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ABSTRACT 

A nonlinear electrical circuit is proposed as a basic cell   
for modeling FitzHugh-Nagumo neurons with a modified 
excitability.  Depending on initial conditions and parameters 
experiments show various dynamics including stability with 
excitation, bistability and oscillations. Moreover, we present an 
electrical circuit which will be used to realize a unidirectional 
coupling between two cells, mimicking chemical synaptic 
coupling. Finally, we characterize the frequency-doubling and 
the chaotic dynamics depending on the coupling strength in a 
master-slave configuration. In all experiments, we stress the 
influence of the coupling strength on the control of the slave 
neuron. 
 
INTRODUCTION 

Research on neural communication is based on a strong 
synergy between neuroscience discipline and engineering 
science [1, 2]. As a consequence, electrical circuits are 
developed including features observed in real neural systems in 
order to have a flexible, very fast processing and experimental 
medium mimicking neural activity. Famous illustrations and 
starting-points of electrical realizations are the Nagumo's lattice 
[3] and Neuristor device [1], modeling he FitzHugh-Nagumo 
(FHN) equation . In this case, oscillations rise from Andronov-
Hopf bifurcations: Pulses can propagate with well-defined non 
zero minimum frequency, as observed for most axons. 
However, numerous nervous fibers, such as pyramidal cells in 
cortex or barnacle muscle fibers, are governed by a different 
mechanism leading to saddle homoclinic loop bifurcations [4] 
so that the minimum frequency of traveling waves can be close 
to zero [2,5]. 

 In this paper, in the first part, we propose a nonlinear 
electrical circuit based on the FitzHugh-Nagumo equation with 
a modified excitability leading to complex dynamics of 

traveling waves [6, 7] emerging from saddle homoclinic loop 
bifurcations. Then, experimental conditions for stability with 
excitation threshold, bistability and oscillations are discussed. 

 In the second part, we use this circuit as a basic cell to 
realize a master-slave configuration. Two cells are coupled in a 
unidirectional manner, which would correspond to two neurons 
coupled synaptically. We present the electronic circuit giving 
this coupling. Then, we discuss the experimental conditions for 
which the master dynamics controls the excitability of the slave 
neuron leading to a shift of bifurcation curves, a variation of an 
eigen interspike frequency or a chaotic behaviour. 

EXPERIMENTAL DESCRIPTION OF ONE CELL 
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Figure 1. Diagram of the nonlinear circuit 

 
The nonlinear circuit, as sketched in Figure 1, can be 

described as follows: Part (A) is a parallel association of three 
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different branches, two of them being resistive and commuted 
by silicium diodes (Vd = 0.6 V) while the third one is a 
negative resistor obtained with an operational amplifier. 

Due to  diodes' commuting behavior, the resulting I-V 
characteristic is nonlinear and can be modeled by a cubic 
polynomial function for an appropriate set of parameters so that 
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where and  are respectively the voltage and the 

corresponding current. The parameters  and 
U NLI

0R γ  are obtained 
by a fitting approximation, e.g. by least mean square's method. 
As illustrated in Figure 2, we obtain a good match between 
experimental results and equation (1) by setting Ω=10100R   

and   .  1138.1 −= Vγ
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Figure 2. Experimental I-V characteristic (+ symbols) of part A. 

Continuous line:  from equation (1) with 
 and 1.  

)(UfI NL =

Ω= 10100R 138.1 −= Vγ
Dashed line: Experimental characteristic   versus U  

with , , , and 
. 

( 21 II + )
Ω= 20216R Ω= 6907R mHL 2.101 = mHL 5.32 =

VE 4.01 =
 
This nonlinear resistor is connected with a capacitance and with 
two branches in parallel including inductances, resistances and 
voltage sources, one of them being commuted by a silicium 

diode so that setting the conditions 
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then, using a piecewise linear I-V description for diode  , 
 if .  
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Therefore, using Kirchhoff's laws, the system of equations 
can be expressed in a normalized way by: 
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where UV γ=  and ( 210 IIRW += )γ  correspond, in 
biological terms, to the membrane voltage and the recovery 

variable; 
CR

t

0

=τ  is a rescaled time, 
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γη =  a bifurcation parameter. 

 is a piecewise linear function, so that )(Vg VVg α=)(  if 

0≤V  and VVg β=)(  if  where 0>V
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=β  control the shape and location of the W-

nullcline [11]. 
Note also that the initial condition  can be loaded in the 

neuron via an analogue commutator controlled by . 
iniU

synV
Although it is usual to study a system with normalized 
variables, it is more convenient to describe electrical circuits 
with experimental variables. Therefore, we will keep both 
variables (as normalized V  and experimental U ) in the 
following of this paper.  
In the case 1== βα , the system corresponds to the standard 
FitzHugh-Nagumo equation (with diffusive parameter set to 
zero) where nullclines can only intersect at a single equilibrium 
point leading to Andronov-Hopf bifurcations.  
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Figure 3. Bifurcation curves in the dimensionless plane  

),( εη  
In the general case βα ≠ , three equilibrium points 

 and ),(),,( )2()2(
2

)1()1(
1 WVOWVO ( ))3()3(

3 ,WVO  are 
expected, as illustrated in Figure 2, from which an experimental 
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phase portrait  can be deduced by rescaling the x-axis 
by a factor 

),( WV
γ/1  and the y-axis by a factor .  0/1 R

In this case, the parameters are 5.0=α , 96.1=β  and 
226.0=η . We can note that this phase portrait is very similar 

to the one occurring from the modified Morris-Lecar equations 
[5] proposed to model barnacle muscle fibers and pyramidal 
cells. 

 As expected by the stability analysis of equation (2), 
several results are to be distinguished depending on the location 
of the three fixed points and on initial conditions [11]. 

Keeping parameters of Figure 2, i.e. 5.0=α  and 
96.1=β , an experimental determination of the bifurcation 

curves in the parameter plane ),( εη  is proposed in Figure 3. 
 

A B  
Figure 4. Excitation threshold corresponding to domain (1) 

of Figure 3 with 19.0=η  and 2.0=ε  
( and ). VE 332.01 = nFC 1=

Excitation pulse (oscillogram on the left) and perturbation 
reaching the resting state (oscillogram on the right). 

Abscissa sµ20  per division; ordinate per division. mV225
 

In the domain (1), the points  and  are stable and 

unstable foci, while  is a saddle.  
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Figure 5. Dimensionless phase plane  showing 

stability with excitation threshold corresponding to 
( WV , )

domain (1) of Figure 3 with 19.0=η  and 2.0=ε  
( and ). VE 332.01 = nFC 1=

Therefore, if a perturbation of the rest state , is large 
enough so that it lies between the points  and , the system 
responds with an excitation pulse, otherwise it decays to the 
resting state , as illustrated in Figure 4.  

1O

2O 3O

1O
The left oscillogram (A) shows an excitation pulse while 

the right one (B) shows a perturbation reaching the resting 
state, as its initial condition is above . 3O
Figure 5 gives the experimental phase portrait for the both 
cases with A (resp. B) corresponding to the oscillogram on the 
left (resp. right) in Figure 4. 
 
Domain (2) corresponds to the bistability case characterized by 
the existence of a stable fixed point and a stable limit cycle 
that has appeared from a big homoclinic loop bifurcation. Then, 
the model exhibits oscillations if the perturbation is large 
enough, as illustrated in Figure 6. 

1O

 
Figure 6. Experimental spiking train of pulses, with 

22.0=η  and 2.0=ε  ( andVE 3876.01 = nFC 1= ). 
Abscissa sµ20  per division; ordinate  per 

division. 
mV195

 
The Figure shows a spiking train of pulses corresponding 

to the limit cycle in the experimental phase portrait presented in 
Figure 7. Otherwise, it decays to the rest state, as in domain (1) 
but only if its initial condition is under  . 2O

 
In domain (3), the fixed point looses stability via a 

subcritical Andronov-Hopf bifurcation and only oscillations 
occur in the model, which are similar to the spiking train of 
pulses of Figure 6. Note that in the region (2), another saddle 
homoclinic loop bifurcation has taken place leading to a small 
unstable limit cycle near the fixed point 1O . Due to instabilities, 
we can not distinguish this bifurcation experimentally. 
Experiments have shown that, contrary to standard FHN, 
arbitrarily long interspike intervals can be found, as the two 
lower equilibrium points are merging. 

Finally, in domain (4), a single unstable fixed point  
exists leading to oscillations as illustrated in Figure 8. 

3O
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Figure 7. Dimensionless phase plane  showing ),( WV
bistability corresponding to domain (2) of Figure  3, 
with 22.0=η  and 2.0=ε  ( and VE 3876.01 =

nFC 1= ). 
 

Note that the existence of these domains has been 
confirmed with numerical simulations and stability analysis of 
equation 2. 
Increasing ε  above 0.5 would imply about ten other domains. 
Nevertheless, these features are not necessary to develop a wide 
range of dynamical behaviors, as described in the following 
section. 
 

 
 

Figure 8. Oscillations corresponding to domain (4) with 
296.0=η  and 2.0=ε  

( and ). VE 521.01 = nFC 1=
Abscissa sµ10  per division; ordinate  per 

division. 
mV500

 
 

UNIDIRECTIONAL COUPLING OF TWO CELLS 
 
The neurons communicate mainly between them through 

specialized devices called synapses via chemical messages. The 
chemical synapse transmits the impulse unidirectionally. 

 Therefore, it is interesting to conceive and to realize an 
electrical circuit including the same features as the synaptical 
coupling. We present in Figure 9 the unidirectional coupling 
between two cells leading to a master-slave configuration 
where  (iN 2,1=i ) are described by the circuit of the Figure 1. 
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D

 
Figure 9. Coupling between two cells  and . 1N 2N

 
Let us introduce D the coupling parameter (synaptic 

strength). 
Its electrical circuit, as illustrated in the Figure 10, includes an 
adder-inverter, an inverter and then a follower. 
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Figure 10. Unidirectional coupling circuit. 

 
1U  (resp. ) is the voltage capacitor of the cell  (resp. 

cell ). The value of the resistor R is fixed to
2U 1N

2N Ωk100 , which 
is large compared to the other components so that the current 
going though R2  is negligible, , while  is a 
detuning parameter which allows to control the coupling 
parameter value. Using Kirchoff's laws, the normalized 
equations corresponding to the schematic configuration in 
Figure 10 can be expressed by: 

Ω= kRa 10 cR
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with { }2,1=i , and where 
cR

R
D 0=  is the unilateral coupling, 

i,2δ  is a Kronecker symbol, so that 01,2 =δ  and 12,2 =δ . 
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Therefore, the two neurons are coupled so that a part of current 
weighted by D  via , and generated by   is included 
in . 

cR 1N

2N
The two neurons are initially set to voltage  and , 
due to the analogue commutators controlled by voltage Vsyn , 
as illustrated on the Figure  11. 
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Figure 11. Commutation circuit. 

 
 
When the initial conditions are loaded, these commutators 

are switched off while the two neurons are connected via a third 
commutator controlled byVsyn . 
Note that the time delay between the two neurons has not been 
taken into account in this circuit, a master-slave configuration 
rendering it unnecessary. 
 

The master in a resting state 
 

When the voltage is so that  is constant (the cell  is 
in a resting state), it is straightforward to show that  the variable 

 and the bifurcation parameter 

1V 1N

2W 2η  of the cell  are given 
by: 

2N
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where the parameters ε , α , β , η ,  and the variables 

 have been defined in the first part.  
0R

WV ,
Therefore, it implies a modification of the excitability of the 
cell  , that is a shift in the (2N εη, ) plane as illustrated on 
Figure 12.  
The initial conditions are so that, when , the master 
neuron  lies in domain (1) in the resting state , while the 
slave neuron 2  is in domain (3) and generates a spiking train 
of pulses.  When the unilateral coupling is increased and 
reaches a critical value, the neuron   ceases to oscillate and 
stays in the resting state 1O , meaning that the slave neuron has 
been moved from domain (3) to domain (1) of Figure 3. 

0=D
1N 1O

N

2N

The ability of neuron  to inhibit neuron   corresponds to 
the shift predicted by equation (4): As , increasing  

1N 2N
01 <V D  

implies to increase  and therefore the bifurcation 
curves of Figure 3 are translated along abscissa, while the value 
of 

),( 12 VDη

2η  defined by the electrical parameters of neuron   has 
not been changed.   

2N

This result  suggests that, for a defined activity of a slave 
neuron, the strength of a unilateral coupling should be above a 
critical value to give to the master neuron the control on the 
slave neuron.  
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Figure 12. Shifted bifurcation curve of the slave neuron 
 between domains (1) and (3).  2N

Parameters: Master neuron : , , 
,  leading to   

1N 5.01 =α 96.11 =β
01 =ε 01.01 =η 05.11 −=V

(i.e. ) mVU 9211 −=
Slave neuron : , ,    2N 5.02 =α 96.12 =β 02 =ε

 
 
In Figure 12, experimental values  correspond to 
the shifted bifurcation curve between domains (1) and (3) of the 
neuron with  and when the master neuron  lies in 
domain (1) in a resting state so that . 

[( 1,, VDD η ])

2N 02 =ε 1N
05.11 −=V

Comparison shows a good match between experimental results 
and equation (4), validating the unilateral coupling circuit. 
 

The master in a spiking regime 
 

In this section, we present some results when the master is 
in domain (2) and oscillates. As  is varying in time, we 
cannot express a simple relationship between the parameters of 
neuron  and , as in equation (4). Nevertheless, 
oscillations of neurons  let  be alternatively positive and 
negative, which  implies that the bifurcation curves of neurons 
are translated along the abscissa in the plane (

1V

2N 1V

1N 1V

εη, ) in a 
periodic manner (the position of saddle points of the cell  is 
moved periodically).  

2N
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Thus, the slave neuron 2  initially situated in the vicinity 
of a bifurcation curve may be able to cross sometimes this 
curve and develop a different dynamical behaviour.  

N

Therefore we have investigated the unilateral coupling 
influence on , in the case when neuron  is initially (i.e. 
when ) in domain (3) and oscillating, while the slave 
neuron  is in domain (1) in its resting state .   
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Figure 13. Normalized eigen interspike slave frequency 
 by interspike master frequency versus D 

with , ,  and . 
sf mf

nFC 0= 021 == εε 199.01 =η 109.02 =η
 

According to the value of D , several different dynamical 
behaviours  can be identified, as illustrated in Figure 13 and 14:   
- In case a, the coupling strength is small, leading to 
subthreshold oscillations of  frequency, which are not taken 
into account in Figure 13 but observable in Figure 14.  

mf

- In cases b to f, stable periodic oscillations appear whose 
eigen interspike frequency follows a devil’s staircase-like 
curve. Only specific values of are obtainable. 
Increasing the coupling strength causes the period-doubling in 
the slave cell, that is the period is multiplied by 2, 4, 8, 16 and 
so on.  

ms ff /

- In case g, 2  is fully synchronized with 1 . The slave neuron 
oscillates in the same manner than the master one. 

N N

 
The slave neuron shows also a chaotic sequence of spikes 
resulting with variable interspike intervals. This chaotic regime, 
corresponding to the dot lines in Figure 13, between the period-
doubling plateaus, is so that the interspike slave period is 
varying during the experiments. When the coupling parameter 
is gradually increased, we firstly proceed from a periodic 
spiking regime to a chaotic regime via a sequence of period-
doubling bifurcations. Finally, it leads to the reappearance of 
periodic dynamics inserted in the chaotic zones. 
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Figure 14. Temporal evolution of experimental voltage  

for different values of 
2U

D  corresponding to cases (a-g) of 
Figure 13. Voltage of the master neuron  is shown on top. 1

Abscissa: 0.1 ms per division; ordinate: 1 V per division. 
N

 
The chaotic puffs disturb the periodic spiking regime. This 

is intermittency. These disturbances appear in an irregular 
manner.  
 

 
 

Figure 15.  Chaotic signal in the case where 0535.0=D  
Abscissa: sµ5  per division; ordinate: per division. V1
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Increasing the coupling parameter causes the increase of 
the frequency disturbances and then the chaos dominates the 
regime in the slave cell [8,9]. 

An illustration of a chaotic signal is given in Figure 15 
for .  The corresponding probability of normalized 
interspike slave frequency  is presented on Figure 16. 

0535.0=D
ms ff /

This figure shows that in a chaotic regime, the interspike 
frequencies  are distributed widely in the range[ ] . sf mf4.0,0
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Figure 16. Normalized distribution of the interspike 

frequency of  corresponding to the signal in Figure 15. 2N
 
These experiments show that the unilateral coupling strength 
controls the slave neuron, from a silent to a chaotic dynamical 
behaviour. 

CONCLUSION 
 
A nonlinear electrical circuit has been reported showing 

the generation of either Andronov-Hopf bifurcations or saddle 
homoclinic loop bifurcations, which may render it useful in 
neural modelling as a basic cell for neural network. 
Furthermore, an integration of such a circuit using inductor-like 
components could be realized, giving this opportunity of very 
large scale network. 

 Futhermore, we have considered the case of two coupled 
cells, in a master-slave configuration. We have shown that the 
intervals between successive spikes can be chaotic and depends 
on the coupling strength. We suggest that this study can be 
helpful in understanding the different dynamics of potential 
propagation in brain cells. To complete this work, it would be 
of interest to study the bidirectional coupling, corresponding to 
the electric synapse case, and the influence of the size of the 
network on the fractal dimension of the information [10]. 
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