
A taxonomy for triggered interactions

using fair object semantics

Paul Gibson (NUI Maynooth)
Geoff Hamilton (Dublin City University)

Dominique Méry (Université Henri Poincaré Nancy 1 & LORIA & IUF )

18th of May 2000
FIW’00 at Glagow, Single Malt

thanks to CNET/FT/RD/PC, Enterprise Ireland, MAE⊕CNRS, IUF



Overview of issues to be addressed 0/500

3 Continuation of a work towards formulating a feature interaction algebra.

3 Possibility to being able to perform a re-usable analysis of feature interactions
based on feature classes.

3 The weaknesses to this previous introductory work: informal classification hier-
archies, the analysis that arose was based on a small number of very different
features.

1



General Objectives 1/500

3 Formalisation of the notion of triggered features

3 Classification of a subset of common interactions.

3 Fair object formal framework: integration of object-state machines and tempo-
ral logic.

3 The development of a feature interaction algebra is not just a theoretical propo-
sition but is also a practical engineering possibility.

3 Testing our theoretical results in the construction of object oriented feature
requirements models, where each feature is triggered by the same dialIn

event.

2



Motivations 2/500

3 the application of formal methods is fundamental to our approach.

3 the classification towards a taxonomy corresponds to our re-usable analysis
based on abstract classes.

3 the experimentation with different methods, architectures, platforms, etc . . .
corresponds to the way in which we have developed our mixed semantic ap-
proach.

3 Preliminary works: presentation at SNPD00 (Reims, Champagne)

3 Applying the medicine to myself.

3



Fair objects : The need for fairness in requirements
models 3/500

3 An operational approach to requirements specification offers many advantages:
improving communication between the customer and analyst, and aids in syn-
thesis, analysis and validation.

3 Inability to express liveness requirements: we can specify only what cannot
happen (i.e. safety properties) rather than what must happen

3 Liveness requirements often manifest themselves as making some sort of fair
choice between internal state transitions.

3 In nondeterministic operational models the eventuality of something good hap-
pening depends on the nondeterminism being resolved fairly.

3 Choice of temporal logic as a suitable means for expressing and reasoning
about such fairness properties.

4



Fair objects : Fairness from TLA 4/500

3 Weak fairness states that if an action is continually enabled then it will be
eventually carried out.

3 Strong fairness guarantees the eventual execution of an action when that
action is enabled an infinite number of times (though not necessarily continu-
ously).

3 Possible Fairness deals with the case when it is always possible for an ac-
tion to be enabled (by following a certain sequence of internal actions) yet the
action cannot be guaranteed to be executed through the use of strong fairness.

3 Unfortunately, TLA does not provide the means for easily constructing and
validating initial customer requirements

3 By combining TLA and operational (object-oriented) semantics we can alleviate
these problems.

5



Fair objects 5/500

3 Combine temporal semantics and object-oriented concepts in a complementary fashion.

3 The underlying semantic model is that of an object as a labelled state transition system (O-
LSTS).

3 three temporal modalities which provide useful high-level specification mechanisms for require-
ments modelling: fair servers, progression and politeness.

3 A fair object is one which cannot introduce deadlock (or livelock) into a system through contin-
ually refusing to execute a method request.

3 A fair object has the property that all its external services are always eventually enabled.

3 An object must be viewed as an open system which relies on its environment to ensure that its
liveness properties are satisfied.

3 When these objects are composed, the resulting composition must be checked to ensure that
the liveness properties specified for each object are preserved: these objects are polite.

6



lift drop dial(ID) listen:signal regard:on-off

regard=on
listen=ready

regard=off
listen=ready

lift

drop

regard=on
listen=silent 

lift

regard=on
listen=ringing

dialin

otherDown

POTS

7



phone (POTS) Fair Object 6/500

3 The operational requirements : There are eight states in the system and the initial state, iden-
tified by an incoming arrow which is not rooted from another state, is on-silent .

3 Safety requirements: Safety requirements are specified as state invariant properties.

The telephone is specified as consisting of two object components: regard and listen . A
state invariant which defines a relation between these components will include the following
requirement:

Always, if I am talk ing with someone then the telephone must be off hook

2 ((listen = talk) => (regard = off) )

3 Fairness requirements:

I will eventually leave the state off-connecting even if I do not force the state
transition myself.

WF (noconnection).

8



The need for client-server eventuality classes 7/500

3 Immediately Obliged — A client may require that a service request be ser-
viced immediately.

3 Eventually Obliged — A client may require that a service is carried out even-
tually.

3 Immediately Conditional — A client may wish a service to be performed im-
mediately but if it cannot be done without delay then it must be informed so
that it can attempt to do something else.

3 Eventually Conditional — The service is required eventually but if it cannot
be guaranteed in a finite period of time then the client must be informed so that
something else can be done.

3 Unconditional — The client wants the service but places no eventuality re-
quirements on when (or if) the service is performed.

9



Using liveness to classify fair object interactions
8/500

3 Independent - if they do not synchronise on any actions

3 Perfect friends - if they do synchronise on actions, but the internal liveness constraints do not
need to be strengthened to meet the local liveness requirements of the composed object

3 Friends - if they synchronise on actions, but the internal liveness constraints of actions in one
or both objects need to be changed to meet the local liveness requirements of the composed
object

3 Politicians - if the local liveness requirements of the composed object cannot be met by
changing the internal liveness constraints in either object unless some additional resolution
mechanism is used

3 Enemies - if the local liveness requirements of the composed object cannot be met by chang-
ing the internal liveness constraints in either object or by using any additional resolution mech-
anism

10



The base trigger class

Service Feature

S0

S1

trigger

S2

S3

S4

trigger

return

return return

trigger

base service additional service

11



What is triggering? 9/500

3 State S0 is the state of the service in which the feature has just been trigger ed (and is hence-
forth known as an trigger state ).

3 State S1 is the state of the service to which the feature return s control to the service (and is
henceforth known as a return state ).

3 State S2 is the initial (inactive) state of the feature.

3 State S3 is the state in which the feature is initially active after triggering (and is henceforth
known as an entry state ).

3 State S4 is the final active state in which the feature can return control to the service (and is
henceforth known as an exit state of the feature.)

3 There may only be one of each of the states S0 to S4, although they do not necessarily have
to be distinct. So, for example, S0 and S1 may be the same state.

3 There may only be one trigger action and one return action, although they do not necessarily
have to be distinct.

3 The service and feature must synchronise on the trigger and the return actions.

3 The feature may add additional services (as actions at its external interface) but these must
not be found in the base services offered by the service.

12



An answer machine as a triggered fair object 10/500

3 Answermachine is triggered by dialIn : Onringing can occur only after a dialIn.

3 OnRinging state is refined into three states.

3 A reasonable liveness requirement is that when I ring someone with an an-
swering machine I will eventually talk with them or get to leave a message.

3 This requirement is quite naturally specified by making the answering machine
a fair object, which guarantees the eventual execution of a timeout and beep

provided no external actions return control to the Phone .

13



regard

listen

dial

drop
inactive onring

takemessage

givemessage

lift

dialIn

otherDown

lift
otherDown

beep

AMPOTS dialIn

timeout

14



Classification of triggering concept 11/500

3 Variation 1: multiple trigger and return instances

3 Variation 2: multiple return state

3 Variation 3: different triggers and returns

3 Variation 4: no loss of control

15



Classification of DiallIn triggered features 12/500

3 TWC, CH — variation 3 (single trigger, multiple trigger instances, multiple re-
turns)

3 CID, CLOG — variation 4

3 AM — variation 2 (single trigger, multiple return states, multiple returns)

3 ICS — this does not correspond to any of our variations. The problem with
this feature is that it appears to filter out some of the allowable traces in the
original service behaviour and so the new service+feature model is definitely
not a refinement of the old service model.

16



Classifying triggered interactions 13/500

3 Two variation4 features cannot interact when they share the same trigger action
provided they cannot block the trigger action from being executed and they
have different return actions.

3 Two variation3 features cannot interact on different trigger events provided they
are guaranteed to eventually return control to the original service.

3 If F1,F2 and F3 are triggered features then they cannot interact when all three
are implemented in the same system provided no two of them interact in a
pair-wise fashion

17



Conclusion 14/500

3 Ensuring that the liveness properties of objects are preserved under compo-
sition is to allow only a weak form of object composition in which the liveness
properties of the objects are guaranteed to be preserved.

3 The liveness properties of the com posed object in this case are easy to rep-
resent i/ n TLA as the logical conjunction of the liveness properties of each
object.

3 In general, however, we require stronger forms of object composition in which
there is communication (through synchronisation) between the composed ob-
jects.

3 Ongoing work on proofs and categorisation of features

18


