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ABSTRACT 

A methodology has been developed for the multi-
objective optimization of the refurbishment of 
domestic building stock on a regional scale. The 
approach is based on the decomposition of the 
problem into two stages: first to find the energy-cost 
trade-off for individual houses, and then to apply it 
tomultiple houses. 

The approach has been applied to 759 dwellings 
using  buildings data from a survey of the UK 
housing stock. The energy use of each building and 
their refurbished variants were simulated using 
EnergyPlus using automatically-generated input files.  

The variation in the contributing refurbishment 
options from least to highest cost along the Pareto 
front shows loft and cavity wall insulation to be 
optimal intially, and solid wall insulation and double 
glazing appearing later.  

INTRODUCTION 
Housing is responsible for more than a quarter of 
total energy consumption and carbon dioxide (CO2) 
emissions the UK (DECC, 2014). With less than 1% 
annual growth rate of new-build homes, it is 
estimated that 75% of the housing stock in 2050 will 
have been constructed before 2014 (Ravetz, 2008). 
Although energy efficiency for the whole housing 
stock has increased slightly over the years, the 
average home energy rating remains low and the 
housing stock could hugely benefit from a wide 
range of retrofit measures ( (DCLG, 2014). In order 
to achieve the UK Government’s CO2 reduction 
target of 80% by 2050 compared to the 1990 baseline 
(HM Government, 2008), large-scale retrofitting (i.e. 
improving the thermal efficiency and energy system 
efficiency of dwellings rapidly and at high volumes) 
of the existing housing stock is expected to play an 
important role. 

In general, available retrofit measures can be 
categorized into three groups:  

• Improving the building envelope, e.g. 
insulating walls, roofs, and windows; 

• Improving heating and hot water systems, 
e.g. upgrading boilers and control systems;  

• Installing renewable energy systems, e.g. 
photovoltaic, biomass boilers, ground source 
heat pump systems, etc. 

When retrofitting a building, there is usually more 
than one measure that is applicable and the capital 
cost and energy saving of one measure could be very 
different from that of another. Consequently, it is of 
great importance to identify the most cost effective 
combinations of retrofit measures. At a regional or 
national level, the identification of which retrofit 
strategies should be targeted for government 
incentives is particularly difficult as at these scales, 
the most cost effective strategy is influenced by: the 
large number of dwellings that could be refurbished; 
the high number of alternative forms of dwelling; and 
the exisiting level of refurbishment of each dwelling, 
this inlfuencing the extent to which further 
refurbishment is possible.  

Applying multi-objective optimization to evaluate the 
retrofit strategies for a single building by considering 
multiple and competing objectives, such as cost, 
energy saving and thermal comfort, is well 
established in the research field of building 
simulation (Asadi et al., 2014; Evins, 2013; Wright et 
al., 2002). In contrast, applying multi-objective 
optimization to a large scale retrofitting program on 
multiple buildings, particularly on a regional or 
national scale, is still emerging. Scaling the 
optimization problem up from a single building to 
many buildings results in a very large search space 
and objective functions that are insensitive to any 
single instance of refurbishment; for instance, the 
reduction in heating energy use resulting from the 
installation of wall insulation in a single dwelling 
will be very small in relation to the total heating 
energy use of the region. The large scale and the 
insensitivity of the objectives to the variables results 
in a problem that is difficult to solve and that requires 
a very large number of candidate building 
performance simulations. 

This paper describes the development of an 
optimization methodology for the multi-objective 
optimization of domestic building stock on a regional 
scale, that is computationally efficient, and which has 
proved to be robust in finding the trade-off between 
the reduction in building energy use and capital cost 
for multiple dwellings. The optimization approach is 



based on the decomposition of the problem into two 
stages, the first being to find the energy-cost trade-off 
for individual houses, and the second for the trade-off 
of multiple houses at a regional scale. 

LARGE SCALE OPTIMIZATION 
There has been recent interest among the 
evolutionary computation community in large scale 
optimisation, with a recent review (Latorre et al., 
2014) citing a number of different approaches, and 
the introduction of the CEC large-scale benchmark 
problems (Li et al., 2013). Much of the literature 
focuses on problems with around 1000 variables, 
although some (Deb et al., 2003; Sastry et al., 2007; 
Semet and Schoenauer, 2005) do tackle very large 
problems with millions or more variables. The 
specific application in the present paper has the 
equivalent of 1205 binary variables (and has the 
potential for solving poblems with more variables). 
Typically, approaches for the very large problems 
use hybrid algorithms that exploit characteristics of 
the application such as known partial solutions and 
constraints to reduce the search space an improve 
efficiency (Deb et al., 2003; Semet and Schoenauer, 
2005). There is some evidence (Durillo et al., 2010, 
2008) that commonly-used evolutionary multi-
objective optimization methods do not scale well 
with the number of decision variables, and as far as 
the authors are aware, there have been few attempts 
so far (an exception being a study by Antonio and 
Coello Coello (2013)) at multi-objective optimization 
of problems with thousands of decision variables. 
This motivates the development of frameworks for 
large scale multi-objective problems. 

METHODS 

English housing survey (EHS) data 
The English Housing Survey (EHS) is a year-on-year 
national survey commissioned by the UK 
Department for Communities and Local Government 
(DCLG). It collects information about people’s 
housing circumstances and the condition and energy 
efficiency of housing in England (DCLG, 2015). Its 
database provides detailed information, such as age 
band, dwelling type, region, dimensions, window 
area, glazing type, wall construction, roof 
construction, floor construction, loft insulation and 
built form, of representative houses in England. This 
detailed information can be interpreted to allow the 
performance of the recorded dwellings to be 
simulated dynamically in building simulation 
software such as EnergyPlus (D.B. et al., 2000).  

This study is focused on regional planning for the NE 
of England. The 2009 EHS database contains 935 
sample dwellings in the NE region of England, and 
these dwellings represent 1.2 million homes in that 
region. The 935 dwellings are of 6 different dwelling 
types, 10 age bands, 8 wall construction types, and 
12 loft insulation levels. The distribution of the 935 
dwellings in dwelling type, age band, wall 

construction and loft insulation is shown in Figure 1. 
This initial study excludes flats and focuses on the 
759 houses recorded in the database, taking no 
account at this stage of the 1.2 million homes they 
represent. Note that although the selected stock relate 
to 4 high-level archetype forms (detached, semi-
detached, mid-terrace, and end-terrace), the robust 
idenitifcation of the refurbishment strategey for the 
region requires the variants of each archetype to be 
included in the optimization (the variants ralting 
particularly to the type of construction and state of 
refurbishment of each dwelling). 

a. Dwelling Type 

 
b. Age Band 

 
c. Wall Construction 

 
d. Loft Insulation 

 
 

Figure 1. Distributions of 935 dwellings in dwelling 
type, age band, wall construction and loft insulation. 

 

Energy demand of the housing stock 
A dynamic housing stock model has been developed, 
using the English Housing Survey (EHS) 2009 data, 
coupled to the EnergyPlus dynamic simulation 



engine. EnergyPlus is a well-recognized and 
extensively tested fully-integrated building 
simulation tool and freely available. EnergyPlus 
takes an input data file (IDF), in which a building 
model is specified, and a weather file to run a 
dynamic simulation of a building. Although there are 
tools currently available to create IDFs, none of them 
is suitable to simulate a relatively large number of 
real houses with individual dimensions, different age 
bands and various fabric constructions. Therefore, an 
in-house program called the Building Generation 
Tool (BGT) has been developed to create the IDFs 
automatically, taking inputs from text files. The 
detailed description of the model and the validation 
against a steady-state housing stock model can be 
found in a previous study (He et al., 2014).  

In order to minimize computational complexity, the 
approach adopted for simulating the thermal behavior 
of the houses was to determine the heating demand. 
Post-processing was then used to account for fuels 
and heating systems. The optimization study was 
therefore restricted to retrofit measures related to 
improving the building fabric, including cavity wall 
insulation, internal solid wall insulation, external 
solid wall insulation, loft insulation, and double 
glazing. All possible individual or combined retrofit 
measures have been applied to each of the 759 
houses identified in the EHS 2009 database. 
However, not all measures are applicable to all 
houses; for example, double glazing is not an option 
for houses that are already fully double glazed. This 
reduced the number of possibilities with only 2097 
retrofit strategies being applicable across all 759 
houses. The energy demand of the original 759 
houses and the retrofitted 2097 houses has been 
estimated by the dynamic housing stock model (He et 
al., 2014). 

Costs of retrofit measures 
Despite there being multiple price guide books and 
references available, no single source of cost 
information could be found that covers all retrofit 
measures and the range of figures varies widely from 
different sources (Porritt, 2012). Table 1 shows the 
costs of retrofit measures used in this study.  

These costs were carefully chosen to reflect the real 
costs in the market. Most of the costs are taken from 
Energy Saving Trust (EST, 2015), except the cost of 
double glazing which is taken from a report from the 
Retrofit for the Future project by the Technology 
Strategy Board (TSB, 2014). 

Multi-objective optimization 
A multi-objective optimization package has been 
applied to identify the most cost-effective 
combinations of all measures across the housing 
stock. The algorithm selected in this study is an 
implementation of the popular Non-dominated 
Sorting Genetic Algorithm II (NSGA-II) first 
proposed by Deb et al. (2002). The same 

implementation was used in a previous study to 
optimize the design of fenestration on a façade of a 
building (Wright et al., 2013). 

Table 1 Costs of retrofit measures. 
RETROFIT 
OPTIONS 

DWELLING 
TYPE 

COST SOURC
E 

Loft Insulation 
(0 to 270mm) 
  

Detached £395 (EST, 
2015) Semi/End £300 

Mid £285 
Loft Insulation 
top up (100mm to 
270mm)  

Detached £265 (EST, 
2015) Semi/End £220 

Mid £215 
Cavity Wall 
Insulation 

Detached £720 (EST, 
2015) Semi/End £475 

Mid £370 
Solid Wall 
Internal 
Insulation 

External wall 
area 

£87/m2 (EST, 
2015) 

Solid Wall 
External 
Insulation 

External wall 
area 

£157/m2 

Double Glazing Window area £261/m2 (TSB, 
2014) 

 

Two objectives are optimized: the energy demand of 
the housing stock, estimated by the dynamic housing 
stock model; and the costs of installing retrofit 
measures, calculated using the values in Table 1. In 
order to deal with the large search space, the 
optimization approach is decomposed into two 
stages. First, an exhaustive search is run for each 
individual house to find its Pareto-optimal energy-
cost trade-off (the search space for this typically 
being a maximum of a few tens of solutions per 
house). Although it was not done in the present work, 
it is possible at this point to take constraints into 
account such as over-heating risk, so that only 
admissible solutions are passed to the next stage. 
Secondly, to find the trade-off for the housing stock, 
the space of Pareto-optimal solutions over all houses 
is searched using NSGA-II. Each house is 
represented in the second stage problem by a single 
integer variable whose value identifies the specific 
Pareto-optimal solution for the house arising from the 
first stage. The Pareto-optimal solutions for each 
house are sorted by cost, so that there is a natural 
ordering over the values that the variable for a house 
can take. A parametric tool called jEPlus (Zhang, 
2009) has been used in this study to run simulations 
in EnergyPlus in parallel and to extract outputs. Each 
simulation takes about 30 seconds to run; therefore 
running a full set of simulations for the original 759 
houses and the potential retrofitted 2097 houses takes 
approximately 6 hours in a dual-core PC with 4 
threads. 

The optimization approach explained 
As noted earlier, the two stage optimization was 
developed to improve search efficiency over the large 
search space. Considering the possible refurbishment 



options that can be applied to each of the 759 houses 
in the stock, the overall problem has a total of 1205 
decisions about whether to apply a specific 
refurbishment. The resulting problem has a search 
space of 21205 (approx. 5.5 x 10362) solutions. Using 
the two stage approach exploits the fact that the 
houses are independent. While the houses are related 
in the sense that a decision to spend money 
refurbishing one house means that it cannot be spent 
on a different one, the more complex relationship 
between energy saving and refurbishment cost is 
independent for each house (unless there is, for 
example, a community shared heating system, but 
this is not considered here). Separated into two 
stages, the search space at each stage is reduced. At 
stage 1 (exhaustive search across all houses), rather 
than the product of all possible options across the 
whole stock, we only consider the product of possible 
solutions for each house separately. For any one 
house, there are a maximum of 5 refurbishment 
options, so the search space for each house has a 
maximum of 32 solutions. At stage 2, only the 
product of Pareto-optimal solutions found at Stage 1 
are considered, resulting in a reduced search space 
over 759 variables (1 per house) of 3.1x10300. This is 
still very large but represents a substantial reduction 
from the overall problem. Moreover, the second stage 
optimization is on solutions that are known to be 
Pareto optimal and therefore, the limnits of the search 
space are naturally constrained to be in the region of 
the optima (which may improve the effectiveness of 
the second stage search). 

To explore the alternative optimization approaches, a 
synthetic example problem was developed: a version 
of the stock optimization problem using the same 
house repeated 500 times. Using duplicate houses 
allows a reference Pareto front to be developed by 
taking each of the solutions from the house’s front 
and scaling up their energy and cost by a factor of 
500. 

The true Pareto front for the stock will not perfectly 
match this reference front (it will almost certainly 
have many more solutions, some of which may 
dominate those in the reference front) but it provides 
a useful approximation to work towards. By way of 
illustration, consider a single house with three 
Pareto-optimal solutions: (1,5), (3,4), (5,1) where the 
x and y values might represent cost and energy 
consumption. The “Reference Pareto front” for a 
stock of three houses, are the points (3,15), (9,12), 
(15,3). However, at the stock level, different 
refurbishments might be applied to each of the three 
houses: there are 27 possible combinations of the 
Pareto-optimal solutions for each house, some of 
which have identical values, plotted as “All” Figure 
2. The “Global Pareto front” of these lies near to the 
reference front, but does not include the point at 
(9,12). 

For this house, there were 10 refurbishment options, 
giving a search space of 210=1024 per house, and 

210*500=1.4x101505 overall. This was deliberately 
larger than the real problem studied in this paper, to 
ensure that the approach would scale to larger 
problems. An exhaustive search was conducted over 
the 1024 solutions for a single house, these options 
being plotted in terms of the house’s resulting annual 
operational energy demand and capital cost of the 
refurbishments in Figure 3. The Pareto-optimal 
solutions from this search are highlighted. 

 

 

 
Figure 2. Combining solutions from the Pareto fronts 
for individual houses into a global Pareto front does 
not simply result in a scaled up version of the front 

for one house. 

 

 
Figure 3. Exhaustive set of refurbishment options for 
one house in the synthetic example problem, with the 

Pareto optimal solutions highlighted. 
 

The example problem was used to test several 
approaches to the multi-objective optimization using 
NSGA-II. A naïve approach to tackling the global 
problem would be a binary encoding, in which each 
bit represents a possible refurbishment on a particular 
house: 2000 bits for the example. Secondly, the two-
level approach could be taken, using either a Gray 
binary or integer encoding. All algorithm runs were 
terminated after 100,000 evaluations, with a 
population size of 200 and binary tournament 
selection. Those with a binary encoding used bit flip 
mutation at a rate of 1/2000, and uniform crossover 
at a rate of 1.0. The integer encoded algorithm used 
simulated binary crossover and polynomial real 
mutation. The results for each are plotted against the 
reference in Figure 4. These are from single runs so 



the individual solutions in the Pareto fronts can be 
shown, but the same broad trend was reflected over 
multiple runs. 

 
Figure 4. The global Pareto optimal fronts found by 
three different approaches to the synthetic example 
problem, compared with the reference front formed 

by scaling up the front for one house. 
 

The integer-encoded 2-stage optimization finds a 
front that is closer to the reference front that the other 
two approaches. This is because it has a smaller 
search space to explore, and because the integer 
encoded algorithm was able to more efficiently 
explore the fronts for each house. It was found by 
experimentation that the approaches could be 
improved further by seeding the evolutionary 
algorithm with points from the reference front – that 
is, including these among the randomly generated 
solutions at the start of the algorithm’s run. However, 
it should be noted that this would not be an option for 
the real stock optimization problem, as the houses are 
not duplicates, making it impossible to generate a 
reference front by simply scaling up the front for one 
house. 

RESULTS AND DISCUSSION 

Pareto optimal result 
The output set of non-dominated solutions, i.e. the 
Pareto optimal set, was derived from the set of all 
solutions generated over an optimization run. The 
parameters, such as random initialization number, 
which might affect the results of the optimization 
runs, have been extensively tested. The run found 
398 solutions in the trade-off, which are plotted in 
the objective space, i.e. energy demand and cost, in 
Figure 5. The total heating energy demand of the 759 
houses without applying any retrofit measures is 
about 5,660 MWh. Providing a total investment of 
£250,000, a maximum 310 MWh reduction in total 
heating energy demand (5,350 MWh) can be 
achieved through applying the optimum combination 
of retrofit measures to the houses. The cost-effective 
ratio of the investment can be defined as: R=ER⁄C, 

where R is the cost-effective ratio (kWh/£), ER is the 
total energy reduction (kWh) and C is the total cost 
(£). The cost-effective ratio of the initial £250,000 
investment is 1.24 kWh/£. Increasing the investment 

to £750,000, a maximum further 230 MWh reduction 
can be made, which gives a cost-effective ratio of 
0.46 kWh/£ for the additional £500,000 investment. 
If all suitable measures are applied to all houses, it 
will cost a total of £1,620,000, reducing the total 
energy demand to 5,015 MWh. The further additional 
investment of £870,000 gives a cost-effective ratio of 
only 0.12 kWh/£. 

 

 
Figure 5. The Pareto optimal set found by the 

optimization, plotted in objective space. 
 

Data analysis 
Analyzing the Pareto optimal solutions in detail 
provides insights into the uptakes of individual or 
combined retrofit measures during the optimization 
process. Figure 6 shows the number of installations 
for each individual retrofit measure for all the 
solutions on the Pareto front. 

 

 
Figure 6 Counts of individual measures for the 

Pareto solutions. 
 

The solutions on the Pareto front are ranked from 1 
to 398 according to the increment of total cost, and 
this ranking is shown on the x-axis. Solution No.1, 
for example, is the solution with the minimum cost (0 
in this case), and none of the measures is installed. 
Solution No. 398 is the solution with the maximum 
cost, and in this case, all the suitable measures for all 
houses are installed. Each line between Solution No.1 
and No.398 shows the trend of the installation of a 



particular measure as the total cost increases. The 
prioritization is in the installation of loft insulation, 
followed by the installation of cavity wall insulation, 
which is not surprising, considering that loft 
insulation is the cheapest, and cavity wall insulation 
second cheapest, among all selected measures and 
their energy savings are relatively high. External and 
internal solid wall insulation are two exclusive 
measures, both of which can only be applied to 
houses with solid wall construction. Internal 
insulation increases up to Solution No. 325 due to its 
lower cost; however, external insulation has a better 
performance in terms of reducing heat demand in 
some cases, and therefore starts to pick up at the 
higher cost end of the solutions, as internal starts to 
decline. The installation of double glazing also only 
starts to happen towards to the high cost end of the 
solutions due to the high cost and the smaller savings 
from individual installation. 

CONCLUSIONS 
A two stage optimization methodology has been 
proposed for approximating the trade-off between the 
reduction in building energy use and capital cost for 
refurbishments of the domestic building stock on a 
regional scale. The methodology has been shown to 
work well for a synthetic problem covering 500 
duplicate houses each with 10 possible refurbishment 
options. It was then successfully applied to the multi-
objective optimization of refurbishments to 935 
sample dwellings in the NE region of England. These 
were taken from the 2009 EHS database and 
represent 1.2 million homes. 

When resources are limited, as is often the case in the 
real world and particularly in a large scale retrofitting 
programme, it is important to identify the most cost-
effective measures that can be applied to the most 
suitable houses. By applying the multi-objective 
optimization package, it is possible to derive the 
Pareto optimal solution set that demonstrates the 
trade-off between the energy demand and cost. The 
findings show that the cost-effective ratio decreases 
sharply for a significant increase in investment. The 
initial £250,000 investment could result in a cost-
effective ratio of 1.24 kWh/£, while the cost-effective 
ratio of an additional £500,000 investment drops to 
0.46 kWh/£. Retrofitting all houses with the 
expensive measures for a further additional £870,000 
causes the cost-effective ratio to fall to 0.12 kWh/£.  

The analysis of the Pareto optimal solutions set can 
be complicated, particularly where there is a large 
number of an individual or combined retrofit option 
to consider. A simple approach based on ranking the 
solutions and counting the number of installations of 
individual measures, whether they are applied on 
their own or in combination with other measures, has 
been used in this study to examine the trend of 
installation for each measure across the whole cost 
range. While it is not surprising the uptake of loft 
insulation shows a much faster trend, followed by 

cavity wall insulation, it is interesting to notice the 
uptake of double glazing only begins towards the 
higher cost end, and the uptake of solid wall internal 
insulation starts to drop and later overtaken by solid 
wall external insulations at the higher cost end.  

FURTHER WORK 
When running all the dynamic simulations, the 
overheating hours for living room and bedroom were 
recorded, and in future work they will be added as 
the constraints in the optimization process. 
Furthermore, the ability to predict dynamic demand 
at regional or sub-regional level by the dynamic 
housing stock model needs to be further investigated. 
The optimization methodology has worked for the 
synthetic optimization problem, which has a larger 
number of variables (5000) than the problem derived 
from the real North-East housing stock data (1205). 
With improvements to the modelling to cover  more 
housing types and more refurbishment options, the 
problem size will grow and we intend to apply the 
framework to these larger scale problems. 
Preliminary studies suggest that it can be scaled to a 
problem with over 16,000 houses (with nearly 50,000 
variables). As well as improvements to the 
optimization algorithm itself, more advanced 
methods to analyse the resulting Pareto-optimal 
fronts will need to be developed to make sense of the 
large amount of information arising from such an 
optimization. 
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