First, the
parallel hardware system is presented. The following
section describes how the concept of a system of
distributed neurons can be used to form a consistent
network model. In the last section it is demonstrated how
a higher-level model of perception, the Neocognitron
idea of Fukushima [1], can be implemented on networks
of the HAGEN ANN type.

II. H ARDWARE IMPLEMENTATION

A. Design Considerations

The concept for a platform operating VLSI (very
large-scale integration) neural networks in parallel is
based on the research done with the ANN ASIC HAGEN
in single PC based systems. The need for larger scales
can be met either by building a larger ANN ASIC or by
using several of the existing ones in combination. The
latter has been chosen since the potentials gained by
a general parallel system extend the capabilities of the
current ANN chip as well as maintaining the flexibility
to be used with future ANNs or ASICs of a totally
different kind.

The central components of the parallel system are
highly integrated autonomous network modules [5], each
containing all necessary components to interface one
neural network chip: programmable logic, a local CPU,
memory, and the ANN ASIC. In order to use the
network modules in parallel, strategies are necessary to
coordinate the distributed resources:

BICS 2004 Aug29 - Sept 1 2004

NC4.3 1 of 7



2

ANN

ASIC

ANN

ASIC
progr.

logic

memory

ANN

ASIC

ANN

ASIC
progr.

logic

memory

input layer

high speed network

output layer

shared memory

Fig. 1. Example of a large neural network, implemented using two
ANN ASICs.

When operating on data streams, neural networks
constantly require inputs and generate outputs. Since the
used neural network chips accept digital inputs and pro-
duce digital outputs, the data can easily be transported by
digital communication technologies. Thus, the outputs
can be fed to another neural network chip, which for
example implements an inner layer of a larger network.
Maintaining this constant signal feed requires a carefully
designed connectivity, especially, if the system shall
remain scalable.

The necessary high connectivity between the indi-
vidual network modules is ensured by a high speed
transport network which interconnects the modules via
a backplane. This network delivers neuron outputs from
one chip to the input neurons of another chip. The global
neural network will then consist ofvirtual connec-
tions between the chips using the high speed transport
network (see Fig. 1). For a deterministic operation of
the neural network it is important to ensure that the
underlying transport network can deliver the data for
every connection with a guaranteed latency. In clocked
neural networks, the transport network has to deliver the
data in successive neural network cycles.

Furthermore, it may be useful for the entities control-
ling the neural network operation (i.e., the controlling
software and/or programmable logic) to exchange larger
amounts of data. To have a convenient way doing so, the
transport network is used to create a large virtual shared
memory structure [6]. This allows to access memory on
any module by its virtual memory address.

B. The HAGEN Chip

The ANN chip HAGEN contains 32768 analog
synapses, distributed across four equally sized blocks.
The synapses of each block are arranged in an array
structure, connecting 128 binary inputs with 64 binary
outputs, thus making up a fully connected single-layer
feed-forward Perceptron consisting of McCulloch-Pitts

Control
PC

FPGA

SRAM

DDR-SDRAM

HAGEN

Clocking

Slow Control

NATHAN1

Local Clock
Generation Power Supplies

FPGA SRAM

DDR-SDRAM

HAGEN
ASIC

TEMP

DAC12IREF

J
T
A

G

MGT

M
G

T

BACKPLANE

NATHAN16

Diff. conn.

Diff. conn.

S
M

T
c
o
n
n
.

PowerPC

Fig. 2. Overall schematic of the hardware platform.

neurons. The analog computations are fully confined
within the blocks. Inputs and outputs are interfaced
digitally, and the synaptic weights are converted by
digital to analog converters. Thus, all communication is
digital, ensuring data integrity while still exploiting the
advantage of fast and highly integratable analog comput-
ing units. The network operates at constant frequency,
where the outputs of all neurons are calculated once each
network cycle. To set up recurrent networks, some of the
outputs can be fed back to the input neurons of the same
or of a different block, using on-chip configurable feed-
back lines. In clocked networks, a feedback connection
introduces a time delay of multiples of a network cycle.
All hardware feedbacks within a HAGEN chip have a
delay of one cycle. However, the chosen network update
scheme does not imply restrictions on the number of
network cycles, making it principally possible to set up
virtual inter-chip connections as long as the delay sums
up to multiples of one cycle.

C. Network Modules

Fig. 2 illustrates the main components of the network
module NATHAN as well as the backplane with the con-
nection to the controlling PC needed for user interaction
[5]. The central FPGA consists of programmable logic
and can be configured to control all connected compo-
nents. Besides its configurable logic the selected FPGA
features embedded MGTs (multi-gigabit transceivers)
that are used for the high speed transport network.
Furthermore, an embedded IBM PowerPC 405 processor
core is available [7], directly interfaced to the pro-
grammable logic and capable of running Linux. This
provides a convenient way to port the already existing,
Linux-based software framework to run on the network
modules [8].

The purpose of the NATHAN module is to host an
ANN ASIC. Regarding the HAGEN ASIC and its analog
synapse operation, this makes analog support circuitry

BICS 2004 Aug29 - Sept 1 2004

NC4.3 2 of 7



3

FPGA Xilinx Virtex-II Pro XC2VP7: 11k logic
cells, 396 user IOs, 8 MGTs, 1 PowerPC
(400 MHz)

Memory 1 MB ZBT SRAM
up to 1 GB DDR-SDRAM

ANN interface 18 bidirectional LVDS links
46 unidirectional LVDS links
HAGEN socket, 2 100 pin SMT connec-
tors for future ANN extension cards

DAC one 4-channel 12-bit
Interface 100 MHz serial interface for configura-

tion and slow control
8 × Multi-Gigabit Transceivers for inter-
module communication

System clock 100MHz/156.25MHz SAW oscillators
Power Supplies Standard ATX connector

4 × 60A ISRs, 2x1.5V, 2x2.5V
NATHAN manu-
facturing process

8 Layer Build-Up MicroVia process, min.
feature size100 µm

NATHAN size 130mm× 78mm
Backplane manu-
facturing process

4 Layer Standard process, min. feature
size130 µm

Backplane size 429mm× 218mm

TABLE I

TECHNICAL DETAILS OF THE NETWORK MODULES AND THE

BACKPLANE

necessary, like a digital to analog converter (DAC) and
a current reference. Together with a temperature sensor
these are well confined within a shielded analog area
on the network module to minimize digital crosstalk.
As the communication interface of the ANN ASIC is
kept digital, it is directly connected to the FPGA. In
case of the HAGEN chip this is a source-synchronous
bus with 16 bidirectional data lines and 3 address lines,
all of which follow the LVDS (low voltage differential
signaling) standard. The transfer rate of the HAGEN
interface adds up to 11.4 Gbit/s. The speed of the FPGA
fabric allows to fully exploit the digital bandwidth
of the HAGEN chip. Finally, the FPGA has spare
differential interconnects available. Together with the
HAGEN interconnects these are routed to two extension
card connectors which allow for connection to future
ANN ASICs with two 16 bit wide differential interfaces
providing a bandwidth of up to 25.6 Gbit/s.

Over the ANN ASIC’s digital interface the synap-
tic weights and neural network input/output data is
transferred. To process this data and to store software
binaries, the PowerPC as well as the rest of the FPGA
logic has two memory interfaces available: a DDR-
SDRAM and an SRAM bus, each 64 bit wide. The
SDRAM architecture allows for large capacities at min-
imum size and was thus chosen to be the mass storage
medium and system memory. One memory socket is
integrated to carry a memory module, as commonly
used in notebooks, with an addressable capacity of up
to 1 Gbyte. The maximum data rate of this interface is

A

B

Fig. 4. The transport network forms a hardwired 2D-torus network on
the backplane. During operation a worst case routing distance between
two network modulesA andB of four hops may occur.

2.5 Gbyte/s and allows constant throughput of network
data at the full digital bandwidth of the HAGEN chip.

A second type of memory allows fast reordering of
data, as it is commonly necessary with custom hard-
ware. The architecture of the employed ZBT (zero bus
turnaround) SRAMs is well suited for subsequent read
and write accesses with no speed penalties. Two SRAM
chips with a total capacity of 1 MB are integrated on the
network module. Considering a synapse weight to have
8 bit resolution, the whole configuration even of a future
megasynapse ANN fits into this memory.

Photographs of the network module NATHAN are
given in Fig. 3.

D. Inter-Module Networking

The communication needs between the network mod-
ules in a distributed system are met by using the
MGTs (multi-gigabit transceivers) that are embedded
into the FPGA logic similar to the PowerPC core. The
employed FPGA comprises 8 MGTs with a bandwidth
of 3.125 Gb/s each. Four of these are routed over a
high speed differential connector to the backplane where
each network module has hardwired connections to
four neighboring modules. Based upon this, 16 net-
work modules on the backplane form a hardwired 2D-
torus topology (see Fig. 4). This topology is chosen to
minimize passthrough traffic between the modules. The
interconnects of the four remaining MGTs are routed to
an additional connector at the top edge of the network
module. They can be used to construct additional links
between the network modules on the same or even other
backplanes.

E. Design Challenges

To gain the maximum operating speed on the memory
interfaces the large amount of interconnects of these
buses have to be routed on the PCB (printed circuit

BICS 2004 Aug29 - Sept 1 2004

NC4.3 3 of 7



4

Daughter Card SMT Connectors

FPGA
SRAM

HAGEN-Socket

High Speed
differential connector

Connector for add. 4 MGTs

JTAG connector
DAC

TEMP
SRAM

DDR-SDRAM Socket Terminations

(a) (b)

Fig. 3. Photographs of the presented network module. a) Top view. b) Bottom view.

board) with an equal propagation delay to ensure syn-
chronicity at the respective inputs. The interconnects
of the DDR-SDRAM interface in particular have been
routed with a maximum relative propagation delay of
15 ps, resulting in a data valid window which allows for
the maximum data rate of 2.5 Gbyte/s.

Fast edge rates of the transferred digital signals on
both, the network modules and the backplane, require
carefully laid out interconnections. Almost all copper
traces on the PCBs are implemented as transmission
lines with a controlled trace impedance. Those struc-
tures particularly require copper planes as an electrical
reference potential beneath them to guarantee a con-
trolled impedance [9]. This, in conjunction with the
high routing density on the network module required the
use of an advanced manufacturing process (see Table
I). The signal integrity of critical interconnects was
ensured by system-level simulation. Measurements on
the most critical MGT path confirmed that we are able
to transfer data over 50 cm of standard PCB material and
two connectors at a speed of 3.125 Gigabit/s as expected
according to the simulations.

III. F UNCTIONAL DESCRIPTION

A. Programmable Hardware

The main reason for the high flexibility of the net-
work module is the programmability of the FPGA.
Because all external components and its internal cores
(PowerPC CPU and multi gigabit transceivers) are con-
nected to its programmable logic, the operation of the
network module can completely be controlled just by
configuring the FPGA, which can be reconfigured at any
time, if concepts or requirements change.

As mentioned above, the transport gigabit network
on the backplane connects all 16 modules in a 2D-torus
topology connecting four duplex links to the FPGAs on
each module. Because the gigabit transceivers are em-
bedded inside the programmable logic, a routing logic is

programmed to be able to pass the network data between
different links, which results in a an interconnection of
all backplane modules with a worst-case routing distance
of four hops (see Fig. 4).

As described in section II-A, the network has to
transport two different data types, neural network data
and shared memory data, which results in different re-
quirements for the transport process: Concerning neural
network data, the transport network has to guarantee
constant (but maybe different) latency for the various
connections. On the other hand, if shared memory data
has to be transported, the network has to be able to
process random data requests with minimum latency.

Both requirements can be fulfilled by implementing
a low level network layer which processes a continuous
stream consisting of packets of all the same size. A
connection with the need for constant latency is then
implemented by assigning everynth packet of the whole
packet stream to belong to that connection, while con-
nections with low latency can be achieved by keeping the
overall packet size small. Therefore, the implemented
transport network logic is designed to be able to route
small packets between several network modules. The
router can be configured freely to have maximum flexi-
bility for use with different network models1.

B. Software

To configure the FPGAs on all modules, they are
connected to the controlling PC within a single serial
chain. After programming these signal lines are used
to implement a 100 MHz token ring-like network to
interconnect the PC with all the modules. This allows
the PC to have access to each part of the programmable
logic inside the FPGA, including the software running
on the embedded PowerPCs.

1The principles described here are the same as in the ATM network
standard

BICS 2004 Aug29 - Sept 1 2004

NC4.3 4 of 7



5

embedded Linux

local software,

lower level algorithm

parts

PC Linux

slow control

hardware

slow control

user interface,

higher level algorithm

software parts

Control PC Nathan FPGA with PowerPC

virtual

character

device

virtual

character

device

ANN ASIC

access

device

ANN

ASIC
ANN ASIC

control

Fig. 5. Schematic view of software interaction between the controlling
PC and one example PowerPC

Fig. 5 shows a schematic of how the software is
involved in the system. The software framework is split
into two parts. The user interface part runs on the
controlling PC, while the lower level part which access
the ANN ASIC runs on the various local PowerPCs. On
them we use a version of the Linux operating system
designed for embedded processors [8], which allows
to continue using the existing software framework and
taking advantage of the features of modern operating
systems. For the communication between the controlling
PC and the individual PowerPCs the slow control access
is presented to Linux as a virtual character device. This
allows to set up higher communication protocols using
the device, like the PPP protocol to establish the internet
protocol TCI/IP, and thus file transfer, login services etc.

C. Operation

During operation user-defined neural network training
algorithms are implemented within the existing software
framework. The test and training data are sent to the
lower level software parts on the several PowerPCs,
while the resulting data is sent back to the controlling
PC for evaluation.

The presented distributed setup allows to experiment
with several possible scenarios of different levels of
parallelism: If the networks of interest fit into one ANN
ASIC each, the setup can be used to implement several
networks in parallel. In this case, no communication
takes place, but the setup can utilize the parallelism for
higher throughput. If larger neural networks are used, the
inputs and outputs of the ASICs could be interconnected
as described above to build a large distributed system.
If the network has recurrent network connections, the
algorithm used has to take care of the different latencies
of the network connections. Furthermore, even larger
neural networks are possible, in which the size of the
network exceeds the total network size of all physically

available ASICs. This can be achieved by using the
fully digital external representation of the whole neural
network state and buffering the remaining parts of it in
the available onboard memory. The network operation
is then executed in a time multiplexed way.

IV. EXAMPLE APPLICATION

One of the intentions in developing the parallel neural
hardware presented in the previous sections was to
provide a powerful platform for challenging biological
inspired applications. Here, we propose a way to utilize
this system to implement the Neocognitron, a massively
parallel neural architecture for image understanding,
introduced in the early eighties by Fukushima [1]. In this
network model, neurons are organized in functionally
equivalent layers (Fig. 6(a)). Each layer extracts certain
shape-features, as for example edge orientation, from
a localized region of the preceding layer and projects
the extracted information to the next higher layer. The
complexity and abstractness of the detected features
grow with the layer height, until complicated objects
can be recognized. A layer consists ofn feature planes,
each of which is assigned to recognize one specific
image feature. Neurons belonging to the same plane
are identical in the sense that they share the same
synaptic weights. This architecture, showing a high
degree of self-similarity, seems particularly dedicated to
be implemented on a parallel hardware platform.

Fig. 6(b) illustrates our approach to map the Neocog-
nitron’s network structure onto the hardware. One HA-
GEN network block, shown as a gray box, implements
one column ofn feature neurons, corresponding to
the upper part of one of the “chimney” structures in
Fig. 6(a). The field of view, consisting ofn rectangular
regions of the preceding layer, is fed to the block’s inputs
arranged in a binary linear array. Due to the parallel
nature of computing, alln feature neurons can be
evaluated in one network cycle. Since within one layer
all neurons are column-wise identical, the same network
block can be used to process any column of pixels of a
given layer. Exploiting the high throughput speed of the
HAGEN chip, pixels are fed into the block successively,
using attached memory as data buffers. Effectively, one
HAGEN block implements a full Neocognitron layer.

Although there are 64 neurons per block available,
the possible number of features is at present limited by
the input size of one block. Taking for example a field of
view of 3×3 pixels, the block’s input must be at least of
sizen×3×3. Having 128 inputs on each block available,
n is limited to 13 features if space for some necessary
bias synapses is taken into account. On the other hand,
the same design techniques used in developing HAGEN
can as well be applied to build ANN chips with an input
width of up to 1024 units, so the discussed limitation is
not of fundamental nature.

BICS 2004 Aug29 - Sept 1 2004

NC4.3 5 of 7



6

n feature planes

n feature planes

Input inmage

1st Layer

2nd Layer

of View
A Neuron’s Field

Memory
Queue

Memory
Queue

Neuron in feature plane 1

Neuron in feature plane 2

Neuron in feature plane n

Re−arrange

Data

Synapse Array

D
e

te
c

te
d

 F
e

a
tu

re
s

To next Layer

Field of View

1 2 3 n

(a) (b)

Fig. 6. (a) The Neocognitron’s hierarchical network. For simplicity, only the first two layers are shown. Every pixel in each feature plane corresponds
to one neuron, receiving its input from a localized region of all feature planes of the preceding layer.(b) Implementation on the hardware. One
column of neurons belonging to the same layer is realized in one network block. Alln feature neurons are executed in parallel, each tuned to a
specific feature. Between adjacent layers, two memory queues act as data buffers. A special stage is necessary to re-arrange the layer output into
field of views serving as input for the next layer.

Unlike the original Neocognitron model which em-
ploys a continuous activation function, the used hard-
ware neurons are binary. Principally, it is possible to use
several binary neurons in conjunction to simulate quasi-
continuous output (see for example [10]). However, we
use binary neurons while still obtaining satisfactory
results as shown in the experiments below.

Up to now, considerations were restricted to a single
network block. In the following, it will be discussed
how the possibilities provided by the presented modular
hardware architecture can be exploited to allow the op-
eration of multiple chips in parallel. One might suggest
to have each ANN chip process a different layer. On the
first glance it still does not seem possible to make use
of simultaneous computation since a given layer needs
the result of its predecessor in oder to operate. However,
a closer look reveals that for the current layer to start
computing, the outputs ofa portion of the preceding
layer are sufficient. Considering a field of view of size
3× 3, the first row of layerm can be evaluated as soon
as the results for the first3 rows of layerm − 1 are
available.2 Thus, it is possible to set up a chain of ANN
modules, each processing a different layer and operating
with a time delay equal to the time necessary to compute
3 rows of pixels. In addition, this approach requires a
minimum of data buffer size.

Between each layer pair the feature data has to be
re-arranged because the upper layer expects its input to
be grouped by field of views (cf., Fig. 6). Since each
network module carries a fast programmable logic and
sufficient memory, these re-arrangements as well as data
buffering can be done locally, keeping data transfer and
processing time at a minimum.

2Indeed, 2 rows plus the first 3 pixels of the 3rd row are sufficient.

Fig. 7.Left: Selections on the input image used to train the “F” feature.
Right: Occurrence of “F” feature as detected by the trained network.

A. Experimental Results

Preliminary studies have been done on a single HA-
GEN chip connected to a PC via an FPGA on a PCI card.
All layers were executed on that chip consecutively.
The Neocognitron model specifies two distinct types
of layers. Thus, using two network blocks, one for
each layer type, we are able to evaluate the entire
network hierarchy without reconfiguring the synaptic
weight arrays.3

The appropriate weights of the neurons have to be de-
termined in a training procedure. Training is conducted
in a supervised manner, successively from simple to
complex features. For each feature, one or more example
regions in the input image are selected by the human
supervisor. By means of size and position of the selected
regions, those cells in the hierarchy are determined that
are to detect the selected sample features. By a simple

3In contrast to the original Neocognitron, we use the same set of
features in each layer, to gain scale invariant recognition as proposed
in [11].

BICS 2004 Aug29 - Sept 1 2004

NC4.3 6 of 7



7

update rule based on the current input vectors of these
cells, a new weight vector is determined and applied to
all neurons associated with the trained feature.

A test was conducted on a sample image containing
letters with some variances in size and shape. 9 features
have been trained using a graphical interface running
on the controlling PC: Line segments in each direction
(0, 45 90, 135 degrees), line endings (top, bottom), T-
junctions (top, left), and the letter “F”. In Fig. 7 the train-
ing of the most complex feature (letter “F”) is shown.
At this stage, all lower-level features had already been
trained. The left image shows the training selections,
as given by the supervisor. On the right, the network
result after training is shown. For each “F”-neuron that
responded positively, the corresponding region on the
input image was determined and marked. Note that due
to the self-similarity of the hierarchical network structure
the same neuron detects patterns of varying scale. Two
“F”s were not detected, but on the other hand, there
are no false positives, providing indication of a high
specificity of the implemented network model.

Propagating an image with a pixel size of 480x480
trough 13 layers, the computing time of the HAGEN
chip including reading and writing the data from and
to local memory on the PCI board, was only 730 ms.
Note that in this time approximately 12 million neurons
with each receiving 100 inputs (90 input + 10 bias)
were evaluated. This time could be easily decreased by
a factor of 2 by employing the two unused blocks of the
chip processing different image regions in parallel. At
present, further overhead is introduced by data transfer
and computation time, since the re-arrangement stage
was executed on the controlling PC. We are convinced
that once this stage is implemented in the local FPGA,
the additional time required will be of the same order of
magnitude as the time for executing the neural network.
In conjunction with parallel execution, as discussed
above, high resolution images can then be processed
with a rate of several frames per second.

V. CONCLUSIONS& OUTLOOK

We presented autonomous network modules, each
providing a complete operating environment for a neural
network ASIC. The neural networks as well as their con-
trolling software can be distributed over several modules
working in parallel. At present, the system is set up to
operate the mixed-mode analog neural network ASIC
HAGEN whose network model allows the extension
across chip boundaries if isochronous communication
is ensured. This requirement is met with a transport
network which physically uses multi-gigabit transceivers
to transport the neuron communication. This transport
network is also used to implement a shared memory
architecture distributed across the modules. Finally, we

presented several scenarios how the massive parallelism
of this system can be exploited.

The hardware is developed within a European project,
called SenseMaker, and provides the basis for the explo-
ration of sensory fusion by an biologically inspired artifi-
cial system. The presented adoption of the Neocognitron
shows how a higher-level model can be implemented
on the system. The system design allows to replace the
used ANN ASIC with future versions while reusing the
parallel infrastructure. This will also allow to research
lower-level biological principles, e.g. using spiking neu-
ron models.

VI. A CKNOWLEDGEMENT

This work is supported in part by the European Union
under the grant no. IST-2001-34712 (Sensemaker).

REFERENCES

[1] K. Fukushima, “Neocognitron: A hierarchical neural network
capable of visual pattern recognition,”Neural Networks, vol. 1,
pp. 119–139, 1988.

[2] M. Riesenhuber and T. Poggio, “Hierarchical models of object
recognition in cortex,”Nature Neuroscience, vol. 2, pp. 1019–
1025, September 1999.

[3] SenseMaker, “A multi-sensory, task-specific adaptable perception
system.” EU Contract No. IST-2001-34712.

[4] J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann,
“A mixed-mode analog neural network using current-steering
synapses,”Analog Integrated Circuits and Signal Processing,
vol. 38, pp. 233–244, February-March 2004.

[5] A. Grübl, “Eine FPGA-basierte Plattform für neuronale Netze.”
Diploma Thesis, Heidelberg University, HD-KIP-03-02, 2003.

[6] J. Hennessy and D. Patterson,Computer Architecture - A Quan-
titative Approach. San Francisco, California: Morgan Kaufmann
Publishers, Inc., 1995.

[7] Xilinx, Inc., www.xilinx.com, Virtex-II Pro Platform FPGA
Handbook, 2002.

[8] A. Sinsel, “Linuxportierung auf einen eingebetteten PowerPC
405 zur Steuerung eines neuronalen Netzwerks.” Diploma The-
sis, Heidelberg University, HD-KIP-03-14, 2003.

[9] S. Hall, G. Hall, and J. McCall,High-Speed Digital System
Design. New York, Weinheim: John Wiley & Sons, Inc., 2000.

[10] F. Scḧurmann, S. Hohmann, K. Meier, and J. Schemmel, “In-
terfacing binary networks to multi-valued signals,” inSup-
plementary Proceedings of the Joint International Conference
ICANN/ICONIP 2003(O. Kaynak, E. Alpaydin, E. Oja, and
L. Xu, eds.), pp. 430–433, 2003.

[11] J. Teichert and R. Malaka, “An association architecture for the
detection of objects with changing topologies,”Proceedings of
the International Joint Conference on Neural Networks (IJCNN)
2003, pp. 125–130, 2003.

BICS 2004 Aug29 - Sept 1 2004

NC4.3 7 of 7


