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Abstract. A major challenge to understanding cortical function is the
complexity found both at the single cell and microcircuit levels. This
review covers theoretical studies aimed at elucidating dynamic signal
processing within hippocampal pyramidal cells. This processing involves
both the intrinsic pyramidal cell properties as well as the microcircuit
of inhibitory interneurons that synapse onto the cell. These factors are
considered within the framework of associative memory function in areas
CA1 and CA3 of the mammalian hippocampus.

1 Introduction

Considerable detail is now known about the individual neuronal cell types found
in the cortex, and the circuits they form. However, mathematical models and
computer simulations typically concentrate on a particular level of detail, either
the single cell, or networks with simplified cellular descriptions. It is both pos-
sible and desirable to try to formulate functional models of cortical networks
that include known details of all cell types and their detailed microcircuitry.
This review considers theoretical modelling studies that cover aspects of the
function of the mammalian hippocampus. Firstly, details of the microcircuitry
formed by pyramidal cells and the variety of inhibitory interneurons in regions
CA3 and CA1 of the hippocampus are given. Then single cell studies of hip-
pocampal pyramidal cells are introduced. Finally, certain network-level models
that treat these hippocampal areas as associative memories are described. Only
models that attempt to include biophysical details of the cell types and realistic
microcircuitry are included here. The emphasis is on providing an overview of a
breadth of work that is not usually considered together, at the expense of depth
in any particular aspect.

Associative memory is one of the oldest artificial neural network (ANN)
paradigms. More than any other ANN, it is also plausibly a model of how cer-
tain brain regions may operate. Of particular interest here is the mammalian
hippocampus, in which regions CA3 and CA1 have been proposed to be auto-
and heteroassociative memories, respectively [80]. This has led to the formula-
tion of biophysically realistic network models of associative memory based on



the architecture and operation of these hippocampal areas [55,82]. A number of
factors must be considered when moving from an ANN model to a biophysical
model, including;:

— how are patterns of information coded by neuronal spikes?

— what, if anything, constitutes a rhythmic clock cycle?

— how are storage and recall modes separated in space and time?
— what roles do the different neuronal types play?

The work described here makes the premise that gamma frequency rhythms
(30-80Hz) may constitute a basic clock cycle [9,45,55]. A slower theta frequency
rhythm (5-12Hz) is superimposed on this clock cycle and controls phasing of
storage and recall [23,26,82]. This is based on the hippocampal activity seen
in rats exploring a novel environment, absorbing and storing new spatial infor-
mation [60]. These models do not attempt to include all behavioural states in
rats, such as associated with sharp waves [7], nor necessarily any states found
in other animals, particularly primates. Nonetheless, they provide explicit bio-
physical formulations of associative memory operation and provide an excellent
viewpoint from which to try to understand neuronal cellular and microcircuit
functioning in a broader context.

2 The Hippocampal Microcircuit

The dominant cell type in many areas of neocortex and hippocampus is the pyra-
midal cell (PC). The outputs from these cells are excitatory and the networks
they form are likely to be the principal information processing structures in these
brain regions. When ANNs are considered as models of the brain they are typi-
cally being equated with networks of PCs. Pyramidal cells, both in hippocampus
and in neocortex, are surrounded by a variety of inhibitory interneurons (INs).
These INs differ in morphology, pharmacology and connectivity [17,46, 52]. Un-
derstanding their functional roles is a great challenge. ANN models usually con-
tain only a single cell type (PCs) within a simple network architecture. Many of
the details of the microcircuitry involving pyramidal cells and these interneurons
is now known for the CA1 and CA3 regions of the hippocampus [17]. The basic
hippocampal microcircuit is shown in Figure 1.

The first feature to note is the spatial segregation of excitatory input from
different pathways onto a PC [34]. In CA1, the Schaffer collateral input from
CA3 PCs is largely to stratum radiatum (SR), constituting the proximal region
of the apical dendritic tree. Recurrent collaterals from other CA1 PCs synapse
on the basal dendritic tree (stratum oriens: SO). Perforant path input from
layer IIT of entorhinal cortex (EC) reaches the distal part of the apical dendritic
tree (stratum lacunosum-moleculare: SL-M). In region CA3, input to stratum
radiatum and stratum oriens is largely from other CA3 PCs. Input to the distal
apical tree comes from layer II of entorhinal cortex. A third excitatory input in
CA3 comes from granule cells of the hippocampal dentate gyrus which form the
mossy fibre synapses in the very proximal region of the apical tree.



Fig. 1. Microcircuit architecture of INs surrounding a PC in the CA1 or CA3 region
of the hippocampus. Small triangles are excitatory synapses and small circles are in-
hibitory synapses. Adapted from Paulsen and Moser [62]. See text for details.

Though a complete catalogue of interneuronal types remains to be deter-
mined, several classes can be distinguished on anatomical and pharmacological
grounds [17,46,52]. These include basket cells (BC), bistratified cells (BSC),
axo-axonic (chandelier) cells (AAC) and oriens lacunosum-moleculare (horizon-
tal) cells(O-LM). These INs are all inhibitory GABAergic cells. As illustrated
in Fig. 1, like excitatory afferents, different IN types target specific spatial re-
gions on PCs. They also receive excitatory input from particular pathways and
may form synaptic (inhibitory) and gap junction (excitatory) connections with
other INs. Other cell classes include horizontal and radial trilaminar cells and
INs that only synapse onto other INs [17]. A subclass of horizontal trilaminar
cells (HT'C) send axon collaterals out of the hippocampus to the medial septum
(MS). There may also be inhibitory projections between hippocampal subfields
(CA1 to CA3).

In addition to targetting specific dendritic localities on PCs, different classes
of IN also exhibit a specific spread in their network connectivity across cells.
Typically, an IN makes synaptic connections within a defined local area, unlike
PCs that make widespread connections. Total IN numbers may be only 10% of
the total cell population, with a single PC innervating hundreds of INs and an
IN innervating several thousand PCs [17]. The spread of IN connections may
be highly focussed. For example, a single O-LM cell makes connections in the
distal dendritic tree of PCs with a spread that exactly matches the spread of
excitatory input from a single entorhinal cell onto the same PC dendritic location



[17]. The nature of the inhibitory connections also differs with IN class. Basket
and axo-axonic cells make several powerful connections onto the perisomatic and
axon initial segment regions of a single PC, respectively, indicating the ability to
strongly influence spike generation and output in the PC. In contrast, bistratified
cells make more diffuse connections, with no more than one connection on a
particular dendritic branch [17].

There is not a one-to-one correspondence between morphology, pharmacol-
ogy and electrical activity in INs, making classification very difficult [17,46, 52].
Basket cells, in particular, include at least two types that are distinguishable on
pharmacological grounds and appear to have distinct functional roles within the
hippcampal microcircuit [16]. In the associative memory models to be described
later in this paper, the basket cells are likely the parvalbumin (PV)-containing
cells. Recent data indicates that certain cell types may be distinguished by their
firing patterns in different brain states [41].

What does the microcircuit do? Most well studied, both experimentally and
with mathematical modelling, is the contribution of the microcircuit to generat-
ing and stabilising oscillatory activity at different frequencies [78]. Though the
mechanisms that produce oscillations are not the focus here, two different oscil-
lations, the theta and gamma rhythms, play an important part in certain models
of associative memory function in the hippocampus. The precise mechanisms un-
derlying theta (5-12Hz) are complex and include extra- and intrahippocampal
sources [8,61]. Gamma (30-80Hz) is strongly determined by the intrinsic cellu-
lar and synaptic properties of the hippocampal microcircuit [83] and may be
controlled by external inputs to the hippocampus [13]. Here we are concerned
with the possible functioning of the microcircuit as an information processing
construct. In the final sections of this paper we will consider the possible role
of this microcircuit in controlling storage and recall within associative memory
networks.

3 Signal Processing in Neurons

Neurons integrate synaptic input from other neurons for the end purpose of
producing their own output signals for propagation to receiving neurons. The
synaptic input also results in signals that are internal and localised within a
neuron and determine synaptic plasticity. The integration of synaptic input in-
volves the spatial and temporal summation of signals from different synapses and
the interaction of these summed signals with the intrinsic membrane properties
of the neuron. These properties are determined by the typically heterogeneous
distribution of different types of ion channels throughout the dendritic tree.

3.1 Intrinsic Properties of Pyramidal Cells

Increasingly detailed knowledge is being obtained about the spatial distribution
of ion channels in different neuronal types, as recently reviewed in Migliore and
Shepherd [59]. CA1 pyramidal cells are amongst the most well characterised in



this regard. Sodium and calcium channels maintain a relatively uniform density
out into the apical dendritic tree, though sodium channel characteristics and
the type of calcium channel may change with distance [38,50]. The fast A-type
potassium channel and the mixed cation H channel increase in density roughly
6-fold over several hundred micrometers distally in the apical tree [30,47].

Voltage-activated ion channels are characterised by the membrane voltage
range over which they open (activate), and the time course of their opening and
closing. Certain channel types will remain open while the membrane voltage
is within the appropriate range. Other channels inactivate with a certain time
course, that is they will close some time after they have opened, even though
the membrane voltage may still be within the range at which these channels first
open. Many ion channels activate when a cell is depolarised, that is, when the
membrane potential moves towards zero from rest. Such channels include sodium,
calcium, delayed rectifier (DR) and A-type (A) potassium, and the mixed cation
M channels. Other types, such as the H channel are activated at hyperpolarised
potentials. Sodium, calcium and the DR and A potassium channels activate
quickly with millisecond kinetics. The M and H channels activate with time
courses in the tens of milliseconds. These channel types will be more extensively
discussed than others in what follows. Slower channels, such as the calcium-
activated slow-after-hyperpolarizing-potential potassium channel (AHP), have
activation dynamics in the range of hundreds of milliseconds to seconds, and
contribute to spike frequency adaptation.

Functionally, these voltage-activated ion channels may be classified as ampli-
fiers or suppressors of changes in membrane voltage. Ton channels whose reversal
potential and activation range are in the same direction as a change in mem-
brane potential away from rest act as amplifiers. The current generated by the
opening of these channels will move the voltage further from rest. Sodium and
calcium channels are amplifiers. In contrast, various potassium and mixed cation
(M and H) channels are suppressors of voltage change. Movement of the mem-
brane potential away from rest into the activation range of these channels is in
the opposite direction to their reversal potential. Consequently the current gen-
erated by the opening of these channels will tend to nullify the original change in
potential. The action potential (AP) is the classic example of the interaction of
amplification by sodium channels and suppression by potassium channels. Fast
channels such as these, with dynamics in the millisecond range, are responsible
both for generating action potentials and shaping synaptic voltage responses
(EPSPs) as they travel through the dendritic tree to the soma. Slightly slower
channels, such as M and H, that are suppressors of voltage change, act as high
pass filters and contribute to electrical resonance in neurons, as will be described
below.

A detailed exposition of the different ion channel types found in hippocampal
pyramidal cells and their dynamic characteristics is given by Borg-Graham [6].



3.2 Signal integration

The dynamic characteristics of different ion channels and their spatial distribu-
tion within dendritic trees gives them specific functional roles for synaptic signal
integration. Ion channels contribute to the time course and summation of synap-
tic input. Here we consider work that addresses how excitatory inputs that are
widely distibuted across the apical dendritic tree of PCs summate to affect cell
output in the soma. Do such inputs sum linearly? Will distant inputs have as
much influence on cell output as those close to the cell body?

Synaptic scaling One consequence of synapses being spatially distributed
across a dendritic tree is that those synapses that are more distant from the
cell body may have less impact on the voltage response at the soma than more
proximal synapses, due to membrane current leakage as signals travel through
the dendrites. Either distal synapses need to produce larger local EPSPs or sig-
nals need to be amplified as they travel along the dendrites to overcome this
disadvantage. There is experimental evidence that the synaptic AMPA conduc-
tance does increase with the distance of the synapse from the soma in the apical
dendrites of CA1 pyramidal cells [2,49].

Temporal summation The rising density with distance from the soma of A
and H channels in the apical dendritic tree of CA1 PCs may in part determine
the temporal summation of synaptic inputs. In a series of experimental and
modelling studies, Magee [47,48] has demonstrated that deactivation of the H
current may act to shorten the time course of distal EPSPs. This has the effect
that the temporal summation of trains of EPSPs is independent of their spatial
location within the dendritic tree.

In a modelling study, Migliore [57] has demonstrated that activation of the
A current and deactivation of the H current are instrumental in restricting the
temporal integration of distal and proximal inputs to a time window of around
20msecs within which the distal input precedes the proximal input.

Spatial summation For a pyramidal cell to produce an output it typically
needs to receive a number of contemporaneous inputs. These inputs are likely
to be spatially distributed across a portion of the dendritic tree. Their spatial
locations, in combination with the local membrane characteristics, will determine
how the different inputs summate.

Various functional scenarios depend on the mathematical form of input sum-
mation. In a study of pattern recognition by CA1 PCs, Graham [19] considered a
situation in which a pyramidal cell needed to be able to accurately distinguish the
number of simultaneous excitatory inputs arriving at random locations within
the stratum radiatum portion of the apical dendritic tree. The amplitude of the
voltage response in the soma was used as the criterion for measuring the number
of inputs. Different spatial distributions of the same number of inputs produced



slightly different voltage amplitudes, introducing noise into the measurement
that limited the discrimination that could be made.

Different, characteristics of the synaptic input and the membrane properties
of the dendritic tree were explored. The basic case consisted of all inputs (in the
form of single APs) arriving at exactly the same time onto a dendritic tree con-
taining only a leak conductance (passive membrane). A comparison was made
between the distributions of voltage amplitudes for 200 compared with 100 in-
puts to synapses at different random spatial locations. Amplifying mechanisms at
each synapse and in the dendritic membrane that boosted distal inputs all acted
to improve the signal-to-noise ratio between the amplitude distributions of 200
and 100 inputs. This equates with an improvement in the cell’s discrimination
of the number of simultaneuous inputs reaching its dendritic tree. The amplify-
ing mechanisms included (1) scaling of the synaptic AMPA conductance so that
the EPSP amplitude at the soma of a single input was independent of synaptic
location, (2) an NMDA component of the synaptic EPSP, (3) a uniform distribu-
tion of persistent (noninactivating) sodium channels in the dendritic membrane,
and (4) a uniform distribution of low-voltage-activated calcium channels. These
mechanisms improved input discrimination when included individually and in
combination.

Two extra sources of noise were included. Firstly, rather than the APs ar-
riving synchronously at all the synapses, the arrival times were uniformly dis-
tributed across a short interval of 20msecs. Secondly, a random variation in the
maximum synaptic conductance was added to each synapse to simulate quantal
variance. As might be expected, discrimination ability was reduced by quantal
variance. Intriguingly, the temporal variance of arrival times actually increased
discrimination ability. This was presumably due to a reduction in nonlinear sum-
mation at nearby synapses and a randomisation of EPSP arrival times at the
soma.

Linear and nonlinear summation Using a very detailed model of a CAl
pyramidal cell, Poirazi et al. [64, 65] investigated the impact of the relative spa-
tial location of synapses on the summation of their EPSPs. They considered the
cellular response to active synapses clustered locally on a dendritic branch, with
a number of clusters on different branches. The computer simulations demon-
strated that the clustered inputs on a single branch summed nonlinearly due to
amplification by NMDA, sodium and calcium currents. The peak voltage output
from a dendritic branch was a sigmoidal function of the number of active inputs
on that branch. However, the voltage signals propagating from separate branches
summed linearly in the trunk of the apical dendritic tree due to rectification by
the A current. Thus they characterised the pyramidal cell as a two-layer network
in which the input at the soma consisted of the linear sum of a set of sigmoidal
units, corresponding to the dendritic branches.



3.3 Resonance

The dynamics of neuronal membrane and ion channels causes electrical resonance
in neurons. The membrane capacitance and resistance (or leak conductance) pro-
vide low-pass filtering of electrical signals. This is most clearly seen if a neuron
is driven by a subthreshold oscillatory current. The amplitude of the voltage
response gradually decreases as the current frequency increases, for the same
current amplitude. In contrast, relatively slowly activating ion channels that act
as suppressors of voltage change provide high-pass filtering. These channels do
not activate sufficiently fast to attenuate high frequency changes in membrane
potential, but will act to suppress lower frequency changes. This combination of
low- and high-pass filtering results in resonance. For stimulation by a subthresh-
old oscillating current of some fixed amplitude, the neuronal voltage response
will have a maximum amplitude at some frequency of oscillation intermediate
to the range of low- and high-frequency attenuation. Ion channel currents that
amplify voltage changes can provide an amplification of the resonance peak. An
introduction to neuronal resonance is provided by Hutcheon and Yarom [33].

A recent experimental and modelling study has demonstrated resonance in
CA1 PCs [32]. Resonance at both depolarised and hyperpolarised potentials
was evident, with a resonance frequency of around 7Hz in both cases. This
corresponds to the theta frequency range. At depolarised potentials, high-pass
filtering resulted from activation of the M-current, with the resonance peak being
amplified by a persistent sodium current. At hyperpolarised potentials, high-pass
filtering was provided by the H-current and little amplification was evident.

Different neuronal types have different resonant characteristics. In hippocam-
pus, horizontal cells have a similar resonance frequency to PCs, while fast spiking
interneurons resonate in the beta-gamma range of 10-50Hz [63]. This is indicative
of different ion channel distributions in different cell types. Subthreshold reso-
nance also translates into the spiking regime. An oscillating current amplitude
that does not normally produce spiking activity will result in neuronal spiking
around the resonant frequency.

The functional implications of intrinsic neuronal resonance are not yet clear.
One possibility is that it acts to accentuate and stabilise network oscillations,
particularly at theta frequencies.

Multiple roles for the H-current The hyperpolarisation-activated mixed
cation H-current has potentially multiple roles in regulating neuronal activity
[69]. The work of Magee [47,48] and Migliore [57] demonstrates that deactivation
of the high density of H channels in the apical dendritic tree of PCs can act to
shorten the time course of distal EPSPs and so normalise temporal summation
of inputs.

In contrast, activation of the H-current results in theta frequency resonance.
The same effect that produces resonance can also result in PC spiking follow-
ing hyperpolarising inhibition due to rebound depolarisation through H-current
activation. The H-current thus plays a role in entraining PC firing to rhythmic
network inhibition and promoting network oscillations at theta frequency [11].



3.4 Synaptic plasticity

Internal signals As well as determining the spiking output of a neuron, synap-
tic input, in combination with the intrinsic membrane properties, determines
voltage and calcium signals that are internal to the neuron. Such signals play a
role in synaptic and cellular plasticity.

The standard scenario of Hebbian learning requires a measurement of both
pre- and postsynaptic activity at a synapse to drive plasticity. The postsynaptic
activity may be signalled by back-propagating action potentials (BPAPs), which
in turn affect the calcium concentration at a synapse. The calcium concentration
determined by both pre- and postsynaptic activity may be the signal which is
most directly related to the magnitude and direction of synaptic change. This
standard scenario is considerably complicated by the possibility of active pro-
cesses contributing to local dendritic calcium spikes that are not associated with
BPAPs. Goldberg et al. [18] discuss the consequences of such spikes for cellular
plasticity.

Action potentials originating at the soma, or axon initial segment, may be
actively propagated back into the dendritic trees of pyramidal cells [75, 76]. This
is due to the high density of sodium channels found in at least the main trunk of
the apical dendritic tree. The rising density of A-channels with distance from the
soma, and sodium channel inactivation kinetics, result in an attenuation in back-
propagating action potential (BPAP) amplitude with distance [30, 56, 58]. Block
of the A-channels results in a significant reduction in the BPAP attenuation
and may allow the emergence of slow calcium spikes in the dendrites [30]. These
phenomena are neatly summarised in the online supplement to Poirazi et al. [64,
65], whose model is able to reproduce the effects.

Mechanisms that alter BPAP amplitude and propagation will also affect
synaptic plasticity [74]. Thus the A-current in the apical dendrites provides one
such mechanism for regulating the signals underlying synaptic plasticity. Switch-
ing off the A-current effectively switches on plasticity. Appropriately timed
synaptic input that precedes a BPAP achieves this by inactivating the A-current
for the time window of BPAP propagation [58]. The A-current may also be
reduced by neuromodulators such as acetylcholine, which acts to shift the A-
channel activation kinetics to more depolarised potentials [29].

Models of synaptic plasticity A number of recent models [40,71,70] have
attempted to capture the basic interaction between internal and external signals
in driving synaptic plasticity. These models seek to reproduce data demonstrat-
ing spike-timing-dependent plasticity (STDP) [5]. If postsynaptic activity occurs
within a small time window of around 20msecs following presynaptic activity,
then the synapse increases in strength (long-term potentiation: LTP). If, how-
ever, the postsynaptic activity precedes the presynaptic activity within a similar
temporal window then a reduction in synaptic strength (long-term depression:
LTD) occurs.

In these models, synaptic strength is altered as a function of calcium entry
[40,71] or the rate of voltage change at a synapse [70]. Calcium entry occurs



through NMDA channels and voltage-gated calcium channels. A BPAP with an
after-depolarising potential is required to reproduce the temporal characteristics
of STDP. Saudargiene et al. [70] investigated the significance of BPAP shape and
demonstrated that fast BPAPs, as seen in the proximal apical dendritic tree,
produce STDP with both LTP and LTD components. However, slower BPAPS,
as seen the the distal tree, result in only LTP during the time window of STDP.

3.5 Neuromodulation and metaplasticity

As apparent from the discussion above, signal integration and generation in
pyramidal cells, and other neuronal types, is a function of external input and
the intrinsic membrane properties of the neuron. Any alteration in synaptic and
extrasynaptic membrane properties will change the input-output functionality
and plasticity of a neuron. Pyramidal cells in the hippocampus receive a wide
range of so-called neuromodulatory inputs that alter ion channel properties,
rather than contribute directly to voltage signals. Neuromodulators alter the
membrane characteristics by blocking or enhancing specific ion channels and by
altering their dynamics. Such changes may cover the entire cell, or be directed
to specific spatial locations, such as the pre- or postsynaptic membrane. The
end result is a change in the voltage response of the neuron to synaptic input.
Such neuromodulators include acetylcholine, dopamine and serotonin, amongst
others.

Modulatory changes may be directed at synaptic plasticity. As indicated
by the STDP models, synaptic calcium levels [85] are a major determinant of
synaptic plasticity. Alterations in the calcium response to voltage signals, or the
relationship between calcium level and changes in synaptic strength will modify
the learning rule employed by the neuron. This is known as metaplasticity and
can be effected by neuromodulators and by the history of activity at a synapse
[1,10,67]. For example, acetylcholine may reduce the A current in CA1 PC
dendrites, allowing large amplitude BPAPs to reach much of the dendritic tree
[29], potentially enhancing calcium entry and thus synaptic plasticity.

Acetylcholine has been given a central role in biophysical models of associa-
tive memory [22,21,55]. Pyramidal cells and interneurons in the hippocampus
are subject to multiple effects from acetylcholine via two broad classes of acetyl-
choline receptors (muscarinic and nicotinic), that have distinct spatial locations
and dynamics [66]. The effects of acetylcholine include reducing various intrinsic
potassium currents, including the A current, and high-threshold calcium cur-
rents, whilst increasing low-threshold calcium currents [55]. Presynaptic recep-
tors result in presynaptic inhibition of transmitter release at certain pathway-
specific glutamatergic and GABAergic terminals [27,28,16]. NMDA currents
may be increased [66]. These effects combine to significantly alter cellular activ-
ity and plasticity, and overall network dynamics. The possible functional effects
for associative memory are considered in the following section. A review of com-
putational modelling of various forms of neuromodulation has been conducted
by Fellous and Linster [12].



3.6 Summary

This section has covered a range of work dedicated to understanding the signal
integration properties of individual neurons, particularly hippocampal pyrami-
dal cells. Synaptic input impinging on the PC dendritic tree is filtered by the
intrinsic membrane properties of the dendrites. The resultant voltage signals
determine the cell’s spiking output as well as synaptic and cellular plasticity.
Amplification and suppression of voltage changes by the heterogeneous popula-
tion of voltage-gated ion channels in the PC membrane clearly modify the effect
of synaptic input on cell output. Interneurons also exhibit particular populations
of ion channels that contribute to their distinctive firing patterns [46, 52], and
presumably their functional roles.

4 Associative Memory Neural Networks

4.1 Associative memory

The associative memory paradigm involves the storage of information so that
it is content-addressable rather than index addressable. That is, a partial or
noisy cue pattern is used to recall a pattern stored in the memory, rather than
the index, or address, of where the pattern is stored. Such a memory is called
autoassociative if the cue pattern results in the completion of that pattern during
recall. The memory is heteroassociative if a cue results in a different pattern being
recalled with which it was associated during pattern storage.

Neural networks can act as associative memories in which memory patterns
are represented by neuronal activity. Storage takes place via some form of Heb-
bian synaptic learning rule. A basic rule that strengthens the connection between
two neurons that are coactive (like LTP) is sufficient. A rule that includes synap-
tic LTD when pre- and postsynaptic activity is anticorrelated increases memory
capacity [84]. During recall, the initial network activity determined by a cue
pattern will result in those neurons that belong to the relevant stored pattern
receiving, on average, the strongest synaptic input. By the setting of a suit-
able threshold, through network inhibition, only those neurons belonging to the
pattern should remain active, completing the recall process.

A network containing recurrent connections between a single pool of neurons
can act as an autoassociative memory. A pattern of neural activity is associated
with itself by the strengthening of the recurrent connections between the active
neurons. Such a network can also be used to heteroassociatively store a sequence
of patterns. If the sequence is presented to the network in a temporal order, with
some short time between each pattern, then a temporal Hebbian learning rule
can associate the activity of one pattern with the next pattern in the sequence.
A two-layer network in which one (input) layer of neurons sends connections to a
second (output) layer can act as an heteroassociative memory. Hebbian plasticity
of these feedforward connections can associate activity in the input layer with
activity in the output layer.



Biophysical models In this section we consider models that examine the im-
plementation of associative memory function in biophysical networks of spiking
neurons. The models are based on regions CA1 and CA3 of the mammalian hip-
pocampus. They treat CA3 as an autoassociative memory or heteroassociative
sequence learner. The CA3 to CA1 pathway is considered as an heteroassocia-
tive memory. Similar functional subdivisions of the hippocampus have a long
history, dating back to the work of David Marr [44,51,53,80]. Attempts have
been made to specify the nature of the information stored in each hippocampal
stage, including the dentate gyrus, and how the information is transformed from
stage-to-stage [44, 80]. We are more concerned here with the precise workings of
individual stages, rather than the hippocampus as a whole.

In this construction [27,28] certain synaptic pathways are modifiable and
form the site of memory formation. Other pathways provide an external synap-
tic drive that selects certain PCs to be active. These pathways determine the
patterns of PC activity to be stored associatively. The mossy fibre input from
dentate gyrus granule cells onto the proximal dendrites of CA3 pyramidal cells
acts to select which CA3 PCs are active for a particular pattern to be stored in
the CA3 autoassociative (or sequence) memory. Synaptic modification by Heb-
bian learning of the recurrent connections between CA3 PCs stores this pattern.
A pattern of activity in layer II of the entorhinal cortex is heteroassociated with
a CA3 activity pattern by Hebbian learning at the perforant path synapses in
the CA3 PC distal dendrites. Input from entorhinal cortex subsequently can act
as a recall cue for the CA3 autoassociative memory. Similarly, in CA1, Heb-
bian learning of the Schaffer collateral input from CA3 PCs onto the CA1 PCs
heteroassociates a CA3 pattern with a CA1 pattern. The active PCs in a CA1
pattern are selected by perforant path input from layer III of entorhinal cortex
onto the PC distal dendrites. Subsequently, a recalled pattern in CA3 acts as a
cue for pattern recall in CA1.

Binary patterns are represented by the synchronous emission of single action
potentials by the relevant pyramidal cells. These active cells can be equated
with a binary one, whereas the silent PCs correspond to a binary zero. Gamma
frequency (around 40Hz) network activity constitutes the basic clock cycle [9, 45,
55], so that a pattern is represented by the spiking activity on a single gamma
cycle. Recent experimental data indicates widespread synchronous PC activity
on this time scale [20], supporting this construction. The slower theta rhythm
(around 5Hz) is used as the frequency of pattern presentation for storage and
pattern cuing for recall [55,82]. Storage and recall may take place on opposite
phases of a single theta cycle [23, 26].

4.2 An autoassociative memory model

Menschik and Finkel [55] implemented an autoassociative memory network model
based on the CA3 region of the mammalian hippocampus. In this model, patterns
are represented by the spiking activity of a set of 64 pyramidal cells. The recall
dynamics of the PCs is controlled by 8 basket cells (BCs) and 64 axo-axonic cells
(AACs; chandelier cells), giving a network of 136 neurons in total. The network



architecture consists of recurrent excitatory connections between the PCs; BCs
receive excitatory connections from all PCs and send inhibitory connections to
each other and back to the perisomatic region of the PCs; each AAC receives an
excitatory connection from one PC and sends an inhibitory input back to the
axon initial segment of that same PC. Excitatory connections are modelled as
AMPA and NMDA synapses; inhibitory connections are GABA 4 synapses. The
relatively detailed compartmental models of Traub and colleagues [77,79] are
used for both the PCs (66 compartments) and interneurons (51 compartments).
Synapses are modelled as simple single or dual exponentials, with no voltage
dependence for the NMDA current.

Only the dynamics of pattern recall is examined with the model. The bas-
ket cell network provides gamma-band synchronized oscillations which form the
clock cycle of recall. Theta-band GABA g-mediated inhibition from the medial
septum is modelled as a 6Hz square-wave current injection in the soma of the
basket cells. Thus the BCs are inhibited (hyperpolarised) on one phase of theta,
and excited (depolarised) on the opposite phase. This allows one half of a theta
cycle for pattern recall by PC activity before BC inhibition becomes sufficiently
strong to silence PCs and thus reset the network for the next cue pattern. Each
new recall cue is presented at the start of a theta cycle in the form of entorhinal
input to AMPA and NMDA synapses in the distal dendrites of those PCs that
are to be active.

Pattern storage takes place by using the connection weights of a Hopfield
artificial neural network autoassociative memory [31] to scale synaptic conduc-
tances in the biophysical network model. Positive weights scale the maximum
conductances of the AMPA and NMDA receptors at the PC recurrent collat-
eral synapses. Negative weights scale the maximum GABA 4 receptor-mediated
conductances at the AAC to PC synapses. For the results presented in [55], 5
random 64-bit binary strings were stored in the Hopfield net to produce the
connection weights.

Recall performance was tested for various levels of cholinergic modulation of
the network. Cholinergic input to PCs and BCs is modelled as a constant con-
centration that reduces the maximum conductance of intrinsic membrane AHP
and calcium (Ca) currents, and reduces the amplitude of AMPA and NMDA-
mediated EPSCs from recurrent collaterals. Diffuse cholinergic depolarization of
PCs and BCs is modelled by a constant somatic current injection (which sets
the DC level of the theta-band square wave injection to the BCs). Increasing
cholinergic input switches pyramidal cells from bursting to spiking mode due
to a decrease in the AHP and Ca currents that underly bursting. The spiking
mode is used for associative memory recall. Menschik and Finkel [55] hypothesize
that PC bursting mode is suitable for inducing the synaptic plasticity underly-
ing learning. Calcium entry in the dendrites is far higher during burst firing,
compared to regular spiking. As mentioned earlier, calcium levels may be the
dominant signal driving synaptic plasticity. This distinction between storage and
recall modes has similarities to Buzsaki’s two stage memory model [7]. Menschik
and Finkel’s role for cholinergic modulation differs from Hasselmo’s proposal



(see below) that the decrease in recurrent excitation induced by acetylcholine is
ideal for the learning phase of associative memory [22, 21].

Computer simulation of the model demonstrated that even highly noisy cues
provide accurate retrieval of a stored pattern within half a theta cycle (around
9 gamma cycles or recall steps, given a high gamma frequency of around 100Hz)
under conditions of normal cholinergic modulation. Decreasing cholinergic input,
as in Alzheimer’s disease, slows the gamma frequency and increases the strength
of recurrent excitation. Gamma frequency is slowed due to a lowering of cell
excitability and an increase in the AHP and Ca currents that leads to an increase
in interspike intervals. Both effects result in recall performance deteriorating due
to a reduction in the number of gamma cycles available for recall and interference
from other stored patterns through the strong recurrent connections.

4.3 Phasing storage and recall

The autoassociative memory model of [55] only considers network dynamics
during recall of stored patterns. A complete neural model of associative memory
should include the dynamics of both storage and recall and mechanisms for
switching between these phases of operation.

The dynamics of recall requires the suppression of synaptic plasticity or a
weight control mechanism that stops excessive changes in synaptic strengths
during the recall of previously stored patterns. Principal cell activity must also
be suitably thresholded by inhibitory interneurons so that the cells belonging
to the stored pattern, which are also receiving the strongest excitation, are the
only ones to become active.

Storage, on the other hand, requires synapses to be plastic, but excitation in
the plastic pathway should not contribute to principal cell activity. For example,
if the recurrent connections between principal cells in an autoassociative memory
were allowed to contribute to excitation during storage, then previously stored
patterns would become confused with new patterns, whose representation is
driven by external activity.

The role of cholinergic neuromodulation in setting appropriate conditions
for pattern storage has been explored in a series of models by Hasselmo and
colleagues [22,21,27,28]. In experimental work with rat piriform cortex and
hippocampus, they have demonstrated that cholinergic input selectively sup-
presses layer-specific or recurrent excitation, while promoting plasticity in the
same pathway [4, 24, 27,28]. Using rate coded, as opposed to spiking, models of
CA1 [27] and CA3 [28], they have explored how these cholinergic effects improve
storage in associative memories.

These same models [27, 28] also explore how feedback regulation of choliner-
gic input can effectively switch the memory network between storage and recall
modes. In the hippocampus, the major source of cholinergic input is from the
medial septum. Specific interneurons in CA1 and CA3, that are excited by pyra-
midal cells, send long-range inhibitory connections to the medial septum [17].
In the models, excitatory drive to the pyramidal cell network by a novel pattern
on the pattern-determining pathway results in low activity in the PC network.



Consequently, inhibitory feedback to the medial septum is low and cholinergic
input from the septum is high, setting conditions for pattern storage. In contrast,
excitation (cueing) from a previously stored pattern leads to high PC activity as
recall proceeds. Feedback inhibition to the septum then also increases, reducing
cholinergic input and promoting the conditions required for pattern recall.

These rate coded models do not make use of gamma or theta rhythms to
clock storage and recall. Further, the phasing between storage and recall by reg-
ulation of cholinergic input is relatively slow, in accord with the time constant
of seconds for the neuronal effects of acetylcholine via muscarinic receptors [25,
26]. However, assuming a relatively constant level of acetylcholine, rapid phasing
between storage and recall within a theta cycle is possible via GABA g mediated
network effects [25, 23]. In this scenario, the waxing and waning of GABA p inhi-
bition provides a concurrent waxing and waning in the strength of layer-specific
or recurrent excitatory connections via presynaptic inhibition. This provides con-
ditions suitable for pattern storage or pattern recall on opposite phases of a theta
cycle. This is explored in a spiking model of sequence memory [82], described
below.

4.4 A model of sequence storage and recall

Wallenstein and Hasselmo [82] developed an associative memory model of se-
quence storage and recall using spiking neurons. Their network contains 1000
pyramidal cells (PCs) and 200 interneurons (INs) in a spatial grid with con-
nectivity determined by Gaussian probabilities over distance, such that PCs
connect with 15% of PCs and 20% of INs. INs contact 30% of PCs and 20% of
INs. The INs are putative basket cells, and no other IN type is explicitly rep-
resented. PCs and INs are represented by five-compartment multi-ion-channel
models. PCs contain a range of ion channels (fast Na, KDR, Ca, KAHP, KCa,
KA), whilst INs contain only fast Na and K channels. Both cell types receive
synaptic AMPA, NMDA, GABA 4 and GABApg input. PCs receive recurrent
excitation from other PCs and slow GABA g inhibition on apical dendrites, with
perisomatic fast GABA 4 inhibition from the INs. INs receive excitation on the
soma from PCs, with fast inhibition on soma and proximal dendrites and slow
inhibition on distal dendrites from other INs. All synapses are assumed to have
presynaptic GABA g receptors. During network activity, an estimate of external
GABA concentration at each cell is made over time and used to downregulate
all synaptic connections to implement the effect of these receptors.

Theta oscillations are induced by rhythmic GABAergic input from the medial
septum expressed as IPSPs on the somata and proximal dendrites of INs. Septal
cholinergic input is modelled as a sustained steady-state excitation due to a
partial reduction in leak current in the distal dendrites of PCs and INs. This
level of modulation is set to give random activation of around 15% of PCs and
INs at any one time. Within a theta cycle, INs fire bursts of APs at gamma
frequency, whilst PCs fire one or a few spikes at a particular phase of theta.

Whereas Menschik and Finkel [55] considered the storage and recall of dis-
crete patterns, Wallenstein and Hasselmo [82] use their network to store and



recall a sequence of patterns. Each pattern within a sequence to be stored is
delivered as entorhinal afferent AMPA input to the apical dendrites of selected
PCs for 20msecs at the start of a theta cycle, with a new pattern delivered on
each theta cycle (every 100msecs). A sequence is 30 patterns long and is delivered
five times during learning. Learning is implemented by a temporal Hebbian rule
applied only to NMDA conductances on the recurrent collaterals of PCs. Before
learning, the NMDA conductances are set to random values. During learning,
changes in conductance are proportional to the product of presynaptic activity
(average presynaptic firing rate over the last 50ms preceding postsynaptic ac-
tivty) and postsynaptic activity (difference of postsynaptic membrane voltage
above a threshold value of -30mV). This gives only LTP as changes are zero if
the postsynaptic voltage is below threshold. This rule incorporates elements of
STDP but is different in detail from the STDP models considered above.

At the start of each theta oscillation the PCs belonging to a particular pat-
tern in the sequence fire APs due to the external afferent input. In addition, 15%
of other PCs fire randomly due to background excitation (cholinergic depolariza-
tion) at different times during the theta cycle. Due to the 50msec time window
of the temporal Hebbian learning rule, the connections between the active PCs
of one pattern and the active PCs of the next and subsequent patterns in a se-
quence are not strengthened, as each pattern is separated by 100msecs. Instead,
connections between pattern PCs and randomly firing PCs are strengthened.
After a number of learning trials certain non-pattern PCs start to fire gamma
frequency trains of APs that span in time several of the sequence patterns. These
context sensitive cells are the glue that binds the sequence together (see Levy
[43] for a different model of how context sensitive cells may form).

Presynaptic inhibition via GABA g receptors is vital to the accurate storage
and recall of patterns in this network. During the first half of a theta cycle,
GABA p inhibition is high. This suppresses recurrent excitation so that PC firing
strongly reflects entorhinal afferent input which specifies the current pattern in
the sequence. Without this reduction in recurrent excitation, activity due to
previously stored patterns occurs early in a theta cycle and interferes with the
formation of context sensitive cells that encode the correct ordering of patterns in
a sequence. Later in theta, GABA g decays, and PCs start firing due to recurrent
excitation, reflecting stored patterns. In this second half of a theta cycle, the
network effectively shifts from storage to recall modes. Afferent input that arrives
in the latter half of theta acts as a recall cue. Recurrent excitation results in the
rapid (gamma frequency) replay of the subsequent section (5 or so patterns) of
the stored sequence over the remaining part of the theta cycle.

The context sensitive cells can be likened to the so-called place cells found
in rat hippocampus. If a rat is moving through an environment, then PCs firing
early in a theta cycle reflect the rat’s current location, whereas later firing PCs
are predicting where the rat is going. As the rat moves through the place field
of a PC, that PC’s firing occurs earlier in the theta cycle. Such phase precession
of spike firing is a characteristic of experimentally-recorded place cells [60]. This



is analogous to the partial sequence recall following the appropriately timed
presentation of a cue pattern in this model [82].

4.5 Other models

A number of other modelling studies have considered the theta/gamma rhythm
associative memory operation of networks of spiking neurons. Lisman and Idiart
[45] introduced the idea of a short-term memory buffer in which memory patterns
are represented by the activity on each gamma cycle. During each theta cycle
around 7 of these patterns are replayed, with repetition on subsequent theta
cycles. Jensen, Idiart and Lisman investigated how NMDA receptor dynamics
could account for this short-term memory buffer, and also considered how short
and long-term memory may interact for sequence storage and recall [36,37, 35].
Sommers and Wennekers [72, 73] examined how stored patterns could be recalled
within single gamma cycles, allowing a new pattern to be recalled on each such
cycle. These models do not explicitly include features of the interneuronal mi-
crocircuit. Fransen and Lansner [15] considered cortical columns as the basic
representational units in a model of neocortical associative memory, with each
column consisting of a small network of PCs and INs.

Other studies have explored possible mechanisms for sequence storage and
recall. Sequence storage as continuous attractors in an autoassociative memory
and how that might relate to hippocampal place cells has been the subject of a
number of studies [39, 68, 81]. Melamed et al. [54] discuss the interesting problem
of encoding behavioural sequences that occur on arbitrary timescales and may
need to be temporally compressed to fit within the theta/gamma rhythms.

5 The Hippocampal Microcircuit Revisited

Neural network models of associative memory need to account for a number of
factors. During pattern storage network activity should only include the current
pattern to be stored, which is likely determined by external input to the network.
Activity resulting from previously learnt patterns interferes with the storage of
a new pattern and degrades memory performance. Thus mechanisms that limit
such activity are necessary. Pattern recall requires that intial network activity,
as the result of an externally applied cue that is a partial or noisy version of a
stored pattern, evolves towards and stabilises at the appropriate stored pattern.
The ability to achieve this is dependent upon appropriate synaptic plasticity
(learning) during storage. Nonetheless, the activity of individual PCs must be
tightly controlled by a thresholding mechanism for recall to work.

The models described in the previous section provide initial explorations into
how networks of spiking neurons may act as associative memories. Storage and
recall dynamics are determined by synaptic and intrinsic cellular properties and
by alteration of these properties by neuromodulation with acetylcholine. Acetyl-
choline and GABA g-mediated inhibition may serve to set appropriate conditions



for pattern storage by reducing synaptic transmission whilst promoting plastic-
ity on the modifiable pathways [22,21,82]. Patterns for storage and recall cues
are provided by afferent input from the entorhinal cortex [55,82]. Basket cells
provide the basic gamma rhythm clock cycle that is modulated at the slower
theta rhythm. Cueing for storage and recall proceeds at the theta rhythm. PC
thresholding during recall is provided by basket cells [82] with a contribution
from axo-axonic cells [55]. No other interneuronal types are explicitly included
in these models.

It is possible to ascribe functionality to more of the hippocampal microcir-
cuit. Ideas concerning interneuronal network involvement in rhythm generation
and control of PC networks are explored in Buzsdki and Chrobak [9]. Paulsen
and Moser [62] consider how GABAergic interneurons might provide the control
structures necessary for phasing storage and recall in the hippocampus. Building
on their ideas, the following observations can be made concerning the roles for
different interneuronal types.

Basket cells BCs provide inhibition to the perisomatic region (on and around
the cell body) of PCs and are driven by feedforward pathways from entorhinal
cortex, mossy fibers (CA3) and Schaffer collaterals (CA1), and in a feedback
pathway by recurrent PC collaterals. They may also inhibit each other and bis-
tratified cells. Different classes of basket cells exist that may have very different
functions [16]. A likely role for PV-containing BCs is threshold-setting for PC
activity during pattern recall. Many models use BCs in this way [55,72,73,82].
Typically in these models the PCs receive an identical threshold-setting inhibi-
tion that is a function of average PC activity over the entire network [72,73]. In
reality each PC will receive different inhibition depending on their particular BC
input and the afferent drive that those BCs are receiving. That afferent drive
will be at best an estimate of overall PC activity on the basis of the sample
of PCs that are driving those BCs. Thus the threshold signal across the whole
network will be rather noisy, limiting recall accuracy. How limiting this noise
actually is has not been investigated. The models considered here [55,82] do use
a population of BCs, but they do not rigorously test the memory capacity of
their networks.

In addition, models typically use identical model cells for particular cell types.
Recent work has demonstrated that variation in inhibitory cell properties be-
tween cells of the same type can significantly alter the effect of population inhi-
bition on PC activity [3, 14].

Bistratified cells BSCs provide feedforward inhibition driven by Schaffer col-
laterals to CA1 PCs and feedback inhibition driven by recurrent collaterals to
CA3 PCs. Unlike the the strong, focal inhibition of basket cells, BSC inhibi-
tion is diffusely distributed to apical and basal dendrites [17]. It seems ideally
suited to controlling synaptic plasticity during pattern recall by reducing BPAP
amplitude and calcium entry in the dendrites.



Axo-axonic cells AACs provide feedforward inhibition, driven by entorhinal
and hippocampal PC afferents, to the axon initial segment of PCs. In constrast
to their threshold-setting role in [55], they could be involved in shutting off PC
output during pattern storage, when such output may not be desirable, while
not interrupting BPAPs that are involved in synaptic plasticity. Stopping PC
output would also stop feedback inhibition to PCs via BCs and O-LM cells,
thus additionally aiding BPAP propagation into the dendrites and maximising
the influence of pattern-determining input from entorhinal cortex to the distal
dendrites of PCs.

However, the effect of AAC inhibition may be more selective than a simple
block of APs emitted by a PC. A simulation study on the interaction of inhibition
and A-type potassium channels in CA3 axons indicates that a block may be
selective for the large diameter Schaffer collaterals, whilst allowing transmission
to the smaller recurrent collaterals [42].

Oriens lacunosum-moleculare cells O-LM cells send focal feedback inhi-
bition onto the distal dendrites of PCs. This provides control over pattern-
determining input from entorhinal cortex. Such pattern-determining input is
necessary during storage, but may not be required during pattern recall.

Horizontal trilaminar cells Some HTCs send axon collaterals outside of the
hippocampus, particularly to the medial septum [17]. They are driven by PC
recurrent collaterals. Feedback inhibition to the medial septum that is a func-
tion of local PC activity may act to modulate acetylcholinergic input to the
hippocampus and effectively switch CA1 and CA3 circuits between storage and
recall modes [27].

6 Conclusions

Neural circuitry is extremely complex and consequently it is very difficult to re-
verse engineer it to determine its function. Associative memory provides a useful
computational paradigm on which to base an attempt at reverse engineering the
microcircuit of the mammalian hippocampus. Mathematical models and com-
puter simulations that investigate aspects of the hippocampus at the single cell
and network levels, within the context of associative memory, have been dis-
cussed. These models are able to assign particular functions to aspects of the
microcircuit. However, there is still a long way to go before we fully understand
what experimental neuroscience has already told us about the cellular properties
and circuit architecture of the hippocampus.

References

1. W.C. Abraham, S.E. Mason-Parker, M.F. Bear, S. Webb, and W.P. Tate. Heterosy-
naptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold
for LTP. Proc. Nat. Acad. Sci., 98:10924-10929, 2001.



®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. B.K. Andréasfalvy and J.C. Magee. Distance-dependent increase in ampa recep-

tor number in the dendrites of adult hippocampal CA1l pyramidal neurons. J.
Neurosci., 21:9151-9159, 2001.

I. Aradi and I. Soltesz. Modulation of network behaviour by changes in variance
in interneuronal properties. J. Physiol., 538:227-251, 2002.

E. Barkai and M.E. Hasselmo. Modulation of the input/output function of rat
piriform cortex pyramidal cells. J. Neurophys., 72:644—658, 1994.

G-q. Bi and M-m. Poo. Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J.
Neurosci., 18:10464-10472, 1998.

L.J. Borg-Graham. Interpretations of data and mechanisms for hippocampal pyra-
midal cell models. In P.S. Ulinski, E.G. Jones, and A. Peters, editors, Cerebral
Cortex, Volume 13: Cortical Models. Plenum Press, New York, 1998.

G. Buzsédki. Two-stage model of memory trace formation: a role for “noisy” brain
states. Neuroscience, 31:551-570, 1989.

G. Buzsédki. Theta oscillations in the hippocampus. Neuron, 33:325-340, 2002.
G. Buzsédki and J.J. Chrobak. Temporal structure in spatially organized neuronal
ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol., 5:504-510,
1995.

G.C. Castellani, E.M. Quinlan, L.N. Cooper, and H.Z. Shouval. A biophysical
model of bidirectional synaptic plasticity: dependence on AMPA and NMDA re-
ceptors. Proc. Nat. Acad. Sci., 98:12772-12777, 2001.

S.R. Cobb, E.H. Buhl, K. Halasy, O. Paulsen, and P. Somogyi. Synchronization of
neuronal activity in hippocampus by individual GABAergic interneurons. Nature,
378:75-78, 1995.

J-M. Fellous and C. Linster. Computational models of neuromodulation. Neural
Comp., 10:771-805, 1998.

A. Fisahn, F.G. Pike, E.H. Buhl, and O. Paulsen. Cholinergic induction of network
oscillations at 40Hz in the hippocampus in vitro. Nature, 394:186-189, 1998.

C. Foldy, I. Aradi, A. Howard, and I. Soltesz. Diversity beyond variance: modu-
lation of firing rates and network coherence by GABAergic subpopulations. Euro.
J. Neurosci., 19:119-130, 2003.

E. Frinsen and A. Lansner. A model of cortical associative memory based on a
horizontal network of connected columns. Network, 9:235-264, 1998.

T.F. Freund. Rhythm and mood in perisomatic inhibition. TINS, 26:489-495,
2003.

T.F. Freund and G. Buzsdki. Interneurons of the hippocampus. Hippocampus,
6:347-470, 1996.

J. Goldberg, K. Holthoff, and R. Yuste. A problem with Hebb and local spikes.
TINS, 25:433-435, 2002.

B.P. Graham. Pattern recognition in a compartmental model of a CA1 pyramidal
neuron. Network, 12:473-492, 2001.

K.D. Harris, J. Csicsvari, H. Hirase, G. Dragoi, and G. Buzsdki. Organization of
cell assemblies in the hippocampus. Nature, 424:552-556, 2003.

M.E. Hasselmo. Acetylcholine and learning in a cortical associative memory. Neural
Comp., 5:32—44, 1993.

M.E. Hasselmo, B.P. Anderson, and J.M. Bower. Cholinergic modulation of cortical
associative memory function. J. Neurophys., 67:1230-1246, 1992.

M.E. Hasselmo, C. Bodelon, and B.P. Wyble. A proposed function for hippocampal
theta rhythm: separate phases of encoding and retrieval enhance reversal of prior
learning. Neural Comp., 14:793-817, 2002.



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M.E. Hasselmo and J.M. Bower. Cholinergic suppression specific to intrinsic not
afferent fiber synapses in rat piriform (olfactory) cortex. J. Neurophys., 67:1222—
1229, 1992.

M.E. Hasselmo and B.P. Fehlau. Differences in time course of ACh and GABA
modulation of excitatory synaptic potentials in slices of rat hippocampus. J. Neu-
rophys., 86:1792-1802, 2001.

M.E. Hasselmo, J. Hay, M. Ilyn, and A. Gorchetchnikov. Neuromodulation, theta
rhythm and rat spatial navigation. Neural Networks, 15:689-707, 2002.

M.E. Hasselmo and E. Schnell. Laminar selectivity of the cholinergic suppression
of synaptic transmission in rat hippocampal region CA1l: computational modeling
and brain slice physiology. J. Neurosci., 14:3898-3914, 1994.

M.E. Hasselmo, E. Schnell, and E. Barkai. Dynamics of learning and recall at ex-
citatory recurrent synapses and cholinergic modulation in rat hippocampal region
CA3. J. Neurosci., 15:5249-5262, 1995.

D.A. Hoffman and D. Johnston. Neuromodulation of dendritic action potentials.
J. Neurophys., 81:408-411, 1999.

D.A. Hoffman, J.C. Magee, C.M. Colbert, and D. Johnston. K channel regulation
of signal propagation in dendrites of hippocampal pyramidal neurons. Nature,
387:869-875, 1997.

J.J. Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Nat. Acad. Sci., 79:2554-2558, 1982.

H. Hu, V. Vervaeke, and J.F. Storm. Two forms of electrical resonance at theta
frequencies, generated by M-current, h-current and persistent Na+ current in rat
hippocampal pyramidal cells. J. Physiol., 545:783-805, 2002.

B. Hutcheon and Y. Yarom. Resonance, oscillation and the intrinsic frequency
preferences of neurons. TINS, 23:216-222, 2000.

N. Ishizuka, W.M. Cowan, and D.G. Amaral. A quantitative analysis of the den-
dritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol.,
362:17-45, 1995.

O. Jensen. Information transfer between rhythmically coupled networks: reading
the hippocampal phase code. Neural Comp., 13:2743-2761, 2001.

O. Jensen, M.A.P. Idiart, and J.E. Lisman. Phyiologically realistic formation of
autoassociative memory in networks with theta/gamma oscillations: role of fast
NMDA channels. Learning € Memory, 3:243-256, 1996.

O. Jensen and J.E. Lisman. Theta/gamma networks with slow NMDA channels
learn sequences and encode episodic memory: role of NMDA channels in recall.
Learning €& Memory, 3:264-278, 1996.

D. Johnston, J.C. Magee, C.M. Colbert, and B.R. Christie. Active properties of
neuronal dendrites. Ann. Rev. Neurosci., 19:165-186, 1996.

S. Kali and P. Dayan. The involvement of recurrent connections in area CA3 in
establishing the properties of place fields: a model. J. Neurosci., 20:7463-7477,
2000.

U.R. Karmarkar and D.V. Buonomano. A model of spike-timing dependent plas-
ticity: one or two coincidence detectors? J. Neurophys., 88:507-513, 2002.

T. Klausberger, P.J. Magill, L.F. Marton, J.D.B. Roberts, P.M. Cobden,
G. Buzsdki, and P. Somogyi. Brain-state- and cell-type-specific firing of hippocam-
pal interneurons in vivo. Nature, 421:844-848, 2003.

I.L. Kopysova and D. Debanne. Critical role of axonal A-type K+ channels and
axonal geometry in the gating of action potential propagation along CA3 pyramidal
cell axons: a simulation study. J. Neurosci., 18:7436-7451, 1998.



43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

W.B. Levy. A sequence predicting CA3 is a flexible associator that learns and uses
context to solve hippocampal-like tasks. Hippocampus, 6:579-590, 1996.

J.E. Lisman. Relating hippocampal circuitry to function: recall of memory se-
quences by reciprocal dentate-CA3 interactions. Neuron, 22:233-242, 1999.

J.E. Lisman and M.A.P. Idiart. Storage of 7 £ 2 short-term memories in oscillatory
subcycles. Science, 267:1512-1514, 1995.

G. Maccaferri and J-C. Lacaille. Hippocampal interneuron classifications - making
things as simple as possible, not simpler. TINS, 26:564-571, 2003.

J.C. Magee. Dendritic hyperpolarization-activated currents modify the integrative
properties of hippocampal CA1l pyramidal neurons. J. Neurosci., 18:7613-7624,
1998.

J.C. Magee. Dendritic I;, normalizes temporal summation in hippocampal CA1l
neurons. Nat. Neurosci., 2:508-514, 1999.

J.C. Magee and E.P. Cook. Somatic EPSP amplitude is independent of synapse
location in hippocampal pyramidal neurons. Nat. Neurosci., 3:895-903, 2000.
J.C. Magee, D. Hoffman, C. Colbert, and D. Johnston. Electrical and calcium
signaling in dendrites of hippocampal pyramidal neurons. Ann. Rev. Physiol.,
60:327-346, 1998.

D. Marr. Simple memory: a theory for archicortex. Phil. Trans. Roy. Soc. Lond.
B, 262:23-81, 1971.

C.J. McBain and A. Fisahn. Interneurons unbound. Nat. Rev. Neurosci., 2:11-23,
2001.

B.L. McNaughton and R.G.M. Morris. Hippocampal synaptic enhancement and
information storage within a distributed memory system. TINS, 10:408-415, 1987.
O. Melamed, W. Gerstner, W. Maass, M. Tsodyks, and H. Markram. Coding and
learning of behavioural sequences. TINS, 27:11-14, 2004.

E.D. Menschik and L.H. Finkel. Neuromodulatory control of hippocampal function:
towards a model of Alzheimer’s disease. Artif. Intell. Med., 13:99-121, 1998.

M. Migliore. Modeling the attenuation and failure of action potentials in the
dendrites of hippocampal neurons. Biophys. J., 71:2394-2403, 1996.

M. Migliore. On the integration of subthreshold inputs from perforant path and
Schaffer collaterals in hippocampal CA1 pyramidal neurons. J. Comput. Neurosci.,
14:185-192, 2003.

M. Migliore, D.A. Hoffman, J.C. Magee, and D. Johnston. Role of an A-type
K™ conductance in the back-propagation of action potentials in the dendrites of
hippocampal pyramidal neurons. J. Comput. Neurosci., 7:5-15, 1999.

M. Migliore and G.M. Shepherd. Emerging rules for the distributions of active
dendritic conductances. Nat. Rev. Neurosci., 3:362-370, 2002.

J. O’Keefe and M.L. Recce. Phase relationship between hippocampal place units
and the EEG theta rhythm. Hippocampus, 3:317-330, 1993.

G. Orbédn, T. Kiss, M. Lengyel, and P. Erdi. Hippocampal rhythm generation:
gamma-related theta-frequency resonance in CA3 interneurons. Biol. Cybern.,
84:123-132, 2001.

O. Paulsen and E.I. Moser. A model of hippocampal memory encoding and re-
trieval: GABAergic control of synaptic plasticity. TINS, 21:273-279, 1998.

F.G. Pike, R.S. Goddard, J.M. Suckling, P. Ganter, N. Kasthuri, and O. Paulsen.
Distinct frequency preferences of different types of rat hippocampal neurones in
response to oscillatory input currents. J. Phystol., 529:205-213, 2000.

P. Poirazi, T. Brannon, and B.W. Mel. Arithmetic of subthreshold synaptic sum-
mation in a model CA1 pyramidal cell. Neuron, 37:977-987, 2003.



65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

T7.

78.

79.

80.

81.

82.

83.

84.

85.

P. Poirazi, T. Brannon, and B.W. Mel. Pyramidal neuron as a two-layer neural
network. Neuron, 37:989-999, 2003.

D.D. Rasmusson. The role of acetylcholine in cortical synaptic plasticity. Behav.
Brain Res., 115:205-218, 2000.

M. Remondes and E.M. Schuman. Direct cortical input modulates plasticity and
spiking in CA1l pyramidal neurons. Nature, 416:736—740, 2002.

A. Samsonovich and B.L. McNaughton. Path integration and cognitive mapping
in a continuous attractor neural network model. J. Neurosci., 17:5900-5920, 1997.
B. Santoro and T.Z. Baram. The multiple personalities of h-channels. TINS,
26:550-554, 2003.

A. Saudargiene, B. Porr, and F. Worgotter. How the shape of pre- and postsynaptic
signals can influence STDP: a biophysical model. Neural Comp., 16(3), 2003.
H.Z. Shouval, M.F. Bear, and L.N. Cooper. A unified model of NMDA receptor-
dependent bidirectional synaptic plasticity. Proc. Nat. Acad. Sci., 99:10831-10836,
2002.

F.T. Sommer and T. Wennekers. Modelling studies on the computational function
of fast temporal structure in cortical circuit activity. J. Physiol. (Paris), 94:473—
488, 2000.

F.T. Sommer and T. Wennekers. Associative memory in networks of spiking neu-
rons. Neural Networks, 14:825-834, 2001.

V. Sourdet and D. Debanne. The role of dendritic filtering in associative long-term
synaptic plasticity. Learning & Memory, 6:422-447, 1999.

G.J. Stuart and B. Sakmann. Active propagation of somatic action potentials into
neocortical pyramidal cell dendrites. Nature, 367:69-72, 1994.

G.J. Stuart, N. Spruston, B. Sakmann, and M. Hausser. Action potential initiation
and backpropagation in neurons of the mammalian CNS. TINS, 20:125-131, 1997.
R.D. Traub, J.G.R. Jefferys, R. Miles, M.A. Whittington, and K. Téth. A branch-
ing dendritic model of a rodent CA3 pyramidal neurone. J. Physiol., 481:79-95,
1994.

R.D. Traub, J.G.R. Jefferys, and M.A. Whittington. Fast oscillations in cortical
circusts. MIT Press, Cambridge, Massachusetts, 1999.

R.D. Traub and R. Miles. Pyramidal cell-to-inhibitory cell spike transduction ex-
plicable by active dendritic conductances in inhibitory cell. J. Comput. Neurosci.,
2:291-298, 1995.

A. Treves and E.T. Rolls. Computational analysis of the role of the hippocampus
in memory. Hippocampus, 4:374-391, 1994.

M.V. Tsodyks. Attractor neural network models of spatial maps in hippocampus.
Hippocampus, 9:481-489, 1999.

G.V. Wallenstein and M.E. Hasselmo. GABAergic modulation of hippocampal
population activity: sequence learning, place field development, and the phase pre-
cession effect. J. Neurophys., 78:393-408, 1997.

X-J. Wang and G. Buzsdki. Gamma oscillation by synaptic inhibition in a hip-
pocampal interneuronal network model. J. Neurosci., 16:6402-6413, 1996.

D. Willshaw and P. Dayan. Optimal plasticity from matrix memories: what goes
up must come down. Neural Comp., 2:85-93, 1990.

R. Yuste, A. Majewska, and K. Holthoff. From form to function: calcium compart-
mentalization in dendritic spines. Nat. Neurosci., 3:653-659, 2000.



