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ABSTRACT
We consider Baars’ "Global Workspace" theory of

consciousness and discuss its possible representation
within a model of intelligent agents. We first review a
particular agent implementation that is given by an
abstract machine, and then identify the extensions that
are required in order to accommodate the main aspects of
consciousness. According to Baars’ theory, this amounts
to unconscious process coalitions that result in the
creation of contexts. These extensions can be formulated
within a reified virtual machine encompassing a
representation of the original machine as well as an
additional introspective component. This computational
framework is illustrating throughout using a simple
working example.

1 INTRODUCTION
The study of consciousness can follow quite a few

different paths. At one end of the spectrum lies the so-
called "search for the neural correlates of consciousness"
[2]. Briefly, this approach involves "isolating the neural
processes that correlate with various states of
consciousness". Following the increased availability of
brain imaging techniques, the experimental research
conducted under this banner is burgeoning. At the other
end of the spectrum, we find theories that are formulated
merely in terms of information processing presumably
conducted by the brain [8]. This line of research has often
been described as constituting a complementary "search
for the computational correlates of consciousness". This
second approach however has yet to mature to the point
of producing concrete definitions leading to experimental
platforms. The aim of our own research is to contribute to
such an effort. Towards this end, we decided first to
delineate a functional aspect of consciousness that could
easily be amenable to a computational process. To allow
then for practical experiments that could be replicated by
others, we decided to situate our developments within a
model of intelligent agents enjoying both formal and
executable specifications. We are thus able to present a
generic computational framework for implementing
Baars’ Global Workspace theory of consciousness [3].
More precisely, we reproduce in concrete terms the rather

abstract notions of unconscious processor coalitions and
the subsequent creation of unconscious contexts that lie
at the heart of this theory, identifying its basic
functionnalities, which are deliberation and context
formation. On this basis a straightforward Prolog
implementation has been obtained.

The rest of this paper is organized as follows: in
section 2, we briefly review existing models of
consciousness, and explain why we did retain Baars’
theory; in section 3 we introduce Baars’ global
workspace model; in section 4, we identify its various
computational correlates; in section 5 we introduce a
particular model of a deliberative agent given as a
sequential abstract machine; section 6 presents the
corresponding reified virtual machine given under the
form of concurrent threads with an introspective
extension; finally section 7 implements the
computational correlates that allow for the creation of
contexts. We conclude by briefly discussing the
computational power of the resulting framework and
confront it with Aleksander and Dunmall’s [1] axioms
for consciousness.

2 VARIETIES OF CONSCIOUSNESS
It has become customary to map the functional

aspect of consciousness into four distinct roles i.e.,
access, phenomenal, monitoring and self-consciousness
[4]. Briefly, access consciousness (A-consciousness)
refers to the human capacity to use language and explicit
planning in order to act towards a specific goal.
Phenomenal consciousness (P-consciousness) allows
one to actually feel (emotional experiences, sensations)
and thus to get qualitative inputs (appropriately named
qualia) that amount to differentiating perceptions.
Monitoring consciousness (M-consciousness) refers to
the state or process of awareness that leads to one’s
sensations and percepts, as opposed to the contents of
those sensations and percepts themselves. Finally, self-
consciousness (S-consciousness) is the reflective
capability we enjoy when we think about ourselves. Few
information processing theories (if any) make a clear
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distinction between these different types of
consciousness, and it is still unclear whether or not these
functions can actually be dissociated.

Existing computational models of consciousness can
be further distinguished according to the following
orthogonal properties [2]: process vs. representation
theories, on one hand, and specialized vs. non specialized
ones, on the other. We quote from [2]: "The process vs.
representation dimension opposes models that explain
consciousness in terms of specific processes operating
over mental representations, with models that explain
consciousness in terms of intrinsic properties of mental
representations". The specialized versus non-specialized
distinction simply refers to the existence or non existence
of a dedicated machinery for consciousness. In the
absence of such dedicated machinery, consciousness
could be said to emerge from the "collective activity of
many components distributed both spatially and
functionally across the brain, none of them responsible
for consciousness on its own". 

Clearly, any candidate theory for an effective
computational simulation should qualify as a specialized
process model. Furthermore, if we take into account the
results of decades of research done in the field of
Artificial Intelligence, A-consciousness appears to be the
function most likely to be ever replicated on a computer.
Among all existing A-consciousness specialized process
models, Baars’ global workspace theory [3] is
undoubtedly the most elaborate one, and thus became our
natural choice.

As a prerequisite towards reproducing A-
consciousness, we need an effective model of
coordinated action and planning. Then only ultimately,
when this gets implemented as an abstract machine,
models of embodied cognition (such as A-consciousness)
will possibly emerge from complex systems that are built
upon them. Our recent proposal, that integrates formal
communication primitives within a multi-agent system
with plans [5] and defines a language for agent dialogues
[6], is an example of a basic abstract machine that could
be used for that purpose. We may add that S-
consciousness, and perhaps also forms of P- and M-
consciousness could only emerge from complex systems
that are interpreted by a declarative self-representation of
such an abstract machine (we are presently working
towards that goal). 

3 THE GLOBAL WORKSPACE MODEL
In this model, consciousness is seen as a place where

unconscious elements interact with the system in order to
access the global workspace. 

Figure 1 offers a view of the essential components of
the model. The unconscious specialized processors
represent the basic components in an entity. They are
autonomous and work in parallel with other processors.
Some processors may have to achieve a more complex
task and thus do need to collaborate with other
processors. Towards this end, a processor has to access
consciousness. Consciousness is seen as a global
workspace whose role is to broadcast the needs of the
conscious processor. The processors fitting these needs
form a coalition. A coalition can in turn access the global
workspace if it is not able to achieve the required task,
and so on until all the necessary processors are in the
coalition. A same coalition formed several times is fixed
into a context. A context involves then several
unconscious processors pursuing a common goal. A
context is unconscious as it has been learned by the
consciousness while forming coalitions. The model does
not specify how much "several times" means, therefore
we consider in our implementation that once a coalition
was able to achieve a task it is fixed into a context. 

Hence contexts represent the framework of the
system and influence directly the processors behaviour.
For example the perception of the horizon is different
from the hard ground or from a pitching boat. Several
contexts can be active at the same time, they are then
organised in a hierarchy. A context can be disrupted, its
processors must then gain access to the global workspace
to form it again. Moreover if the disrupting context
embeds other contexts, all of them disrupt in series.
These disruptions actually constitute feelings like
surprise. 

 Figure 1: Baars’ global workspace model
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4 IDENTIFYING COMPUTATIONAL 
CORRELATES OF CONSCIOUSNESS

Observing the global workspace effects leads to
notice that it has actually at least two functions. First
consciousness gives unconscious processors the
opportunity to form a coalition thus allowing to achieve
a given task. This is related to deliberation. Indeed the
entity embedding consciousness has to think about how
to achieve a given task. Secondly the global workspace
allows to learn repetitive tasks creating automatic
reflexes, called contexts. From a computational point of
view, creating such contexts amounts to compile the
deliberation process. We propose then to distinguish
these two levels of consciousness as they pursue two
different goals in parallel. 

To implement our model, we identify two types of
processors (in the sense of Baars): 

• Processors that depict the environment, providing
either a representation of external elements or a
situation information. They are typically
autonomous and do not require any coalitions as
they represent a fact. 

• Processors that activate an action. The action itself
is not represented, even if an action can be made of
several smaller actions (e.g. moving a step forward
implies a vast number of movements). We assume
that such an action is typically automated, i.e.
represented within a context. Calling an action
amounts then to call a context and action activation
results in action selection. Some actions can be
autonomous and can be self activated without
appealing to consciousness (e.g. breathing, heart
beating). More interesting are the actions that can be
activated only in some situations, depending on the
environment change. Such processors are not
autonomous and need to access consciousness in
order to build a coalition with one or many
processors depicting environment. 

We then define deliberation as the formation of
coalitions leading to activate an action. A processor
needed by the action to be activated constitutes a
condition for the action selection. Deliberation is
recursive in the sense that a coalition may need to access
the global workspace to associate new processors to the
coalition. 

A context is defined as an unconscious and
permanent processor coalition. A context discharges
consciousness from forming coalitions as they are
compiled. Hence it allows to select directly an action
without calling on the global workspace. 

An example of deliberation is provided in section 5
when introducing plan deduction. An example of context
creation is provided in section 6 after having introduced
multithreading.

5 A SEQUENTIAL ABSTRACT MACHINE 
As already indicated in section 2, our

implementation of the computational correlates we just
identified will rely on an abstract machine. This abstract
machine consists of a set of procedures implementing
abstract functions defining a general model of reactive
agent with sensing [10]. These procedures generate runs
for individual non-deterministic agents with plans.

The agents’ behaviour is defined with plans. A plan
is given under the form of universally quantified
implications "conditions" ⇒ do(p,a) for action selection
or "conditions" ⇒ switch(p,p’) for changing plan where
a is an action and p a plan name. A plan describes a
situation where one can execute an action - if available in
a given plan - or switch plan if the related conditions are
met. 

As an example consider the following plans
description for an agent whose goal is to wander in a grid
and to suck dirt when he finds some. 

true ⇒ switch(initial, start)

dirt(X,Y) ⇒ switch(start, work)

dirt(X,Y) ∧ in(X,Y) ⇒ switch(work, suck(X,Y))

true ⇒ do(suck(X,Y), suck(X,Y))

¬dirt(X,Y) ∧ in(X,Y) ⇒ switch(work, move(X,Y))

true ⇒ do(move(X,Y), move(X,Y))

¬dirt(X,Y) ⇒ switch(start, home)

in(X,Y) ⇒ switch(home, back(X,Y))

true ⇒ do(back(X,Y),back(X,Y))

The switch/2 predicate makes the agent change plan
when the conditions are verified and do/2 predicate
executes an action in a given plan. Note that in this
example the plan and the action do not have to bear the
same name, the only requirements being that the
arguments have to be passed to the action as it depends
on the localisation. 

These plans actually implement the agent’s
deliberation as previously defined. Conditions in the
plans correspond to the processors needed to depict a
precise aspect of the environment in the deliberation
process. Plan names mark the deliberation progress, i.e.
CN4.1 3 of 7
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they set a coalition in a certain state. As long as an action
can not be selected, the coalition needs to check a new
condition. Once a coalition is complete, i.e. all the
conditions are met, an action is selected.

Deliberation can be represented by a tree (see
figure 2). The leaves represent the action selection
processors, the italic branches represent the processors
depicting environment and the nodes are the plan names,
i.e. the deliberation progress. 

The abstract machine is defined with the following
procedures: 

procedure react(e,l,p)
if l |− do(p,a)
then e ← τe(e,a)
else if l |− switch(p,p’)

then react(e,l,p’)

procedure sense(l,e)
if "the agent perceives s"
then l ← τa(l,s)

procedure run(e,l)
loop sense(l,e);

if l |− plan(p0)
then react(e,l,p0)

where l is the agent’s local state, e the environment,
p a plan (p0 is the initial plan), a an action. e ← τe(e,a)
and l ← τa(l,s) are transition functions on the
environment when an action a is executed respectively
on the local state when s is perceived. Thus react tries to
deduce a predicate do/2; if it succeeds it executes the
action a and updates the environment otherwise it
switches plan. Procedure sense updates the agents local
states when it perceives a percept s from the environment.
Finally the main procedure run is a loop on the sense and

react procedures. Note that run calls react with an initial
plan that is deduced at each cycle, thus representing the
proactive capability of an agent. 

This abstract machine implements the deliberation
process via sequential procedures. Recalling that
consciousness is made of parallel processors, that several
coalitions can access consciousness and that
consciousness itself is made of two concurrent levels, i.e.
deliberation and context formation, calls for a parallel
abstract machine.

6 A MULTITHREADED VIRTUAL MACHINE
Using a concurrent agent language [6], we can

translate the sequential abstract machine into concurrent
dialogues, each dialogue being executed in separated
thread. These dialogues are compiled into plans executed
on an abstract machine similar to the previous one
(actually extended to support multithreading). Hence this
multithreaded virtual machine encompasses the
sequential abstract machine. The following dialogues
implement the multithreaded virtual machine: 

dialog(run(P0), []
[concurrent(sense),
 concurrent(react(P0))]),

dialog(sense, [S],
[ask(native_sense, sensing(S)),
 execute(store(S)),
 resume(sense)]),

dialog(react(P), [A,Q],
[((do(P,A) | [concurrent(do(P,A))]);
  (switch(P,Q) | [concurrent(switch(P,Q))]))]),

dialog(do(P,A), [],
[execute(A),
 concurrent(react(P0))]),

dialog(switch(P,Q), [], 
[concurrent(react(Q))]).

The behaviour of an agent is described in the same
manner as previously, i.e. the plans presented in the
previous section apply on this machine. Figure 3 offers a
graphical representation of the machine. Note that the
dashed arrows represent interactions with the
environment as they are taken over from the lower

 Figure 2: Tree view of our example’s plans
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abstract machine (e.g. ask(native_sense, sensing(S)) in
the sense dialogue refers to the sense procedure of the
latter). 

This multithreaded virtual machine is made of five
concurrent dialogues but actually of only two parallel
independent (i.e. not synchronized) loops: sensing and
plan/action selection. These loops correspond to the
main elements of deliberation fitting the needs for an
action to be selected on the basis of the environment
depiction. 

At this level, the multithreaded machine behaves
similarly to the sequential machine (see section 5). In
order to initiate consciousness we reflect the agent’s
deliberation to a meta level: the consciousness.
Reflection achieves the agent’s ability to become
conscious of its deliberation steps. Towards this end we
create a new dialogue introspect that starts a new thread
attached (i.e. synchronized) on both basic deliberation
threads: switch and do (see figure 4). 

These threads are given by

dialog(reflect(do), [P,A],
[ask(do(P,A), do(P,A)),
* some handling *,
resume(reflect(do))]),

dialog(reflect(switch), [P,Q],
[ask(switch(P,Q), switch(P,Q)),
* some handling *,
resume(reflect(switch))]).

All these dialogues are very similar: they first
"listen" to their corresponding thread and after having
handled the information they resume. The corresponding
threads have to be modified as follows thus achieving
synchronisation:

dialog(do(P,A), [],
[execute(A),
tell(reflect(do), do(P,A)), ← sync.

 concurrent(react(P0))]),

dialog(switch(P,Q), [], 
[tell(reflect(switch), switch(P,Q)), ← sync.
concurrent(react(Q))]).

7 IMPLEMENTING COMPUTATIONAL 
CORRELATES OF CONSCIOUSNESS

We can now extend the machine to implement
context learning, by adding new concurrent threads.
Towards this end, we first handle the reflected
deliberation progress recording each plan switching with
the related condition. A reflected action starts the
compilation process. These dialogues are given hereafter:

dialog(reflect(switch), [C,P,Q],
[ask(switch(P,Q), switch(P,Q)),
call(switch(P,Q), C ⇒ switch(P,Q)),
execute(gw.store(switched(C,P,Q))),
resume(reflect(switch))]),

dialog(reflect(do), [P,A],
[ask(do(P,A), do(P,A)),
concurrent(trace(done(P,A))),
resume(reflect(do))]).

Reflect(switch) stores a switched/3 predicate
containing the condition C that triggered the plan
switching from P to Q in a dedicated object gw (standing
for global workspace). The condition is obtained through
a request communication act synchronizing the switch
dialogue with its reflect dialogue. The former has then to
be modified as follows:

 Figure 3: A representation of the virtual machine
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 Figure 4: Reflection is achieved by synchronizing the basic 
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thread, represented with the bold dotted arrows.

sense react

plan

Environment

Agent

do

state

switch

introspect

reflect
switch

reflect
do

Consciousness

run
CN4.1 5 of 7



6

BICS 2004 Aug 29 - Sept 1 2004
dialog(switch(P,Q), [Request], 
[tell(reflect(switch), switch(P,Q)),
return(reflect(switch,Request)), ←
concurrent(react(Q))])

Reflect(do) starts the compilation process initiated
by the dialogue trace. Applying reflection to our example
we may obtain the following predicates in the gw object: 

switched(true, initial,start),
switched(dirt(0,1), start, work),
switched((in(0,0) ∧ not dirt(0,0)), work, move(0,0))

Compilation consists in grouping all conditions
having led to select an action and generating a new plan
of type "context" ⇒ do(initial,a) where context is the
context formed with all conditions and generalizing their
arguments. These plans are similar to those used in
deliberation but they select directly an action once the
context is met. Compilation is implemented with the
following dialogues:

dialog(trace(done(P,A)), [Q], 
[execute(gw.retrieve(switched(_,Q,P))),
 enter(get_context(A,Q,P,[]))]),

dialog(get_context(A,P,Q,Trace), [C,O],
[execute(gw.retrieve(switched(C,P,Q))),
 ((not (P=initial) |

 [execute(gw.retrieve(switched(_,O,P))),
resume(get_context(A,O,P,[C|Trace]))]);

  (P=initial | 
 [execute(gw.generate(A,[C|Trace]),Ctx),

concurrent(teach(Ctx))]))]).

Applying it to our example, the following plans are
generated:

(in(X,Y) ∧ not dirt(_,_) ∧ not alarm)
⇒ do(initial, back(X,Y))

((in(X,Y) ∧ not dirt(X,Y)) ∧ dirt(_,_) ∧ not alarm)
⇒ do(initial, move(X,Y))

((in(X,Y) ∧ dirt(X,Y)) ∧ dirt(_,_) ∧ not alarm)
⇒ do(initial, suck(X,Y))

(in(X,Y) ∧ not dirt(_,_) ∧ not alarm)
⇒ do(initial, back(X,Y))

Again, these plans are very similar to the previous
plans. However an important distinction has to be pointed
out: they are only action selection plans as they comprise
no switch instructions. 

A new plan is set in the agent’s state through the
dialogue teach that run at the termination of get_context.
The dialogue teach simply transmits the plan to a learn
dialogue that inserts it in the agent’s local state. These
dialogues are defined as follows: 

dialog(teach(P), [],
[tell(learn,P)]),

dialog(learn, [P],
[ask(teach(P),P),
execute(store(P)),
resume(learn)])

Figure 5 provides a complete representation of the
virtual machine just presented. To sum up, consciousness
reflects deliberations and actions to new components that
generate new specialized contexts under the form of
plans and feed them back to the agent.

If all conditions of a new context are met, the action
is immediately selected and the agent does not have to
deliberate.

8 CONCLUSION
In this paper we argue that it is possible to provide an

agent with a certain form of consciousness. Relying on a
formal psychological model of consciousness we provide
a computational agent framework allowing the
implementation of basic functions for consciousness:
deliberation and context formation. While the former is
defined within implicit deduction rules (reproducing an
automata behaviour), the latter is given by a parallel
process implementing explicit reflection and
compilation. On this basis, a straight forward Prolog
implementation has been optained.

 Figure 5: A complete view of the virtual machine
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Discussing whether an unconscious agent would be
able to carry out the same tasks and/or exhibit the same
behaviour amounts to consider the power of self-
reflection. Starting with a basic deliberation model
(figure 3), we first implement intelligence in a simple
agent model at an object level. Adding self-reflection at a
meta level (figures 4 and 5) allows the agent to observe,
inform on and reason about his current state. Recurring
this ability allows to observe, inform on and reason about
the reflection itself, and so on. A monitoring of interrupts
and/or percepts (that may be raised in order to reflect the
agent’s own will) may then be superimposed to interact
with the multithreaded machine [7]. Following the claim
that interacting objects are more powerful than
algorithms [9], we can argue that a conscious agent is
more powerful than an automata. Indeed, the ability to
reason about oneself - and more generally speaking the
ability to define parallel processes - allows to change the
agent behaviour over time, i.e. changing dynamically his
beliefs and goals. 

In order to evaluate how far our model implements
consciousness from a functional point of view we
confront it to the axioms proposed by Aleksander and
Dunmall defining minimal consciousness [1]. We recall
these axioms and confront each definition to our model: 

• (I) Depiction axiom requires that an agent "has
perceptual states" depicting part of the environment.
Our sense procedure interacting with the
environment provides perceptual states about the
environment in the agent’s local state represented by
unconscious processors. 

• (II) Imagination axiom says that an agent "must be
conscious of imagined as well as perceived events".
The processors depicting environment may be
conscious if they get involved in a coalition. On the
other hand our agent is not imaginative at all as it
runs predefined plans and works only on this basis.
However we could consider that compiled contexts
are "imagined elements" but at this level they are
not conscious as they are precisely created to be
unconscious. 

• (III) Attention axiom is verified when an agent "is
capable of selecting which parts of [the
environment] to depict [...]". The plan/action
selection function, i.e. the deliberation process
coordinating processors that depict environment
with processors activating actions within a
coalition, achieves this axiom. 

• (IV) Planning axiom implies that an agent "has
means of control over imaginational state sequences
to plan actions". Again our virtual machine doesn’t
implement imagination. However if we consider

that self generated contexts are an imaginative
process, the compilation process fits this axiom as it
generates new plans leading to direct action
selection.

• (V) Emotion axiom wants an agent to have
"additional affective states that evaluate planned
actions and determine the ensuing action".
Following this definition we do clearly not deal with
any emotion in our proposal. 

Concerning the emotion axiom, recall that Baars
considers that feelings like surprise - which can be seen
as an emotion - is caused by a context disruption forcing
the agent to use intensively its consciousness to form
again the disrupted contexts. Implementing this point of
view, i.e. extending the implementation of Baars’ model,
is another issue of our future work.
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