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ABSTRACT 
The most unacceptable structural damage of porous asphalt top 
layers is the loss of stones leading to raveling. Therefore it is 
important to predict when the porous asphalt top layer will 
achieve a critical level of raveling so as to allocate funds for 
necessary maintenance. SHRP-NL database including eight 
provinces of the Netherlands was used as  the data resource. 
Artificial Neural Network (ANN) was employed to predict 
severity of raveling having input parameters related to 
historical raveling and climate, construction and traffic factors. 
An ANN is able to forecast raveling low with a high correlation 
factor (R2=0.986), raveling moderate with (R2=0.926) and 
raveling high with (R2=0.976). Besides another ANN provided 
sensitivity analysis indicating the relative contribution of 
factors related to climate (58%), traffic factor (14%), thickness 
(6% ), roughness (12%) and age (10%) for raveling low and 
high but for raveling moderate climate (46%), traffic factor 
(15%), thickness (15%), roughness (13%) and age (11%) are  
the results. Color Contours illustrated that heavy traffic, low 
thickness and high roughness cause raveling on old asphalt 
especially in cold rainy days. ANN proved to be a powerful 
technique to predict and analyze raveling opening great 
opportunities for development of ANN models for other 
detriments. 
 
 

INTRODUCTION 
Artificial Neural Networks (ANNs) are information-processing 
paradigms inspiring in the way biological nervous systems 
process the information. It is composed of a large number of 
highly interconnected processing elements (neurons) working 
in unison to solve specific problems. ANNs, like people, learn 
by example. They are configured for a specific application or 
problem through a learning process. Learning in artificial 
neural networks as well as biological systems involves 
adjustments to the synaptic connections existing between the 
neurons.  
Artificial Neural Network can be used to solve a wide range of 
practical problems and many applications have been reported in 
areas such as engineering, economics, medicine, business and 
marketing. Over the last few years the application of ANNs to 

solve civil engineering problems has increased. The 
significance of some road problems gives a high inspiration to 
road engineers to untangle the problems. Some of those 
unsolved problems in civil engineering are related to porous 
asphalt top layers. 
Porous road surfaces are constructed using conventional asphalt 
road building materials but with such an aggregate grading that 
after compaction 20% to 22% air voids are present in the 
asphalt mix. These voids are connected by narrow air paths 
between the stones forming tortuous, interconnected drainage 
channels which run through the total depth of the layer. Water 
falling on the surface can therefore drain through the material 
to the underlying layer, which is normally impermeable. Apart 
from spray suppre ssion, it has been found that this type of 
surface also offers the advantages of lowering the noise level 
from vehicles operating on the road. 
As a result of environment influences and traffic load damages 
at the surface of a porous top layer are likely to occur. The most 
unacceptable structural (or mechanical) damage observed in 
porous pavement is the loss of stones leading to raveling. After 
a considerable long period of slow degradation (5-7 years) in 
porous asphalt top layer, the speed of damage increases. End of 
life of a porous top layer may be defined as the moment of 
occurrence of unacceptable damage-spots. It should be also 
considered that maintenance budgets are always limited. 
Therefore it is important to predict when the porous paved 
surfaces will achieve a critical level of raveling so as to allocate 
funds for necessary maintenance and rehabilitation. Due to the 
non-linear, time -series nature of ANNs, they seem an 
appropriate choice for modeling the prediction of porous 
asphalt top layers durability which is also non-linear. The 
objective of this paper is to dis cuss how Artificial Neural 
network (ANN) models can predict raveling leading to the 
durability of porous asphalt and also the process of finding the 
proper architecture for intended ANN.  
Therefore a brief review of the Artificial Neural Network 
(ANN) and Porous asphalt durability is initially presented. This 
is followed by a presentation of SHRP-NL database, the ANN 
results and concluding remarks.  
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ARTIFICAL NEURAL NETWORK (ANN) 
In 1969, a theoretical analysis by Minsky and Papert revealed 
significant limitations of simple models like the Perceptron and 
many scientists in the field of neural computing were 
discouraged doing further research. Halfway the 1980’s, 
interest in ANNs increased significantly, thanks to J.J. 
Hopfield, who became the leading force in the revitalization of 
neural computing. During the following years, many of the 
former limitations of ANNs were overcome. The improvements 
on existing ANN techniques in combination with the increase 
in computational resources led to successful application of 
ANNs for many problems. One of the most groundbreaking 
rediscoveries was that of backpropagation techniques (which 
were conceived by Rosenblatt) by McClelland and Rumelhart 
in 1986. These developments led to an explosive growth of the 
field of ANNs. 
ANNs are typically used for modeling complex relations in 
situations where insufficient knowledge of the system under 
investigation is available for the use of conventional models, or 
if development of a conventional model is too expensive in 
terms of time and money. ANNs have been applied in various 
fields where this situation is encountered. Some examples of 
fields of work that show the broad possibilities of ANNs are: 
process control (e.g. robotics, speech recognition), economy 
(e.g. currency price prediction) and the army (e.g. sonar, radar 
and image signal processing).  
Let us assume a set of processing elements (neurons); at each 
point in time, each neuron ui has an activation value, denoted in 
the diagram as ai (t); this activation value is passed trough a 
function fi to produce an output value oi (t). What is associated 
with each connection is a real number usually called the weight 
of the connection, designated wij - ?which determines the amount 
of effect that the first neuron has on the second. Neurons are the 
relatively simple computational elements that are the basic 
building blocks for ANNs. Neurons can also be referred to as 
processing elements or nodes. They are typically arranged in 
layers (see Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1- An example of a Multi-layer ANN, showing neurons 

arranged in layers 
 
 
By convention the inputs that receive the data are called the 
input units, and the layer that transmits data out of the ANN is 
called the output layer. Internal layers, where intermediate 
internal processing takes place, are traditionally called hidden 
layers [after Dhar and Stein, 1997]. There are as many input 

units and output neurons as there are input and output variables 
respectively. Hidden layers can contain any number of neurons. 
Not all networks have hidden layers. 
The state of the system at a certain point in time is represented 
by the state of activation of the neurons of a network. If we let 
N be the number of neurons, the state of a system can be 
represented by a vector of N real numbers, a (t ), which specifies 
the state of activation of the neurons in a network. Each neuron 
has an output function that maps the current state of act ivation 
to an output signal:   
 

( ) ( ( ))i io t f a t=  
Neurons are connected to one another. Basically, it is this 
pattern of connectivity that determines how a network will 
respond to an arbitrary input. In many cases we assume that the 
inputs from all of the incoming neurons are simply multiplied 
by a weight and summed to get the overall input to that neuron. 
In this case the total pattern of connectivity can be expressed by 
specifying each of the weights in the system. It is not necessary 
for a neuron to be connected to all neurons in the following 
layer. Therefore, zero values for these weights can occur. 
Connections between neurons are often classified by their 
direction in the network architecture: 
−  Feedforward connections are connections between neurons 

in consecutive layers. They are directed from input to output. 
−  Lateral connections are connections between neurons in the 

same layer. 
−  Recurrent connections are connections to a neuron in a 

previous layer. They are directed from output to input. 
The propagation rule of a network describes the way the so-
called net input of a neuron is calculated from several outputs 
of neighboring neurons. Typically, this net input is the 
weighted sum of the inputs to the neuron, i.e. the output of the 
previous nodes multiplied with the weights in the weight 
matrix:  

( ) . ( )net t W o t=  

The activation rule - often called transfer function - determines 
the new activation value of a neuron based on the net input (and 
sometimes the previous activation value, in case a memory is 
used). The function F, which takes a (t ) and the vectors net for 
each different type of connection, produces a new state of 
activation.  
F can vary from a simple identity function 
like ( 1) ( ) . ( )a t net t W o t+ = = , to variations of linear like 
hard limiter or Saturating linear functions and even non -linear 
functions like  Gaussian or sigmoid functions.  
Sigmoid activation function is the most proper function for 
time-based prediction models which can be shown as the 
following equation: 

. ( )

1
( 1) ( ( ))

1bs net ta t F net t
e α−+ = =

+
 

Where a is the slope parameter of the function. By varying this 
parameter, different shapes of the function can be obtained.  
Based on sample data that is presented to it during a training 
stage, an ANN will attempt to learn the relations that are 
contained within the sample data by adjusting its internal 
parameters (i.e. the weights of the connections in the network 
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and the neuron biases). The algorithm that is used to optimize 
these weights and biases is called training algorithm or learning 
algorithm which can be classified broadly into those 
comprising supervised learning and unsupervised learning. 
Supervised learning works by presenting the ANN with input 
data and the desired correct output results. The network 
generates an estimate, based on the given input, and then 
compares its output with the desired results. ANNs being 
trained using an unsupervised learning paradigm are only 
presented with the input data but not the desired results. The 
network clusters the training records based on similarities that it 
abstracts from the input data. The network is not being 
supervised with respect to what it is ‘supposed’ to find and it is 
up to the network to discover possible relationships from the 
input data and based on this make certain predictions of an 
output.[after Dhar and Stein, 1997] The most common learning 
rule is the backpropagation algorithm. An ANN that uses this 
learning algorithm is consequently referred to as a 
backpropagation network (BPN). 
Several commercial and academic programs are available to 
help the development of neural network models. The user 
basically has to prepare the appropriate input and output files, 
and to decide the appropriate ANN architecture, besides 
defining a few other analysis parameters. For the analysis in 
this paper, the author used a multi-layered neural network 
called QNET. The program uses a back-propagation algorithm. 

  
POROUS  ASPHALT DURABILITY 
Porous asphalt has been used as a road surfacing material since 
the 1950s on military and civil runways. The Transport & Road 
Research Laboratory investigated the material for use in road 
applications during the 1970s but the results were not 
encouraging. Since then new materials have been developed 
encouraging renewed development and a number of trials have 
been undertaken in recent years in different countries. On 
Dutch motorways porous asphalt is widely used since the late 
1980s. Later two-layer porous asphalt was developed in the 
Netherlands, where it has been used on urban roads since 1990. 
In 1997, the first road section with very small grain size in the 
top layer was paved. (See Figure 2) 
 
 
 
 
 
 
 
 
 
 
 

Figure 2- The principle of two layer porous asphalt 
pavements 

 
Porous asphalt is the topmost of a number of layers within a 
road structure which differs from conventional materials in that 
it contains no fine material, only large single size stones, 
allowing a high percentage of air voids. The presence of air 
voids in the asphalt allows surface water to quickly drain below 

the road surface, offering markedly reduced spray and 
improved visibility.  

The open structure of the surface also reduces the 
compression and expansion of air in the tire tread profiles. The 
acoustic absorption suppresses mechanical and aerodynamic 
noise generated by the rolling tire on the road. To explain mo re 
precisely, the tires rolling on the road result in air pumping 
since air is forced away in front of, and sucked in behind, the 
area of contact between the tire and the road. This pumping 
generates high-frequency noise. On porous asphalt, the 
pumping, and thereby also the noise generated to the 
surroundings, is reduced because the air is instead pumped 
down into the pavement. The acoustic absorption effect is not 
restricted to tire/road noise only but is also effective in reducing 
mechanical noise, radiated from the underside of the vehicle 
where the oil pan and the gearbox housing form the main 
sources of engine noise. Dutch experiences with porous asphalt 
show noise absorption to depend on the thickness of the layer 
of porous asphalt. 
The primary concern in maximizing the continued effectiveness 
of a porous pavement is to predict the surface damages, namely 
raveling, on time. Although there is limited data on the 
effective life of porous asphalt top layers a reasonable 
estimation is 5 to 15 years, which will be reachable with proper 
adherence to site selection criteria, construction, maintenance, 
and correct use. After a rather long period of slow degradation 
(5-10 years) the speed of damaging increases. End of life of a 
porous top layer may be defined as the moment the occurrence 
of unacceptable damage-spots becomes unpredictable for the 
road authorities. Therefore it is important to predict when the 
porous paved surfaces will achieve a critical level of damage in 
order to allocate funds for necessary maintenance and 
rehabilitation. Current systems mostly use linear models to 
predict the durability of porous asphalt. 
The major drawback of porous asphalt layers is that they are 
very sensitive to raveling. The contact between tires and asphalt 
layers after a course of time make the top stones to come loose, 
which is called raveling. As a result of raveling many 
functional demands of the road such as traffic safety, ride 
comfort and noise level will not be satisfied any more. Since 
this detriment can develop itself explosively fast, it happens 
often that the surface layers should be replaced relatively 
quickly after the first observation of that. 
Raveling is also a complex detriment and the appearance of that 
depends on a lot of factors. Which factors have exactly the 
most effect and how important are their contribution to raveling 
is still unknown. Because porous asphalt layers as a current 
surface layer for motorways have been applied in so many 
places and since a good maintenance strategy is not simple to 
obtain, it is important to achieve a better understanding of that. 
The biggest problem with planning of maintenance is a wide 
range of durability in porous asphalt layers meaning some of 
them need maintenance after 8 years and the others after 14 
years. By the reason that durability of porous asphalt layers is 
almost impossible to determine, an optimization in maintenance 
strategy and also in maintenance costs is barely possible. 
Since 1987 the preferences has been given to the porous asphalt 
top layers on motorways by the state road authorities in the 
Netherlands. So the old surface layers have been replaced with 
porous asphalt layers. Because the average durability of porous 
asphalt surface layers is 10 years since 1997 the maintenance 
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has been substantially increased. The advantages of an 
enhanced understanding of raveling are inestimably valuable 
for Dutch ministry for Transport, Public Works and Water 
Management because a better understanding can lead to a huge 
reduction in the wide range of porous asphalt durability and 
also significant savings in maintenance costs of  the Dutch 
motorway network. That’s why the objective of this study is an 
accurate prediction of durability of porous asphalt surface 
layers. 
 
THE DATABASE 
The database provided by SHRP-NL research program was 
used in this study. The Strategic Highway Research Program 
Netherlands (SHRP-NL) has been performed between 1990 and 
2000 and had initiatives from SHRP program established in 
1984 by the U.S government. The performance data gathered 
from Dutch roads served as the basis for improving essential 
components of pavement management, such as performance 
models and maintenance strategies. The performance data 
cover a period of ten years on a comprehensive set of some 250 
test sections, located on in-service roads ranging from 
motorways to rural roads. Each section was surveyed at least 
once in a year and the test sections were divided to three 
subsections. The database contains the development of different 
detriments for different roads including roads with porous 
asphalt surface layers. The database has been assessed for its 
applicability in the practice of pavement management.  

The database contains 6057 information records. A total of 150 
sections contained relevant information of porous asphalt 
surface layers including severity percentage of raveling, climate 
and traffic fields. The severity of raveling has been categorized 
in raveling low, moderate high which are explained in Table 1.  
 
Table 1 – The categories of raveling severity 
_______________________________________ 
Severity of raveling     
_______________________________________ 
Low   6-10% stone losing per m2   
Moderate 10-20% stone losing per m2  
High  >20% stone losing per m2     
_______________________________________ 
 
Table 2 shows a summary of database values. In average 
porous asphalt layers showed 13.53% low raveling, 2.17% 
moderate raveling and 1.32% high raveling. In worth case 
porous asphalt surface layers will face 55% high raveling. The 
average climatic conditions show rainfall precipitation of 760 
mm per year, with about 59 cold days and 17 warm days. 
Roads with porous asphalt surface layers mostly will not 
become older than 13 years. Traffic percentage on test sections 
is maximal 42%, porous asphalt has an average thickness about 
52 mm and roughness about 3 mm. 
 

 
Table 2 – Summary of database values  
_______________________________________________________________________________________________________ 
        Raveling  Raveling Raveling  Rain  Warm  Cold Traffic  Thickness   Roughness   Age 
                      Low (%) Moderate (%) High (%)           (mm)   (days)  (days)    (%)    (mm)          (mm)      (Years) 
_______________________________________________________________________________________________________ 
Min             0         0       0   703       5     43      4      49             0   6 
Max         100        55      55    804      26     77     42     70                12              13 
Average      13.53                 2.17                1.32             759.5   16.5  58.6     23  52.4             2.97             7.9   
_______________________________________________________________________________________________________ 
 
 
RESULTS 
The previously described SHRP-NL data was initially analyzed 
using QNET Neural Ne twork with the objective of finding an 
ANN model as function of the available input parameters. A 
single output layer for raveling was used. The input layer 
consists of 19 data neurons as follows:  
− Input 1,4,7,10,13 (RL): Raveling Low from 1993 to 1997 

(%) 
− Input 2,5,8,11,14 (RM): Raveling Moderate from 1993 to 

1997 (%) 
− Input 3,6,9,12,15 (RH):  Raveling High from 1993 to 1997 

(%) 
− Input 16 (WD): average of Warm Days between the years 

1993 and 1997 (days) 
− Input17 (CD): average of Cold Days between the years 

1993 and 1997 (days) 
− Input 18 (RP): average Rainfall Precipitation between the 

years 1993 and 1997 (mm) 
− Input 19 (TP): average Traffic Percentage of heavy vehicles 

daily on test sections (%) 
 

− Input 20 (TH): maximum Thickness of asphalt  (mm) 
− Input 21 (R): maximum Roughness of asphalt(mm) 
− Input 22 (Age): Age of the pavement at 1998 (years)  
 
And the output layer consists of 19 data neurons as follows:  
− Output (1): low raveling year 1998 (%) 
− Output (1): moderate raveling year 1998 (%) 
− Output (1): high raveling year 1998 (%) 
 
A few ANN architectures were tried to find the best 
configuration for the hidden layers. The best results were 
obtained for the configuration with 3 hidden layers of 15, 10 
and 6 neurons, respectively. All neurons of a given layer are 
connected to all neurons of the subsequent layer. A sigmoid 
activation function was used. A training data set compromising 
115 random sections out of 150 available (77%) was in itially 
chosen for the learning stage. Figure 3 shows the learning rate 
of ANN during the learning process (iteration) which produced 
excellent results. The correlation coefficient for the learning 
stage was very high with R2=0.9995 and the Root Mean Square 
error wa s RMS=0.0009. 
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Figure 3 Learning Rate of ANN

 
 
After the training stage, the remaining 35 sections were used to 
validate the model. Predictions were also very good, despite a 
higher dispersion than in the learning stage. The correlation 
coefficient for the validation stage of raveling low was 
R2=0.986 and the Root Mean Square error was RMS=0.012, for 
raveling moderate R2=0.926 with RMS=0.089 and for raveling 
high R2=0.976 with RMS=0.041. As it can be seen in Figure 4  
 
 
 
 

 
 
the predicted values and the actual values are almost the same. 
The red line is an optimal agreement and the blue points are 
predicted patterns and in this case almost all of the blue points 
(patterns) have a position on the red line (optimal agreement). 
The lower correlation of the validation stage may be attributed 
to the relatively small number of sections available or to an 
over-fitting during the learning stage. 
 
 
 
 

 
Figure 4- ANN raveling values of 35 test sections used for validation
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An important feature of program QNET is that it allows 
quantifying the relative contribution of each input neuron to the 
computed output value. Hence it is possible to investigate the 
most relevant factors affecting raveling in porous asphalt 
surface layers. To experience this relationship another ANN 
model was made using Warm Days (WD), Cold Days  (CD), 
Rainfall Precipitation (RP), Traffic Percentage (TP), Thickness 
of asphalt  (TH), Roughness of asphalt  (R) and Age of asphalt 
(Age) as input parameters and raveling low, moderate and high 
as outputs (same as the first model only without historical data 
of raveling). Individual contributions of inputs are shown in 

Figure 5. Contributions were grouped for output neuron 
percentage of low, moderate and high raveling. As can be seen 
the contribution of warm days is the highest and rain fall 
precipitation the lowest. Cold days are about 14% in all sort of 
raveling severity. Rainfall can effect with an average of 4% and 
traffic percentage up to 14%. Age contributes rarely more than 
10% . Roughness is more important than Thickness but if the 
severity become mo derate thickness become as significant as 
roughness. The weather factors can contribute to 57% while 
traffic factor stays at 14%.  
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Figure 5- Relative contribution percentage of input parameters for the outputs  

 
QNET also allows analyzing how the parameters interact with 
each other in different severity of raveling. The interaction of 
cold days with asphalt age is absolutely important to know. 
Figure 6 shows particularly the interaction between input 
parameter 2 and 7, namely average of cold days (CD) and 
asphalt age (Age) causing raveling. Any color shows a 
percentage range. The red color has the highest value (40% 
and higher). The average of cold days can be between 43 and 
77 and for age between 6 and 13 (see Table 2). As it is clear in 
Figure 6 on old asphalt top layers  the cold weather cause 
raveling but if it is younger than 8 years even 70 cold days 
does not cause so much of raveling. In other words how older 
the asphalt is how more sensitive it becomes to cold days 
which lead to raveling. For example when the road is older 
than 10 years and more than 70 days per year are cold, there is 
a chance up to 40% that raveling happened. Furthermore with 
the same way of analyze it can been shown that in interaction 
between thickness and roughness, roughness become 
significant when the thickness is more than 60 mm. The 
roughness of less than 7 mm does not cause raveling. The rainy 
cold days make it up to 20% possible for occurrence of 
raveling.  The combination of cold days and heav y traffic 
cause fast development of raveling severity. If the traffic 
percentage is  more than 35%, it interacts strongly with cold 

days. The asphalt which is older than 10 years together with 
40% traffic causes also quick evolution of raveling. 
 
 
CONCLUSIONS 
The raveling values were computed for 150 sections of the 
SHRP-NL program for which a complete set of raveling low, 
moderate and high, warm and cold days, rain fall precipitation, 
traffic percentage of heavy vehicles daily on test sections, 
thickness, roughness and asphalt age was available. Artificial 
Neural Network was used to model the prediction of raveling, 
which is the key to define durability of porous asphalt surface 
layers. 
An extremely accurate model using QNET neural network 
was developed. This ANN model gave a coefficient of 
correlation of 0.9995 during the learning stage and 0.986, 
0.926 and 0.976 correlations during the validation stage; it is 
believed that this feature can be improved as more data 
becomes available. 
The studied database (SHRP-NL) covers a wide range of 
relevant information including age, detriment,  climate, and 
construction data. Another ANN model allowed quantifying 
the relative contributions of these factors on raveling values 
and credited most of low raveling to the climate factors (about 
58%), followed by traffic factor (14%), thickness (6%),
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roughness (12% ) and age (10%). The most significant part of 
climate factors is warm days. In raveling high contribution of 
factors is almost the same but in raveling moderate when 
raveling starts to develop fast, climate factors become less 
important(about 46%) whereas asphalt thickness increase its 
contribution to 15%. ANN Color Contours illustrated lots of 
interaction between input parameters which causing raveling. 

Relevantly it was showed that heavy traffic; low thickness and 
high roughness cause raveling on old asphalt top layers 
especially in cold rainy days.  
Artificial Neural Network (ANN) proved to be an extremely 
powerful technique to predict and analyze raveling in porous 
asphalt top layers and similar ANN models may be developed 
for other type of detriments and different kind of top layers.

.
 
 

 
 

 
Figure 6- Interaction color contour between Cold Days and Asphalt Age for Raveling  
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