Dynamics of storage and
recall Iin associative memories

What can we learn from cortical
control structures?

1. Single Cell Properties

Bruce Graham
Department of Computing Science & Mathematics
University of Stirling, Scotland, U.K.
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Hippocampal Microcircuit

Cortical infemeurones

Control

= <
o

c g

[ i
3385
o <
Ag/x

"DISINHIBITGRY" CELLS INHIBITORY CELLS PRINGIPAL GELLS
Control Control integration
action of synaptic inputs
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output of cell Efferant | Freund & Buzsaki, Hippocampus 6:347-470, 1996
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Dynamics of Operation

* Rhythms and animal behaviour
* Rhythms = clock cycles?

» Phasing of storage and recall
— varying network plasticity over time
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Components of the Microcircuit

Cortical inlemeurones

« CA3/CAl1
» Pyramidal cells
— excitatory
 Interneurons
— inhibitory
— various

Efferant
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Pyramidal Cells - CA1l

» Spatial segregation of inputs
» 2 major excitatory pathways
— perforant path from EC
— Schaffer collaterals from CA3

» Multiple sites of inhibition
— perisomatic
— proximal & distal dendrites

— axon initial segment
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Intrinsic PC Properties

|soma | |ApicAL DENDRITES |

» Spatial distribution of ion 4
channel types Y
- Na & Ca 5 Na
— fast Na, persistent Na can )
—T,L &N type Ca A H
« K & mixed cation N / A
— '\DARIL'A, C, AHP, D 5 oR?
’ Distance >
|Mig|iore & Shepherd, Nature Rev. Neurosci 3:362-370, 2002
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Distribution in Other Cell Types
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lon Channel Dynamics

Voltage range and time course of:
— activation / deactivation Na

— inactivation / reactivation
Amplifiers

— Na and Ca currents
Suppressors REST

- pKpand mixed cation PR v
EPSP / spike shaping
Spike frequency adaptation

|Borg-Graham, Cerebral Cortex vol 13, 1998 |
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Signal Integration

Interactions between synaptic im.tl‘andi
intrinsic cellular properties T S

Synaptic scaling with distance

Time course of signal integration
— temporal summation
— roles of A and H currents

Linearity of summation
— signal amplification
— linear versus nonlinear
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Synaptic Scaling
» Strength of AMPA synapses may increase with distance
from soma :
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Integration of Two Pathways

» 20msec integration window

* Roles for A and H currents
— high densities in distal dendrites
— rapid activation of A
— deactivation of H

ol ki
: T D b b

e
[+, NI

waic ol prid v ion v

Peak o

Cortical Dynamics, Sicily, Nov 2003 12




Temporal Summation

* Role for H current 5 |
! bl ! nj e carnent
_ high density in distal R W
dendrites - —
o AR IS
— deactivation shortens RN S o
time course of distal O B RS T
EPSPs
» Equal temporal ~.-.;;.ff:.~.i"?i"ﬁfr"'?.}:f.:;_i‘:__
summation of proximal M

and distal inputs

Magee, J. Neurosci 18:7613-7624, 1998
and Nature Neurosci 2:508-514, 1999
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Signal Amplification

* Nonlinear summation of inputs
— roles of NMDA, persistent Na and Ca currents

e Can aneuron count the number of active

inputs (EPSPs)? Signal-to-noise ratio

of somatic amnlitude
FSOMRaH—aRPHHG

200 versus ’ o
100 sync. 22

mnutc
HRPHS
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Sratum radiatum
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Signal Amplification (2)

* Inputs: « Amplification:
— SY: synchronous synaptic AMPA scaling
TJ: asynchronous over 20msecs AMPA / NMDA synapses
QV: quantal variance of 30% uniform persistent NA
— uniform LVA T-type Ca

Stratum radiatum

Linform Lo o [£15]eL Y Hn Ca Amp Fed
Ciferani Sases

|Graham, Network: Comput. Neural Syst. 12:473-492, 2001 |
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Spatial Integration

» Spatial interactions of inputs
— linear summation of spatially separate inputs
« rectification by A current
— nonlinear interaction of nearby inputs
« amplification by NMDA, Na and Ca currents

* Neuron as a two-layer network

A B Sl FUECHR
‘i’h%_f{’ an
sl
B
I m - ;u.
il e R Lo
1 - L Sl T os
ﬁf__ i _;'(__j ¥ =i
L E
‘.%%_.. 4 # ag
il - &
P By {7 Tl
,_-,'-_,A Lo b T
‘d\p"{ o %M Paprher of Syrapaes Actsged in

Cortical Dynamics, Sicily, Nov 2003 16




Resonance

» Dynamics of membrane and ion channels
causes resonance

— Membrane leak conductance and capacitance
provides low-pass filtering

— Slowly activating ion channels that oppose
membrane potential changes provide high-pass
filtering

— Fast activating channels that boost membrane
potential changes act as amplifiers

 [ntrinsic subthreshold oscillations
» Band-pass filtering of inputs
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Resonance (2)

« High pass filters . -
_slowion channels that 4 \- il “F T

activate when

E

membrane potential L i — !

moves away from their i
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— fast ion channels that
activate when potential
moves towards from

their reversal potential | AN 1
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Resonance in PCs
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Multiple Roles for H current

» Depolarising deactivation

shortens time course of distal
EPSPs

* Hyperpolarising activation can | I
lead to rebound excitation “

— interaction of inhibition and H i
current Pro-specibmbory firtiasc talory

— rhythmic inhibition can phase PC i A

Mg

firing R rmvolboee

Santoro & Baram, TINS 26:550-554, 2003
Cobb et al, Nature 378:75-78, 1995
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Internal Signals

» Synaptic input interacting with intracellular
properties determines internal PC signals

— as well as PC output
* Internal signals within dendritic tree:

— calcium spikes

— back-propagating action potentials (BPAPS)
* Roles in synaptic plasticity

— spike timing dependent plasticity
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BPAPs and Calcium Spikes

'ﬂ I e palyitn Wgeitio G' sk
----- Pk 1, ihak
- i LLp e LLLALY . 1 .II'\'I:_ |I
B 11177 W Wl AT X
i, I, e B A

P et 11111 s
B N
o] L " - = - ==
: Mna . .'| LI__: o o
" - X7 A s
ae -l N vy e
R : o St el i 7 ! .
A L”l =7 W) A_ma' s LI,
"'\-:l..-: watal |1FISE l\-——
Poirazi et al, Neuron, 2003 | Cortical Dynamics, Sicily, Nov 2003 23

Control of BPAPs

e Potassium A current attenuates BPAPS in
distal dendrites
— increasing density of A channels with distance

« BPAP amplitude increased by anything that
reduces A current
— preceding depolarising synaptic activity
— suppression by neuromodulators e.g. Ach

» Large amplitude BPAPs may lead to slow
calcium spikes
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Spike Timing Dependent Plasticity

» Relative timing of pre- and postsynaptic
activity determines plasticity
— Post before Pre = LTD Iy

— Pre before Post = LTP ipeaties Sie

* Presynaptic spike time k

» Postsynaptic signal? = L
— Axonal spike / burst

— BPAP W |
— Calcium level e

Karmarkar & Buonomano, J. Neurophysiol. 88:507-513, 2002
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Postsynaptic Activity and Plasticity

« LTP/LTD determined by level of Ca

» Postsynaptic depolarisation
— Ca entry through NMDA and voltage-gated
channels
o LTP is possible with the following:
— single somatic/axonal spike leading to BPAP
« tight timing constraints relative to presynaptic input
— burst of somatic/axonal spikes

— dendritic spike only
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STDP Models 1&2

 Model 1

— interaction of synaptic input and BPAPS
* BPAPs with slow ADP

— calcium entry through NMDA channels and
voltage-gated channels

— plasticity determined by peak combined Ca
» Model 2
— peak NMDA Ca determines LTP

— mGIuR activity due to voltage-gated Ca
determines LTD

|Karmarkar& Buonomano, J. Neurophysiol. 88:507-513, 2002 |
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STDP Models 1&2 - Results
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STDP Model 3

* Model 3

— interaction of synaptic input and BPAPS
* BPAPSs with slow ADP

— calcium entry through NMDA channels only

— plasticity determined by continuous calcium
concentration

— learning rate varies with Ca
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Shouval et al, PNAS 99:10831-10836, 2002
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STDP Model 4

 Model 4

— plasticity determined by rate of change of
membrane voltage at active synapse

u‘mB
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STDP Model 4 - Results
» Postsynaptic signal is BPAP or 2nd NMDA
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STDP Model 4 - Results (2)

 Different forms of Hebbian learning at
proximal and distal sites
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Metaplasticity

 Plasticity: relationship between pre- and
postsynaptic activity and synaptic LTP/LTD
» Metaplasticity: altering this relationship so
that same activity levels result in different
synaptic weight changes
— relationship between activity and Ca levels
— relationship between Ca and LTP /LTD

Abraham et al, PNAS, 98:10924-10929, 2001
Castellani et al, PNAS, 98:12772-12777, 2001

Cortical Dynamics, Sicily, Nov 2003

33

Summary

» Neurons are dynamic devices

 Integration of inputs from multiple synaptic
pathways interacting with complex intrinsic
cellular dynamics determines

— PC output
— synaptic plasticity
* Inhibition is not as simple as it sounds
— disinhibition
— rebound excitation
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