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Abstract

A brain needs to detect an environmental change and
to quickly learn internal representations necessary in
a new environment. This article presents a theoret-
ical model of cortical representational learning that
can adapt to dynamic environments, incorporating
the results by previous studies on a functional role
of acetylcholine (ACh). We adopt the probabilis-
tic principal component analysis (PPCA) as a func-
tional model of cortical representational learning,
and present an on-line learning method for PPCA
according to Bayesian inference. Our approach is ex-
amined in two types of simulations with synthesized
and realistic datasets, in which our model is able to
re-learn new representation bases after environmen-
tal changes. Our model implies the possibility that
a higher-level recognition regulates the cortical ACh
release in the lower-level, and that the ACh level al-
ters the learning dynamics of a local representation
unit in order to continuously acquire appropriate rep-
resentations in a dynamic environment.

1 Introduction

External environments surrounding an animal can be
regarded as static for a short time, but dynamic over
a long time period. To adapt to such environments,
a brain needs to detect an environmental change and
to quickly learn internal representations necessary in
a new environment. This article presents a theoret-
ical model of cortical representational learning that
can adapt to dynamic environments, incorporating
results by previous studies on the functional role
of acetylcholine (ACh), a neuromodulatory chemical
[10, 7, 5.

Theoretically, learning of internal representation
in the cortex can be modeled by means of proba-
bilistic generative models [4, 14, 11, 16]. In this arti-

cle, we adopt the probabilistic principal component
analysis (PPCA) [18] as a simple model of a cortical
representational system and highlight the functional
role of ACh within the learning of this model. We in-
tend to discuss how our model adapts to environmen-
tal changes but not the validity of our probabilistic
model itself.

2 Model

2.1 Detecting environmental changes

To allow a PPCA to detect an environmental change,
we introduce an additional structure to the prob-
abilistic generative model of PPCA. The genera-
tive model for an n-dimensional observed variable
x; € RN™ is given by

Ty = @’gt + ft + ZtCt: (1)

where & ~ Np(€, | 0,0315), ¢, ~ Nu(Cy | 0,02171),
and t denotes the discrete time. The first two terms
provide the original PPCA generative model with the
following notations: ® = (W, u) € R**(m+1) and
¥, = (y;,1)" € RO"+D where a prime (') denotes a,
transpose. ¥, = (U1, »Yem) € R™ (m < n)is
a latent variable corresponding to a principal com-
ponent score, which is generated independently at
each time step from a standard Gaussian distribu-
tion. &, € R™ is a white noise and N,(- | -, ) denotes
a p-dimensional Gaussian density function®. I,, is an
n x n identity matrix, and o2 (o2 > 0) is an observa-
tion noise variance which is assumed to be a known
constant for simplicity. W = (w1, ,w,,) € R**™
is the principal component loading matrix, where
each column w; € ®*(j = 1,--- ,m) is a principal

_ 1 Cl(p— V=1 (p

Wy (x| m,B) = (2m) P2 S| e 2@ ET (emm),

where & € R? is a random vector. m € RP and X € RP*P are
a mean vector and a covariance matrix, respectively.
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component vector. u € R™ is the expected observa-
tion. The third term is an additional noise, where ag
is a constant noise variance and is known. z; € {0,1}
is an indicator variable regarded as a latent vari-
able. The joint probability distribution for a triplet

(z¢,Y,, 2) is given by

(T, Y2t =0]O) =
(1= 7)Nm (y; | 0, I) Ny, (24 | ©94,021,) , (2a)

p(@e, Y,z =1|0) =
TNm (Y | 0, 1) Ny (wt | G)'!:’taU?In) ; (2b)

where 02 = o2 + ag. The prior probability for the
indicator variable, P(z; =1) =1— P(2, =0) =r, is
assumed to be known such to represent the a priori
knowledge of the occurrence probability of environ-
mental changes.

The model (1) can be regarded as a simple version
of the mixture of PPCA [19] consisting of two PPCA
components, (2a) and (2b), which have the same pa-
rameter ® except for different Gaussian noises. This
model can detect an environmental change accord-
ing to the following mechanism. Consider a situa-
tion where the model parameter ® has been esti-
mated from the previous observations @;_1,T¢_s,. ..
and then a new observation x; is given. If x; is
generated in the current environment, it can be de-
scribed sufficiently by the component (2a) with the
regular noise variance o2, thus the posterior proba-
bility of z; = 1 becomes small. If x; is generated in
a novel environment, it can be regarded as an outlier
in the component (2a). In this case, the observa-
tion can be described better by the component (2b)
with a larger noise variance o2, thus the posterior
probability of z; = 1 becomes large. Accordingly,
the posterior probability of z; = 1 can be viewed as
a confidence of environmental change between time
steps t — 1 and t.

2.2 On-line Variational Bayes learning

We used the on-line variational Bayes (VB) method
[17] to infer the model parameter ©. Let
(Xl:taylzty Zl:t) = {(wrayrazT) | T = ]-a s 7t} be a
sequence of observations and corresponding latent
variables. The objective of the Bayesian inference is
to obtain a posterior distribution of unknown vari-
ables, p(Y1:¢, Z1.¢,® | X1.t), when given observation
variables Xj.;. For this purpose, an on-line varia-
tional free energy with a time-dependent forgetting
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factor A(s) € [0,1] (s =1,...,t) is defined by

FA g](t) = TAN$)LA(t) — H(t) (3a)
t t
LA(t) =77(t)2( 11 /\(8)>
7=1 \s=7+1
p(xr, Y., 2 | O)

x E [log W) ] (3b)
_ o 2 (O | X1.4) c
H(t)_E[lgp(e) ] (3¢)

where a trial distribution q(Y1.¢, Z1.¢, ® | X1.¢) is in-
troduced to approximate the true posterior distri-
bution p(Y1.4,Z1.4® | Xi.), and is assumed to be
factorized as qo(© | X1.¢) H::1 4 (Y, 2r | ;). E[]
denotes the expectation over the trial distribution
q. Furthermore, p(@®) is the prior distribution of

0. TX\t) = Zf—:l (Hizr+1/\(3)) is an effective
data number and 7(t) = 1/T?(t) is the normaliza-
tion term. The on-line VB method for the model (1)
is derived as a sequential maximization process of
the variational free energy (3). When a datum x; is
observed at time ¢, F* is maximized with respect to
@; in the on-line VB-Estep while ¢, (r=1,...,t—1)
and ¢ are fixed. In the next step, called the on-
line VB-Mstep, F* is maximized with respect to gy
while ¢, (7 = 1,...,t) is fixed. These two steps are
executed every time a new datum is observed.

The on-line VB method needs only to maintain
the expected sufficient statistics, instead of storing
all observed data; this scheme is more natural for
learning by animals than the batch one. The ex-
pected sufficient statistics are defined by

(f(z,y,2)) (t)
t t
=n(t)2< II /\(S)> Elf(2r,y,,2)], (4)

7=1 \s=7+1

where f(x,y, 2) is given by a quadratic function of x,
y and z;. This calculation can be done incrementally
as

(f(@,y,2)) (1) = (1 —n() {(f(=,¥,2)) (t - 1)
+n@)E [f(ze, y,2)],  (5)

where the normalization term n(t) acts as the
learning rate to control the speed of updating
(f(z,y,2)) (t). n(t) can also be calculated incremen-
tally, because its reciprocal T*(t) is given by the fol-
lowing step-wise equation:

TANt) = 14+ ATt — 1). (6)

It is shown that the on-line VB method achieves a

stochastic approximation of the Bayesian inference if
§—0

scheduling like A(s) — 1 is used [17].
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2.3 Regulating learning dynamics

The learning rate 7(t) regulates the updating speed
of expected sufficient statistics as shown in Eq. (5), so
that it balances the adaptability and stability of the
on-line learning process. Because 7(t) is dependent
on the sequence of A(¢) as shown in Eq. (6), in which
TA(t) is the reciprocal to 7(t), the scheduling of the
forgetting factor A(t) is essential for modulating the
dynamics of on-line learning. We introduces here the
following scheduling scheme:

At)=(1-a)A(t-1)+a(l—glz=1), (7)

where ¢;(2; = 1) denotes the posterior probability
of z; = 1, which informs of the occurrence of an
environmental change. a (0 < & < 1) is a smoothing
constant to reduce an excessive sensitivity to outliers
that may appear even in a static environment. It
is expected that when an environment changes, a
temporal increase of ¢;(2; = 1) results in the decrease
of A(t), and facilitates the learning by placing more
weight on the recent data than the previous data.

Moreover, we also introduce a refractory period
(RP) into the scheduling scheme, in order that A(t)
recovers after dropping to almost zero in response to
an environmental change; if A\(¢) is below a threshold
¢ at time t = to, qi(2¢ = 1) in Eq. (7) is explicitly
replaced by O during t = to + 1,...,tp + v, where
¢ and v are known constants. The RP is especially
required for high-dimensional cases as shown in the
simulation in Section 3.2

This on-line VB learning achieves stochastic ap-
proximation of the Bayesian inference if the environ-
ment continues to be static, since g;(z; = 1) = 0 for

any ¢ implies A(t) =5 1 from any A(0).

3 Simulations

Our learning model was evaluated using two types of
computer simulations, which employed synthesized
and real datasets.

3.1 Synthesized data

The basic features of our approach were examined
by using simple two-dimensional synthesized data. A
two-dimensional vector x; was generated according
to Eq. (1) with z; = 0 at each time step ¢, where the
actual parameter ® = (W, u) was usually fixed but
occasionally changed as follows: @ = ( _51 %8 )

for t = 1,...,200, (é -1 ) for t = 201,...,400,
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3
the on-line variational free energy (3a) may be useful
for the on-line determination of the principal com-
ponent dimensionality m, we assumed here a sit-
uation in which m of actual data was known as
m = 1. The known constants were set as follows:
0,2 =107%,07% = 107%,r = 0.001,a = 0.05, and
4 = 0.001. In this simulation, the RP was not used.

and ( -3 :%8 ) for ¢ = 401,...,600. Although

Figure 1 shows learning processes under the fol-
lowing three conditions: 1) the forgetting factor was
fixed at A(t) =1 for any ¢; 2) fixed at A(¢) = 0.8 for
any t; and, 3) A(t) was scheduled by Eq. (7). Only
the direction of the estimated principal component
vector, represented as the angle from the z;-axis, is
shown in this figure. The estimator of the learning
model is given as the expectation® of the model pa-
rameter over the trial posterior distribution. When
the forgetting factor A\, (s)(s = 1,...,T) was set at
constant of 1, the estimator closely approached the
true value in a static environment, but it could not
follow environmental changes. When the forgetting
factor was set at a smaller constant of 0.8, the estima-
tor could alter its value in response to environmental
changes, but a high variance remained. Because of
this variance, the estimator could not be improved
in a static environment even when the time elapsed.
When the forgetting factor was regulated by our
method, on the other hand, the inference exhibited
high performance. Namely, the estimator could alter
its value just after the environment change, while it
was improved in a static environment as the number
of observed data increased. The figure also shows
the modulation of A(t) and n(t), which makes the
learning flexible as described above.

3.2 Realistic data: face images

Our approach was evaluated by using a dataset of re-
alistic face images, assuming that a representational
system is used for our recognition of images. Basis
vectors (principal components) extracted from a set
of face images using PCA were called “eigenfaces”
[20]. The dataset used here consists of 100 gray-scale
photographs of frontal faces and 100 of half-profile
faces, registered in Yale Face Database B [8]. The
subjects in this dataset were six males and one fe-
male in various lighting conditions. We standardized
the images such that all the images contained 49 x 41
pixels, and the centers of eyes for frontal views and
the centers of faces for half-profile views took the
same coordinate. The pixel values were normalized

2In our case, the posterior distribution is Gaussian, thus
the parameter expectation is identical to its mean.
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Figure 1: The direction of the estimated principal
component vector and modulatory variables. The
horizontal axis denotes the time step t. The top
panel shows the estimator in the following three
cases: 1) A(t) = 1.0; 2) A(¢) = 0.8; and 3) A(t) is
controlled by our proposed scheduling scheme. Only
the direction of the principal component vector, the
angle from the z;-axis, is shown. A mark ‘o’ repre-
sents a real value in each time step. The middle and
bottom panels show the time series of A(t) and n(t),
respectively.

to be within [0, 1], thus each image was represented
as a 2,009-dimensional vector of normalized pixel val-
ues. Figure 2 shows the first five eigenfaces extracted
from the frontal and half-profile face images, using

the standard PCA.

Figure 2: The first five eigenfaces (first to fifth from
left to right) extracted by the standard PCA from
the frontal (upper row) and half-profile (lower row)
face images.

The learning process was divided into two phases.
In the first phase, 100 observations were randomly
selected from the frontal faces and sequentially pro-
vided to the learning model. This phase is called
the “frontal condition.” In the next phase, called
the “half-profile condition,” 100 observations were
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selected from half-profile faces. The principal com-
ponent dimensionality m was fixed at 14, and the
known constants were set as: 0;2 = 60,04_2 =5,r=
0.001,a = 0.02, and v = 0.001. The scheduling of
the forgetting factor described in Section 2.2 was
used with or without the RP, where ¢ = 0.05 and
v = 30.

Figure 3 shows the obtained first eigenface with
the largest norm during the on-line learning process
with the RP. In the latter half of the frontal condi-
tion, at t = 60 and 90, the eigenface successfully cap-
tured the features of frontal faces. The eigenface was
then modified quickly into that of half-profile faces at
t = 130,150 and 180, through a transient phase like
at t = 110. The figure also shows the learning pro-
cesses with or without the RP, which are evaluated
in comparison with the result by usual PCA. The
eigenface obtained by our on-line learning without
the RP did not approach that by the usual PCA;
in contrast, that with the RP behaved well as the
time elapsed within both the frontal and half-profile
conditions. The time courses of 7(t) and A(t) are
also shown in this figure. In the case with the RP,
n(t) and A(t) shift in time to properly adapt to the
condition change.

4 Discussion

Physiological studies have reported that a high ACh
level facilitates the plasticity of receptive field and re-
organization of representational maps [2, 12, 6, 3, 15].
Moreover, it has also reported that cortical ACh lev-
els tend to increase when facing novel stimuli or en-
vironments and to gradually decrease through ha-
bituation processes [1, 13, 9]. These works provide
evidences that a cortical ACh level increases in re-
sponse to an environmental change and regulate the
learning of cortical representational system.

The simulations in Section 3 showed that our on-
line VB learning could alter its dynamics in order to
re-learn new representation bases necessary in novel
environments. The dynamics change is based essen-
tially on modification of the learning rate 7(t) in re-
sponse to environmental changes. Here, we present
an idea that the cortical ACh level corresponds func-
tionally to the learning rate in the learning of cortical
representational systems. This idea is based mainly
on the following computational perspective on the
functional role of ACh, which has been presented by
Hasselmo [10] standing on physiological facts: 1) a
high ACh level within a local circuit leads to a pre-
dominant influence of external stimuli, which induces
learning of new memories; and 2) a low ACh level,
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Figure 3: Top row: the first eigenface obtained during the on-line learning process. The other four rows, from
the second to the bottom: the angle between the first basis vector (i.e., with the largest norm) obtained in our
learning and that by the standard PCA, the distance between the estimated mean vector and the true mean,
A(t) and n(t), where each dash or solid line denotes the case without the refractory period (RP) or with the RP,
respectively. A set of dashed vertical lines in each panel denotes the time steps at which the first eigenfaces on

the top row are displayed.

in contrast, leads to a predominant influence of lo-
cal intrinsic activities, which corresponds to recalling
of previously-learned information. This function of
ACh is analogous to the function of 7(¢) in our on-
line learning, because it regulates the updating of
expected sufficient statistics which can be regarded
as memories of past observations and inferences.

Our model is related to the previous studies by
Yu and Dayan [21, 22], in both of which they used a
probabilistic generative model as a model of cortical
processing and incorporate a function of ACh into
the model. They have advocated that cortical ACh
level conveys an “uncertainty” information about the
inference or learning, while we hypothesized an ACh
level as the learning rate in cortical representational
learning. Their three-layered hidden Markov model
[21] assumed that an ACh signal conveyed an top-
down information to the intermediate hidden layer
and influenced its inference. Their subsequent model
[22], a factor analysis model in which the mean vec-
tor of a Gaussian hidden variable shifted in time,
assumed that an ACh level reported an uncertainty
about the posterior of the mean vector of hidden vari-
able and influenced its learning. Our model employs
a similar idea to [21], because the ACh level in our

model is regulated by a kind of top-down informa-
tion, i.e., the posterior probability of the index vari-
able, ¢; (2¢). However, our hypothesized function of
ACh in learning is different from that in [22]: the
ACh level in [22] influenced only the learning of the
mean vector as mentioned above, and the learning of
basis vectors, which was essentially important for ob-
taining appropriate internal representations, was not
explicitly addressed; in contrast, the ACh level in our
model influences the learning of basis vectors by con-
trolling the updating of expected sufficient statistics.
In addition, the hypothesized function of ACh in our
model shows a consistency with the Hasselmo’s hy-
pothesis more clearly than that in [22], because the
learning rate in our model controls the updating of
memories more directly than the uncertainty in [22].

5 Conclusion

We proposed an on-line learning scheme for a modi-
fied mixture of PPCA, which could alter its dynamics
in order to re-learn new representation bases neces-
sary in novel environments. Based on existing both
experimental and computational evidences, we pre-
sented an idea that an ACh level in the cortex per-
forms as the learning rate which regulates the adapt-
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ability and stability in our on-line leaning, stand-
ing on a statistical approach to understanding brain
functions.

A Algorithm

In this implementation, we assume a natural conju-
gate prior for p(@®), given by

p(©) = [T Nws1 (8n I en, v Iinia) . (8)
h=1

Here, 0n = (whlatha s awhma,uh)’ € ‘SR(m+1) is a
transposed row vector of ®, where w;; is the (4, j)-
element of matrix W and p; is the j-th element of
vector . en = (6pa, - ,0nm,0) € R 45,
is the Kronecker’s delta, and v (y > 0) is a con-
stant inverse variance. The mean of each principal
component vector w; (j = 1,---,m) over the prior
distribution (8) becomes orthogonal with the oth-
ers, and its norm equals 1. Since the principal com-
ponent vectors are estimated as orthonormal bases
when there are no observed data, this prior distribu-
tion is suitable for PCA.

The algorithm of our on-line VB learning for the
modified MPPCA is summarized as follows.

1. Initialization phase:

Initialize the trial posterior of parameter, go(©),
such as to be equal to the prior distribution:

n
00(©) = [ Nons1 (64 164,57'V),  (9)
h=1
where éh = ep,y =7 and V= I, +1. Initialize
A(0) simply at A(0) = 1.
2. Inference phase:

After observing a datum x; at time step ¢, the
following procedure is executed.

On-line VB-Estep: F?(t) is maximized with
respect to q:(yy, 2t | @¢). The solution does not
depend on A(s) (s =1,--- ,t) and is given by

@t (Yy, 2 = i|xy)
= Cexp|E llogp(@s, 3y, 2 = 1©)]],  (10)
for ¢ = 0,1. C is a normalization term. Based
on this posterior distribution, the forgetting fac-
tor A(t) is given by equation (7). The effective

data number T*(t) and the learning rate n(t)
are updated by using the forgetting factor A(¢):

TN() = 1+ MOTMD), 0(t) = 1/T(®). (1)
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On-line VB-Mstep: F(t) is maximized with
respect to gp(©|X1.;). The solution is given by

n
0(O1X1.0) = [] Nonss (641 65,471V),
h=1
(12)

where

¥ =02 TA){(1 — 2))(2)
+ o2 TA()(2) (1) + (13)

v :% (07T (1)((1 - 2)33")(2)

+o 7 TA()zg9 ) (1) + 7L mt1) (14)

Z% (07T ()((1 - 2)zF')(2)

o 2Tt 2y ) () V. (15)

3. Obtaining the mean model parameter:

The expectation of parameter @ over the trial
posterior distribution, ®*, has been obtained by

~ ~ !
equation (15), as @* = (91, ‘e ,Gn) .

References

[1] E. Acquas, C. Wilson, and H. C. Fibiger.
Conditioned and unconditioned stimuli increase
frontal cortical and hippocampal acetylcholine
release: effects of novelty, habituation, and fear.
The journal of Neuroscience, 16(9):3089-3096,
1996.

[2] J. S. Bakin and N. M. Weinberger. Induction of
a physiological memory in the cerebral cortex by
stimulation of the nucleus basalis. Proc. Natl.
Acad. Sci. USA, 93:11219-11224, 1996.

[3] D.T. Blake, N.N. Byl, and M.M. Merzenich.
Representation of the hand in the cerebral cor-
tex. Behavioural Brain Research, 135:179-184,
2002.

[4] P. Dayan, G. E. Hinton, R. Neal, and R. S.
Zemel. The Helmholtz Machine. Neural Com-
putation, 7:1022-1037, 1995.

[5] K. Doya. Metalearning and neuromodulation.

Neural Network, 15(4-6):495-506, 2002.

ICESS.36 of 7



[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J.-M. Edeline. Learning-induced physiological
plasticity in the thalamo-cortical sensory sys-
tems: a critical evaluation of receptive field plas-
ticity, map changes and their potential mech-
anisms. Progress in Neurobiology, 57:165-224,
1999.

J.-M. Fellous and C. Linster. Computational
models of neuromodulation. Neural Computa-
tion, 10:771-805, 1998.

A.S. Georghiades, P.N. Belhumeur, and D.J.
Kriegman. From few to many: Illumination
cone models for face recognition under variable
lighting and pose. IFEE Trans. Pattern Anal.
Mach. Intelligence, 23(6):643-660, 2001.

M. G. Giovannini, A. Rakovska, R. S. Ben-
ton, M. Pazzagli, L. Bianchi, and G. Pepeu.
Effects of novelty and habituation on acetyl-
choline, GABA, and glutamate release from the
frontal cortex and hippocampus of freely mov-
ing rats. Neuroscience, 106(1):43-53, 2001.

M. E. Hasselmo.
cal function: modeling the physiological basis of
behavior. Behavioural Brain Research, 67:1-27,
1995.

Neuromodulation and corti-

G. E. Hinton and Z. Ghahramani. Generative
models for discovering sparse distributed rep-

resentations. Philosophical Transactions Royal
Society B, 352:1177-1190, 1997.

M. P. Kilgard and M. M. Merzenich. Cortical
map reorganization enabled by nucleus basalis
activity. Science, 279:1714-1718, 1998.

M. I. Miranda, L. Ramirez-Lugo, and
F. Bermudez-Rattoni. Cortical choliner-
gic activity is related to the novelty of the
stimulus. Brain Research, 882:230-235, 2000.

B. Olshausen and D. Field. FEmergence of
simple-cell receptive field properties by learn-
ing a sparse code for natural images. Nature,
381:607-609, 1996.

S. Penschuck, C. H. Chen-Bee, N. Parakash, and
R. D. Frostig. In vivo modulation of a cortical
functional sensory representation shortly after

topical cholinergic agent application. J Comp
Neurol, 452(1):38-50, 2002.

R. P. N. Rao and D. H. Ballard. Predictive cod-
ing in the visual cortex: a functional interpre-

tation of some extra-classical receptive-field ef-
fects. Nature Neuroscience, 2(1):79-87, 1999.

ICESS.37 of 7

[17]

[18]

[19]

[20]

[21]

[22]

BICS 2004 Aug 29 - Sept 1 2004

M. Sato. Online model selection based on the
varational Bayes. Neural Computaion, 13:1649—
1681, 2001.

M. Tipping and C. Bishop. Probabilistic princi-
pal component analysis. Technical report, Neu-
ral Computing Research Group, Aston Univer-
sity, 1997.

M. E. Tipping and C. M. Bishop. Mixtures
of probabilistic principal component analyzers.
Neural Computation, 11:443—-482, 1999.

M. Turk and A. Pentland. Eigenfaces for
recognition. Journal of Cognitive Neuroscience,
3(1):71-86, 1991.

A. Yu and P. Dayan. Acetylcholine in cortical
inference. Neural Networks, 15(4-6):719-730,
2002.

A. Yu and P. Dayan. Expected and unexpected
uncertainty: ACh and NE in the neocortex. In
Advances in Neural Information Processing Sys-
tems 15, Cambridge, MA, 2002. MIT Press.



