
Computer Networks 51 (2007) 536–557

www.elsevier.com/locate/comnet
Managing feature interactions between distributed
SIP call control services

Mario Kolberg *, Evan H. Magill

Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, United Kingdom

Available online 20 September 2006

Responsible Editor: H. Rudin
Abstract

The Session Initiation Protocol (SIP) is widely used as a call control protocol for Voice over IP (VoIP), and indeed
commercial implementations are readily available off-the-shelf. SIP supports flexible service provisioning not only through
third parties, but also end-users. Laboratory experience shows that as these services are interworking they are subject to the
feature interaction problem. Feature interactions may considerably delay service deployment and hence are a threat to
rapid service provisioning.

This paper investigates the feature interaction problem in SIP-based services and investigates the application of a
pragmatic approach. This runtime approach does not require any detailed information about the services and hence
can be applied in a competitive market. Furthermore, the technique is particularly strong in handling interactions between
distributed services – a key characteristic of SIP-based services. Moreover, the approach is fully distributed without any
centralised components, and includes detection and resolution of feature interactions.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Telecommunications services; Voice over IP; Session initiation protocol; SIP; Feature interaction; Runtime approach
1. Introduction

One of the main drivers for the success of SIP is
the relatively easy provisioning of services. Third
party service providers and even end users may
provide services. Once fully tested and deployed,
each service functions well on its own. However,
as was discussed by Lennox and Schulzrinne [1],
1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2006.08.006

* Corresponding author. Tel.: +44 178646447; fax: +44
1786464551.

E-mail addresses: mko@cs.stir.ac.uk (M. Kolberg), ehm@cs.
stir.ac.uk (E.H. Magill).
when SIP services interwork their combined behav-
iour may not be acceptable. This phenomenon,
already known from traditional telephony net-
works, is termed feature or service interactions [2].
1.1. Basic terms

Within feature interactions in telecommunica-
tions the terms interworking and incompatibility
have well understood meanings. Services must
interwork to share a (communications) resource,
for instance a session. The services may interwork
explicitly through an exchange of information with
.

mailto:mko@cs.stir.ac.uk
mailto:ehm@cs. stir.ac.uk
mailto:ehm@cs. stir.ac.uk

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 537
each other, or implicitly through changing the
session. In the second case, the services often have
no knowledge that the other exists.

When services interwork to share communication
resources, they are compatible if the joint behaviour
of the resource is acceptable. However, if the joint
behaviour is not acceptable, i.e., the services are
not compatible, the services are said to interact.
Compatibility does not refer to coding errors, nor
to the adherence of interfaces or protocols, but to
the adequate behaviour of a resource under the joint
control of interworking service.

As examples of interactions, consider the follow-
ing scenario during setting up a voice over IP
session using SIP. If a user who subscribes to
call waiting (CW) and call forward when busy

(CFB) is busy, then what will happen when there
is an invitation to another session? If the invitation
is forwarded, then the CW service is clearly compro-
mised, and vice versa. In either case, the user will
not have their expectations met.

More subtle interactions can occur when more
than one user is involved. For example, consider
the scenario where user A subscribes to a originat-
ing call screening (OCS) service, with user C on
the screening list, and user B subscribes to CFB
to user C. If A invites B, and the invitation is
forwarded to C, as prescribed by B’s service CFB,
then A’s service OCS is compromised. Clearly, if
the invitation is not forwarded, then the CFB ser-
vice is compromised. These kinds of interactions
can be very difficult to handle, particularly since dif-
ferent services may be activated at different stages of
the session setup, and may be deployed on different
components in the SIP network.

As can be seen, feature interactions do not occur
because of badly coded services, but because of
broken assumptions and conflicting goals of the
services involved. For instance, OCS assumes that
the party the session is aimed at, will be the party
the session is actually established with. However,
CFB breaks this assumption.

Services with comparable functionality are
already known from the traditional telephony
network, however, they are also being deployed on
SIP networks. SIP has some fundamental differ-
ences to traditional telephony networks and hence
it is necessary to revisit these problems in a SIP
context.

Some authors distinguish the concepts of features
and services. For this paper, the distinction between
feature and service is not significant, what is crucial
is the concept of interaction. The terms service and
feature are used interchangeably.

Clearly, with increased complexity and number
of services, the problem gets worse. Neither manual
inspection, nor simple testing, offer tractable
solutions. More effective approaches addressing
the special requirements of this domain are needed.

1.2. Service examples

Throughout the paper reference is made to a
number of common call control services. These are:
Call Forwarding Unconditional, Call Forwarding
Busy, Originating Call Screening, Terminating Call
Screening, Voice Mail System, Automatic Ring-
back, Do Not Disturb, Hotline, and Group Ringing
which exhibits the same functionality as a forking
proxy. Briefly, the services exhibit the following
behaviour:

• Call Forwarding Unconditional (CFU) redirects
all incoming calls to a predefined 3rd Party.

• Call Forwarding on Busy (CFB) redirects all
incoming calls to a predefined 3rd Party when
the subscriber is busy.

• Originating Call Screening (OCS) screens all
directory numbers of outgoing calls against a
database. If a number matches an entry in the
database the call is blocked and the subscriber
is redirected to an announcement. This is strictly
Originating Dial Screening.

• Terminating Call Screening (TCS) for all incom-
ing calls, it screens the directory numbers of the
originating party against a database. If a number
matches an entry in the database the call is
blocked and the originator is redirected to an
announcement.

• Voice Mail System (VMS) redirects the caller to
voice mail.

• Automatic Ringback (AR) is activated when the
subscriber is busy. It returns the call to the caller
after the subscriber is idle again.

• Do Not Disturb (DND) redirects all incoming
calls to an announcement.

• Group Ringing (GR) allows for an incoming call
to ring on an additional phone(s). The phone
which goes offhook first is connected to the orig-
inator. The remaining phone will be idle again. In
a SIP environment this functionality is known as
Forking.

• Hotline (HL) connects the subscriber to a pre-
configured party without dialling their number.

538 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
1.3. Basic approaches

A substantial body of work [3–9] exists on
dealing with feature interactions. Most approaches
can be categorised as either off-line or on-line.
Briefly, off-line approaches are applicable at
design-time whereas on-line approaches are applied
at run-time. The former being most useful at the
early stages of the software lifecycle, the latter dur-
ing testing and deployment [10].

Off-line approaches are often based on the appli-
cation of formal methods, and as such require
considerable information of each individual soft-
ware increment. Increasingly, as the market becomes
more competitive, this information may not be avail-
able. Also, as the number of services increases, the
work in analysing pair-wise interactions increases
with the square of the number of services. With a
large number of services in an open market, this
will quickly become untenable. However, off-line
approaches still have a role to test services inside a
single offering.

In contrast, on-line approaches carry out
checks as required. Clearly there are computing
resource issues, but the major issue is having
sufficient information about the services available
at runtime. A particular issue with run-time
approaches is the ability to detect interactions
between services deployed on different components
in the network. The approach presented in this
paper is attempting to close this gap. A more
detailed discussion on existing approaches can be
found in [2 and 11].

This paper builds on a pragmatic off-line
approach [12]. Previously, that work had already
been successfully applied at runtime in a traditional
telephony setting [10]. It has also formed the base
for a successful runtime detection approach in a
SIP environment [13]. Here, the latter work is
extended to include resolution of detected interac-
tions. Resolution is crucial for runtime approaches,
as simply detecting an interaction does not improve
the situation for the users.

The remainder of this paper is structured as
follows: The next section presents an introduction
to the Session Initiation Protocol. Section 3 suggests
a pragmatic approach which can be applied at
runtime to SIP services. Section 4 discusses how
the approach can be implemented in SIP and
Section 5 presents experiences made with a test
implementation. Section 6 discusses experimental
results. The final section summarises the paper.
2. SIP

2.1. Architecture and components

Voice over IP uses a number of different proto-
cols. SIP [14] is used for ‘signalling’. SIP is
concerned with user registration as well as session
setup, modification and termination. Crucially,
SIP does not deal with the media exchange (stream-
ing) as such. Other protocols are used in combina-
tion with SIP to allow for different media to be
transmitted. Indeed SIP can be used to establish
non-telephony sessions.

Within a SIP network there are two basic types of
devices, end devices (user agents) and servers. User
agents are the devices used by end users to place
or receive calls. These may be SIP phones, or so
called soft phones, which are software implementa-
tions to be run on a PC. Note that user agents do
not necessarily interface directly with a user, an
answering machine is also a user agent. User agents
are distinguished according to their role in a call: the
user agent client places the call, and the user agent
server receives the call. User agents initiate and
respond to signalling and send and receive media.
User agents are aware of the call state. Unlike tradi-
tional telephony, user agents may provide a number
of services, such as Call Waiting, Call Forwarding,
or Call Screening.

Servers handle the application level control and
routing of SIP messages. There are three different
kinds of servers defined in SIP: Register, Redirect
and Proxy servers. If a user is to be invited to join
a session (call), there is the question of where the
invitation should be sent to as users may be located
at different IP addresses. Users are addressed by
email-like addresses, e.g., sip:mko@cs.stir.ac.uk.
This is a public address. However, at present, the
user may in fact be located at a computer with the
name d25.cs.stir.ac.uk and be logged on as user
mk0123. The SIP address for this location would
be sip:mk0123@d25.cs.stir.ac.uk. To link the two
addresses users need to register with a register
server. Register servers work very closely with redi-
rect and proxy servers.

Invitations are sent from the user agent client via
a number of redirect or proxy servers to the user
agent server. If a redirect server receives an
invitation for a user, it checks with the database
of the local register server and returns to the origi-
nator the address where it believes the user to be
invited can be found. If the user is not actually

Table 1
SIP headers

Header Meaning

To Destination address
From Originator address
Call-Id Session ID
Cseq Sequential Number of request

within a session
Contact User Agent Client address
Via Addresses of nodes message

has passed through
Contents-Type Type of payload in the message
Contents-Length Length payload in the message
Allow Requests understood by client
Supported SIP extensions supported by client

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 539
located at that address, more information on the
user’s location may be available from that address.

Proxy servers are similar to redirect servers in
that they help to find the location of a user.
However, a proxy server does not return the found
address but forwards the invitation on to that
address. In the path on which an invitation is sent
from the user agent client to the user agent server
there may be number of redirect and proxy servers.

Both proxy and redirect servers can host and
execute call control services in that they can direct,
block, or alter call signalling messages. Con-
sequently, SIP offers the potential for a truly distrib-
uted service provisioning. Services may be deployed
on user agents and redirect and proxy servers.
Therefore, SIP will allow a degree of programmabil-
ity which is unknown in the PSTN.

2.2. SIP messages

SIP distinguishes two message types: requests and
responses. Requests are messages sent from the user
agent client to the user agent server. Responses are
messages sent from the server to the client. SIP
supports six request messages:

REGISTER is used to register contact informa-
tion with a register server.
INVITE is used to establish a SIP session.
ACK is used in a three-way handshake after an
INVITE to confirm the establishment of a
session.
CANCEL is used to cancel the previous request.
BYE is used to terminate an existing session.
OPTIONS is used to query a server on its capa-
bilities, e.g., supported SIP extensions.

SIP responses are based on HTTP responses and
are distinguished by a three-digit status code. The
first digit specifies the class of the response.

1** Provisional: The server has received the
request and continues to process it.
2** Success: The request was successfully
received, understood and accepted.
3** Redirection: A further action needs to be
taken to complete the request. Usually the reply
contains an address to which the client should
direct subsequent requests to. This reply is
commonly used by redirect servers.
4** Client Error: The request contains bad syntax
or cannot be fulfilled at this server.
5** Server Error: The server failed in fulfilling an
apparently valid request.
6** Global Failure: The request cannot be ful-
filled at any server.

Responses of the 1** class are said to be provi-

sional, whereas all other responses are final. Provi-
sional responses need to be followed by a further
final response.

Furthermore, SIP defines a transaction, which
comprises all messages from the first request sent
to the server up to the final response sent back to
the client. INVITE requests use a three-way-hand-
shake which consists of the INVITE message, possi-
bly provisional responses, a final response and an
ACK request. All other requests are answered by
a final response which may be preceded by provi-
sional responses.

SIP messages contain a number of headers

providing more detail on the request, response and
transaction. While there are only a few SIP
messages, SIP is quite complex. This complexity is
largely introduced by headers. There are a number
of headers specified in the SIP standard, and
furthermore, additional headers may be defined. If
a server or user agent does not understand a header
it simply ignores it. The OPTIONS request can help
to establish what extensions the other party
supports. The list below provides an overview of
the most common headers (Table 1).

However, the specific use of headers is best
explained with the aid of an example. The following
SIP messages establish and terminate a two party
session. Please note that any payload of messages
has been omitted for brevity. Ref. [15] provides
more details and example call flows.

540 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
INVITE sip:alice@d254203.cs.stir.ac.

uk SIP/2.0

From: sip:chris@discus.cs.stir.ac.uk;

tag=1c17644

To: sip:alice@d254203.cs.stir.ac.uk
Call-Id: call-1058523015-27@139.153.
254.222

Cseq: 1 INVITE

Contact: <sip:chris@139.153.254.222>
Via: SIP/2.0/UDP 139.153.254.222

Content-Type: application/sdp
Accept-Language: en
Allow: INVITE, ACK, CANCEL, BYE, REFER,
OPTIONS, REGISTER

Supported: sip-cc, sip-cc-01, timer,

replaces

User-Agent: Pingtel/2.1.8 (VxWorks)

Date: Fri, 18 Jul 2003 10:10:15 GMT

The INVITE message is sent from the user agent
client to the user agent server. The first line in the
message provides the message name (INVITE),
and the address where the message is to be sent to
next. It is important to note that this is not necessar-
ily the final destination, but only the next hop. At
the end, the version of the SIP protocol is specified.
The next two headers From and To specify who
originated the transaction and its destination. These
addresses are public addresses and do not specify
the actual location of the users. Furthermore, if
the request gets forwarded to a different destina-
tion, the To field stays unchanged. It is only the first
line of the message which takes the new address.

The header, Call-Id specifies an ID for the
session. All subsequent messages belonging to this
session will be assigned this ID. The following
header, Cseq provides the number of the request
within that session. Replies to a particular requests
carry the same Cseq. However, the Cseq is not
always incremented for the next request. ACK
request carry the same Cseq as the corresponding
INVITE and CANCEL request carry the same Cseq
as the requests which is to be cancelled.

The Contact specifies the address of the user
agent client. This is the physical location of the user,
and thus not identical to the public address specified
in the From field. The Contact field is provided to
allow for the media connection to be established
directly between the user agent server and client.
The Via header contain the addresses of all nodes
the message has passed on its way, i.e., the user
agent client and all proxies include their address as
a Via header. In this example there is only one; how-
ever, as the request is getting closer to its destination
there may be a number of Via headers in the mes-
sage. This allows response messages to take the
same path as the corresponding request.

The headers Contents-Type and Contents-Length

are concerned with the body or payload of the
request. SDP is a protocol to specify the media to
be exchanged after establishment of the session.
Commonly INVITE requests and 200OK response
messages carry a SDP payload. These two messages
are used to negotiate the media for the session. Basi-
cally, INVITE contains an offer and the 200OK
message either accepts the offer (identical payload)
or makes a counter proposal which is usually one
of the options offered in the INVITE. Since call con-
trol is usually not concerned with the payload it has
been omitted in this paper.

The header Allow specifies SIP requests the client
understands, and the header Supported specifies SIP
extensions which are supported by the client. The
User-Agent header contains a string providing more
detail on the user agent used. Finally, the Date

header specifies the date and time when the request
was issued.

SIP/2.0 100 trying – your call is

important to us

From: sip:chris@discus.cs.stir.ac.uk;

tag=1c17644

To: sip:alice@d254203.cs.stir.ac.uk
Call-Id: call-1058523015-27@139.153.
254.222

Cseq: 1 INVITE

Via: SIP/2.0/UDP 139.153.254.222

Server: Sip EXpress router (0.8.

11pre36 (i386/linux))

The second message in the transaction is a 100

Trying. This is usually the first reply sent by a proxy
server to the user agent client. It means that the
proxy has received the request and is processing it.
There are no new header fields in this message,
except the Server header. This is similar to the
User-Agent header discussed above.

Note that the From and To fields have not chan-
ged, they stay the same during the transaction. Sim-
ilarly, Call-Id and Cseq are identical to the INVITE,
i.e., this response is referring to the INVITE
request. The address in the Via header is also the
same as before, this means that the response should
go via the address specified. Also, since there is only

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 541
one Via header, there is only one final hop remain-
ing, which is the user agent client. The Content-
Length header is set to 0, as there is no payload with
provisional responses.

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 139.153.254.222

From:<sip:chris@discus.cs.stir.ac.uk>;
tag=1c17644

CSeq: 1 INVITE

Call-ID: call-1058523015-27@139.153.
254.222

To: <sip:alice@d254203.cs.stir.ac.uk>;
tag=2FFCD6CF

User-Agent: KPhone/3.11
Contact: "root" <sip:root@139.153.254.
203:5062;transport=udp>

The next message which is sent is a 180 Ringing

response. This is sent after the proxy server has con-
tacted the user agent server (terminating UA) and
the user is being alerted. Again, the From, To,
Via, Cseq, Call-Id, and Content-Length headers
are identical to the previous response. However, this
message has a Contact field which specifies the loca-
tion of the invited user.

SIP/2.0 200 OK

Via: SIP/2.0/UDP 139.153.254.222

CSeq: 1 INVITE

Content-Type: application/sdp
Call-ID: call-1058523015-27@139.153.
254.222

To: <sip:alice@d254203.cs.stir.ac.uk>;
tag=2FFCD6CF

User-Agent: KPhone/3.11
Contact: "root" <sip:root@139.153.254.
203:5062;transport=udp>

The next message is a 200OK message which
signals success. This is a final response and is sent
after the user accepts the call. In traditional tele-
phony the user would have gone off-hook. The
headers are as discussed before.

ACK sip:root@139.153.254.203:5062;

transport=udp SIP/2.0

Contact: sip:chris@139.153.254.222
From:<sip:chris@discus.cs.stir.ac.uk>;
tag=1c17644

To: <sip:alice@d254203.cs.stir.ac.uk>;
tag=2FFCD6CF
Call-Id: call-1058523015-27@139.153.
254.222

Cseq: 1 ACK

User-Agent: Pingtel/2.1.8 (VxWorks)

Date: Fri, 18 Jul 2003 10:10:22 GMT

Via: SIP/2.0/UDP 139.153.254.222

The next message, an ACK request, establishes
the session. It is sent from the user agent client (orig-
inating UA) to the user agent server (terminating
UA). The media stream will be established between
the Contact addresses of the two parties chris@
139.153.254.222 and root@139.153.254.203:5062.
Note that the Cseq counter has not increased even
though this is a new request.

BYE sip:root@139.153.254.203:5062;

transport=udp SIP/2.0

From: sip:chris@discus.cs.stir.ac.uk;

tag=1c17644

To: sip:alice@d254203.cs.stir.ac.uk;

tag=2FFCD6CF

Call-Id: call-1058523015-27@139.153.
254.222

Cseq: 2 BYE

Supported: sip-cc, sip-cc-01, timer,

replaces

User-Agent: Pingtel/2.1.8 (VxWorks)

Date: Fri, 18 Jul 2003 10:10:23 GMT

Via: SIP/2.0/UDP 139.153.254.222

The session is terminated by sending an BYE
request. All header fields are like the previous
request messages, except Cseq which has now been
increased by 1. Note that the BYE request can be
sent from either party.

SIP/2.0 200 OK

Via: SIP/2.0/UDP 139.153.254.222

From: <sip:chris@discus.cs.stir.ac.uk>;
tag=1c17644

CSeq: 2 BYE

Call-ID: call-1058523015-27@139.153.
254.222

To: <sip:alice@d254203.cs.stir.ac.uk>;
tag=2FFCD6CF

User-Agent: KPhone/3.11
Contact: "root" <sip:root@139.153.254.
203: 5062;transport=udp>

The BYE request is confirmed with a 200OK
response from the other party.

Fig. 1. Description of Call Forwarding Unconditional.

542 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
2.3. Consequences for feature interactions

Services working on the same call may be
deployed in a number of different locations, which
are controlled by separate organisations. These
organisations may not be aware of each other or
may compete with each other. Thus they are not
inclined to share detailed information on their
services to avoid interactions. Also, a large degree
of programmability allows end users to design and
deploy their own call control services, either on their
user agent or by uploading them to the local proxy
server. Consequently, SIP uses a heavily distributed
architecture with services possibly being deployed
on every component from a range of independent
stakeholders. Any approach to feature interactions
for SIP needs to take this into account.

The fact that media packets travel end-to-end
(except if B2BUA (Back to Back User Agent) are
used), without being interceptable by intermediate
servers means that some services can no longer be
implemented transparently. For instance, ‘‘pipe-
bending’’ services, such as forwarding a call, cannot
be performed without informing the other party of
the new address to which they should send the
media packets [1]. This is clearly an advantage for
feature interaction as it prevents some broken
assumptions.

Further, the increased numbers of possible
addresses can also complicate some services. In the
traditional telephony network a phone number
can be used to identify a party for call screening.
In SIP this is much harder to achieve.

The next section provides details of an approach
which is applicable to SIP. Section 4 discusses the
application of this approach.

3. The applied approach

The algorithm builds upon the pragmatic
approach presented in [12]. The approach concen-
trates on the establishment of connections and
does not require detailed information about the
involved services, but operates at the connection
level. Thus it can be applied in a competitive busi-
ness environment where no detailed technical infor-
mation will be available. And secondly, the
applicability of the approach is independent of
the network architecture. It is adapted to operate
at runtime in PSTN [10] and SIP environments
[13]. Here the latter is extended to include resolu-
tion of interactions.
3.1. Overview

The behaviour of a service is described in two
parts: the triggering party and a connection type.
The latter consists of two parts: the original connec-
tion to be set up before the service is activated and
the connection set up after the service has been
triggered.

An example should illustrate this. Call Forward-
ing Unconditional (CFU), which redirects all
incoming calls to a predefined third user, can be
described as shown in Fig. 1. Assume party A is
the originator, B the terminator, and C the party
where the call is redirected to. The behaviour has
two parts, separated by a semicolon. In the first
part, the notation TP.: B indicates that B is the
triggering party, as CFU is triggered at the termi-
nating end of a call. In the second part, notation
(A, B)! (A, C) indicates the connection type. (A,
B) is the originally proposed connection (called ori-
ginal connection) and (A, C) is the connection after
activating the service (called resulting connection).
For a pair, such as (A, B), A is the source and B
the destination.

In this example, the call starts with A attempting
to connect to B. However, because of CFU, A is
connected to C instead. This leads to the connection
type (A, B)! (A, C).

The originally intended connection and the
connection set up after activation of the service do
not need to be part of the same call. While in the
above CFU example the resulting connection is set
up immediately after triggering the service, this
might not be the case with some other services.
For instance Automatic Ringback which is
triggered by an incoming call to the subscribers line
while they are engaged in another call, only returns
the call to the caller after the subscriber is idle again.
Hence a connection type may describe either a
single or two calls. However, the order in which
the calls are established is maintained, i.e., the
resulting connection is only established after the ori-
ginal connection was attempted to be set up. As an
example, Fig. 2 contains the specification for Auto-
matic Ringback.

Treatments are an important aspect of this
approach. Treatments are announcements or tones

Fig. 2. Specification of Automatic Ringback.

Fig. 3. (a) Call Forwarding Busy & Call Waiting and (b) Auto-
matic Ringback & Hotline.

Fig. 4. Call Forwarding Busy and Call Forwarding Uncondi-
tional revisited.

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 543
triggered by the network to handle certain condi-
tions during a call, for example when a call is
screened or blocked. Potentially, there may be
multiple treatments involved in a call. For example,
consider two services invoked during one call. One
service might connect a party to a busy treatment,
whereas the other service connects the (same or
the) other party to a network unavailable treatment.

Clearly, this way of describing services abstracts
from a considerable amount of service behaviour.
However, the presented approach was aimed to be
as abstract as possible while remaining useful. The
presented results show that omitting these details
is not an issue.

3.2. Interaction analysis

Interaction cases are found by analysing pairs of
services. Two service descriptions are compared
according to five rules. If a service pair fulfills any
of the five rules, then the pair is said to interact.
In the following, each of the rules is considered in
turn. Importantly, the order of the services within
a pair does not have any influence on the result.
Thus changing the order of services does not affect
the functioning of the approach.

Rule 1 – Single User–Dual Service Control: If
both services have the same triggering party
and either the original connections or the result-
ing connections are identical, the pair interacts.
Note that, even if the services aim at setting up
the same connection, the services may clash as
they may be triggered simultaneously. Examples
are given in Fig. 3. The shaded portions indicate
the key parts of the descriptions.
Rule 2 – Connection Looping: If the original
connection of the first service is identical to the
resulting connection of the second service, and
the original connection of the second service is
identical to the resulting connection of the first
service then a connection loop occurs. Further,
the triggering parties need to be different. As
both services are trying to divert the connection
in a circular way, a loop occurs (ref. Fig. 4).
Again, the shaded portions indicate the identical
connections.
Rule 3 – Redirection and Treatment: This type of
interaction is detected if the resulting connection
of one service matches the original connection of
the other service which connects to a treatment.
Furthermore, either the originating parties for
the original and resulting connections of one
service need to be identical and the terminating
parties be different, e.g., (A,C)! (A,B), or alter-
natively, the originating party of the original con-
nection needs to match the terminating party of
the resulting connection and the terminating
party of the original connection is the originating
party of the resulting connection, e.g., (A,B)!
(B,A).In other words, one service establishes a
connection by either forwarding (not to a treat-
ment) or reversing a connection. The resulting
connection is the original one of the second ser-
vice, which redirects the call to a treatment.This
scenario is a potential problem as the connection
which is set-up by the redirection service is pre-
vented by the treatment service. Fig. 5 provides
two examples.
Rule 4 – Diversion and Reversing: This rule
specifies that an interaction is detected if the
resulting connection of one service matches the
original connection of the other service. Further-
more, for one of the two services the originating
party of the original connection is identical with
the originating party of the resulting connection
and the terminating parties of the two connec-
tions are different. For the other service, the orig-
inating party of the original connection needs to

Fig. 5. (a) Call Forwarding Busy & Originating Call Screening
and (b) Automatic Ringback & Originating Call Screening.

Fig. 6. (a) Call Forwarding Busy & Automatic Ringback and (b)
Automatic Ringback & Call Forwarding Busy.

Fig. 7. Call Forwarding on Busy and Originating Call Screening
revisited.

544 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
be the terminating part of the resulting connec-
tion and the terminating party of the original
connection needs to be the originating party of
the resulting connection.Here one service for-
wards a call and the other reverses the call. This
may happen in either order, i.e., one service for-
wards a call which is subsequently reversed to the
originator by the other service. In this case the
originator of the original connection will receive
a reversed call from someone they never
rung.Alternatively, a reversed call is forwarded.
In this case, a service reverses a call which is sub-
sequently forwarded by the other service to a
third party. Consequently, the returned call is
reaching a person which never placed a call in
the first place. Fig. 6 contains two example inter-
action scenarios.
Rule 5 – Treatment and Subsequent Missed Call

Handling: This type of interaction occurs if the
original connections for both services are identi-
cal and for one service, the triggering party is also
the originating party of original connection and
the terminating party of the resulting connection
is treatment. The triggering parties of both
services need to be different.This type of interac-
tion is concerned with call control services which
are prevented from functioning by another ser-
vice which connects the call to a treatment. An
example of this type of interaction is given in
Fig. 7.

Finally, it is important to note that the descrip-
tions are on a per service base, not per services
pair. It is only the algorithm which combines two
service descriptions to pairs. This greatly reduces
the complexity, because when new services are
introduced no existing descriptions need to be
changed.
4. Applying the approach to SIP

4.1. SIP services

SIP allows for much more expressive messages to
be exchanged between components than was possi-
ble in the PSTN. Headers as discussed in Section
2.2, convey a lot of information about the call to
be set up. However, interactions are due to broken
assumptions and conflicting goals between the
services, and cannot be prevented by rich messages.

In SIP, services can be provided in a number
of different ways, for instance, SIP CPL [16], SIP
LESS [17], SIP CGI [18] and SIP-Servlets [19].
Additionally, high-level APIs such as JAIN and
Parlay can be used. SIP CPL and LESS are XML-
based languages and are deliberately restricted in
their functionality. The other approaches offer full
access to SIP messages and also the use of external
databases which are important for a number of
services, such as forwarding and screening. Thus
the discussion in this paper is targeted at these
‘‘full’’ services. In fact, the approach can be applied
to any service which can be surrounded by a cocoon
(as discussed in Section 4.2.1). The case study in
Section 5 has been carried out on SIP CGI-type
services.

Below, it is discussed how some important call
control services are reflected in SIP messages. Most
call control services are active while the session is

Fig. 8. Description of CFU.

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 545
being set up. Consequently, INVITE messages are
the most important ones as services are triggered
by them.

4.1.1. Call Forwarding Unconditional

According to work carried out within the IETF
on SIP call control services [15] call forwarding of
a request is achieved by rewriting the address in
the first line of the message. The To header is not
changed. The To header is supposed to show the
address the call started off with. The example below
shows relevant parts of two INVITE messages. The
first is received by a proxy server and the second is
sent by the proxy server. Note the first line in each
message. In the first message, the INVITE is sent
to bob@d254203.cs.stir.ac.uk.

INVITE sip:bob@d254203.cs.stir.ac.uk

SIP/2.0

From:sip:chris@discus.cs.stir.ac.uk;
tag=1c28023

To: sip:bob@d254203.cs.stir.ac.uk
Call-Id: call-1058520667-25@139.153.
254.222

Cseq: 1 INVITE

Contact: <sip:chris@139.153.254.222>
Via: SIP/2.0/UDP 139.153.254.222

However, in the message below the INVITE is
forwarded to alice@d254203.cs.stir.ac.uk. Note that
the To header still contains Bob’s address.

INVITE sip:alice@d254203.cs.stir.ac.

uk SIP/2.0

From: sip:chris@discus.cs.stir.ac.uk;

tag=1c28023

To: sip:bob@d254203.cs.stir.ac.uk
Call-Id: call-1058520667-25@139.153.
254.222

Cseq: 1 INVITE

Contact: <sip:chris@139.153.254.222>
Via: SIP/2.0/UDP 139.153.254.50;

branch=z9hG4bKa3fd.cd0ac2e7.0

Via: SIP/2.0/UDP 139.153.254.222

The service description for this example is
constructed as follows. The Triggering Party is set
to the address specified in the first line of the mes-
sage. As this address is the next destination of a
message, if a proxy (or any other SIP component)
receives an INVITE request, the address in the first
line is the address of the proxy. For this example it
would be bob@d254203.cs.stir.ac.uk. For the origi-
nal connection, the originating party is the address
in the From header, and the terminating party is
the same as the triggering party. It is important to
note that the To header field cannot be used as
the message may already have been forwarded.
The originating party for the actual connection is
also the address in the From header, and the termi-
nating party is the address where the call is to be
forwarded to (Fig. 8).

The above example assumes that the service is
deployed on a SIP proxy server. However, it may
also be present on the user agent server or a redirect
server. When deployed on a user agent server, the
messages are not very different, the second INVITE
is simply sent by a different component. However,
if the service deployed on a redirect server, the
messaging is different in that the server does not
forward the request, but sends a 301 Moved tempo-
rarily or 302 Moved permanently response with the
new address in the Contact header back to the
UAC. This will then trigger a new INVITE to the
specified address. As this does not change the funda-
mental behaviour of the service (a different party
gets the invitation), it has no effect on the descrip-
tion of the service.
4.1.2. Call Forwarding on Busy

In traditional telephony the switch is aware if a
user is busy. Thus services which handle the busy
state of a terminal, such as Call Forwarding on
Busy or Call Waiting, can be triggered on the alert
message. However, in SIP, a proxy server is not
aware whether the user agent is busy. This occurs
for two reasons. Firstly, the proxy may operate in
the stateless mode. In this case the proxy only
forwards messages and is not aware at what point
in a session these messages are sent and indeed if
they are legal. The second reason is that messages
may be sent to the user agent bypassing the proxy
server altogether. Thus services handling the busy
state of a user agent need to operate differently from
equivalent services in the PSTN.

In SIP, the busy condition is only known after
the INVITE has been forwarded to the user agent

546 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
and the user agent has replied with a response
message 486 Busy. Hence, services like call forward-
ing on busy and call waiting will only be triggered
on the busy message, not the original INVITE.
Using the example of call forwarding on busy, this
is shown in Fig. 9.

In the example, Alice tries to INVITE Bob. Bob
can be reached at two locations Bob1 and Bob2 and
Bob wants all calls to Bob1 forwarded to Bob2 if
Bob1 is busy. The busy message shown by a dashed
arrow triggers Bob1’s CFB service. Dropping the
busy message and issuing the INVITE shown
dashed is a result of the CFB service.

As with CFU, CFB may also be provided on a
user agent server. Again, this makes little difference
to the messaging. The user agent server, simply
forwards the invitation onto the new destination.
Deploying CFB on a redirect server is not possible,
as the server is not aware of the busy condition, as it
does not see the response from the user agent server.

Even though Call Forwarding on Busy is
triggered in a different way that Call Forward-
ing Unconditional, CFB and CFU services are
described in the same way. Thus for the example
shown in Fig. 9 the description for CFB is as shown
in Fig. 10.
INVITE Bob1
INVITE Bob1

486 Busy

ACK

180 Ringing

180 Ringing
200 OK

200 OK

ACK
ACK

Alice Proxy (CFB) Bob1 Bob2

486 Busy

ACK

INVITE Bob2

180 Ringing

200 OK

ACK

Fig. 9. Call Forwarding Busy in SIP.

Fig. 10. Description of CFB.
4.1.3. Terminating call screening

A screening service in SIP can be implemented by
screening relevant header fields or by asking for
explicit authentication. While the authentication
option is suggested in [15], at least for terminating
call screening it has the disadvantage that calls can
only be received from parties which are known
and been granted explicit permission. This is a
positive list, rather that the negative list used in
traditional telephony. This appears to be very
restrictive and not practical for most purposes. To
allow for more flexible screening, the approach of
checking header fields is adopted.

Terminating call screening checks the address in
the From header field. If that address matches any
address in the screening list, the call is screened.
The triggering party again is the address specified
in the first line in the message (address of current
location). The address in the From header field is
used for the originating parties in the connection
type. Considering the second message in Section
4.1.1, and assuming that alice@d254203.cs.stir.
ac.uk does not wish to be called from chris@
discus.cs.stir.ac.uk, the description as shown in
Fig. 11 can be derived.

TCS may be deployed on proxy servers, redirect
servers and user agent servers alike. The message
flow is largely identical for all three components.
On receiving an invitation from a screened source,
an error response message is returned (see Fig. 12).
4.1.4. Originating call screening

Originating call screening checks the Request-
URI (address in the first line of an INVITE
message). If that address is also in the screening list,
the call is not allowed. The triggering party is the
user name given in the From field and the address
of the current location. As OCS is associated with
the calling party it will usually be deployed on the
Fig. 11. Model of SIP TCS.

Fig. 12. Model of SIP OCS.

Fig. 13. SIP header for CFU.

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 547
local proxy server. In this case, the address for the
triggering party will be the public address of the user
agent client, and thus will match the address given
in the From header. However, OCS may also be
deployed directly in the user agent client. Then the
address in the From header will not match the
actual triggering location.

Using the example of the first INVITE message
in Section 4.1.1, and assuming the current location
is the local proxy server (discus.cs.stir.ac.uk), the
following connection type for OCS can be derived:

4.2. Implementation of the approach in SIP

4.2.1. The ConType header

SIP is a distributed protocol, with services being
located at various locations through which a SIP
message travels. Hence, the approach and especially
the application of the algorithm gains from being
distributed as well.

Each service which gets activated includes its
Triggering Party and Connection Type into the
message. If there is already one or more entries in
the message, these are checked against the descrip-
tion of the current service. Thus the algorithm is
executed wherever necessary and a central feature
manager is not required. This distributed nature of
the approach is one of its core features. It makes
the approach highly scalable and resilient to a single
component failure. Furthermore it cuts down on
additional network messages.

The approach can be implemented, as SIP is an
extensible protocol. Additional headers carrying
additional information may be defined and included
with messages. The newly defined header to carry
the required information for this approach is called
ConType.

For this approach, each service needs to be
surrounded by a cocoon. Cocoons have been
successfully adopted in the PSTN before by Marples
et al. [20–22]. The cocoon contains the connection
type for the service and the logic for the interaction
algorithm.

When a message arrives at a server (or user agent),
the message gets passed to the deployed services. As
the services are surrounded by cocoons, the message
is actually sent to the cocoon, but from there it is sent
immediately to the service proper. At this point, the
cocoon does not check or alter the message.

Once the service proper is finished with execution
the potentially altered message is passed back to the
cocoon. With the message, the service sends an
indication to the cocoon, whether the service actu-
ally was triggered by the message, i.e., it altered
the message (e.g., CFU), or was armed to execute
at some event in the future (e.g., AR).

This indication is important as the services may
only get triggered by some messages, e.g., some calls
are not forwarded or not screened. This often
depends on service specific data, such as screening
lists. Services which have not been triggered cannot
cause any interactions. Hence the following
algorithm does not need to be executed for such
services. If the service was triggered by the message,
the cocoon then checks the message for a header
called ConType. These headers contain the descrip-
tions of services which have already been active in
that transaction.

If such a header is not found, no other service has
previously been active and hence a service interac-
tion cannot have occurred. In this case, the cocoon
inserts a ConType header into the message which
contains the description of the related service. For
instance, for the Call Forwarding Unconditional
service discussed in Section 4.1 the header is
depicted in Fig. 13.

The header contains a number of fields: the ID
field shows which service is represented by the
header. Currently this is a simple string, but to
avoid duplicate names unique identifiers can be used
in future implementations. The TP field contains the
triggering party, and the remaining four fields
correspond to the four fields used to construct the
connection type.

If a ConType header is found in the message, the
data from that header is extracted and together with
the description of the local service fed into the
service interaction algorithm. If no service interac-
tion is detected, and no further ConType header is
found in the message, the ConType header for the
current service is inserted into the message and the
message is sent on to its destination.
4.2.2. Interaction resolution

If a service interaction is detected, it needs to be
resolved also at run-time. There appears no other

548 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
solution to the problem in the literature, than to
disable one service completely. Having a joint solu-
tion including some aspects of one service and some
aspects of the other is not practical because services
have a well defined, rather focussed task which can
usually not be split. Hence, as the interaction will be
between a pair of services, any interaction can hence
be resolved by disabling one of the two services.

There are already a number of different ap-
proaches presented in the literature which help to
decide which service should be disabled to resolve
the interaction. The most flexible one appears to
be the use of policies [23]. However, other
approaches [24,25] may also be applicable.

These papers show that the decision on which of
the two services should be disabled is very much
context specific and as such beyond the scope of this
paper. In this paper the focus is providing a mecha-
nism to execute the decision.

Above resolution approaches can be tuned to
various preferences, such as finding the solution
with the most executed services, or executing all
services subscribed to by the party who pays for
the call, or, in a private environment the services
belonging to the organisation may have priority
over services of the individual. In effect all these
approaches are implementing a priority system.

Essentially, the cocoon would communicate with
any of these resolution techniques (the precise
communication will depend on the chosen resolu-
tion technique). The received result would then be
executed by the cocoon. Fig. 14 depicts this sce-
nario. However, if a rather straightforward resolu-
tion approach is selected, this could be integrated
with the cocoon itself.

The approach taken to support the decision has
two alternatives depending on which of the two ser-
vices is to be disabled.

If the second service (the current one) was chosen
to be disabled, its outcome is simply discarded, and
the call proceeds as if that service was not activated
at all.
C
Service

Cocoon

Resolution
Approach

Fig. 14. Link between Cocoon and Resolution Approach.
If, however, the first service was chosen to be
disabled, the resolution is slightly more compli-
cated. The session setup attempt needs to be
repeated, but without activation of the first service.
To achieve this, the current session setup attempt is
stopped and an appropriate response message
passed back to the originator. As this process is sim-
ilar to the 3xx responses in SIP used for redirection,
the SIP Message 380 Alternative Service may be
appropriate for this. To communicate the selected
service down the chain, the ConType header for this
service is copied into this message and extended
with a field ’Status’ set to ’disabled’. An example
is shown in Fig. 15.

The originating user agent will receive this
message, and initiate a new INVITE request. This
will again include the ConType header copied from
the 380 response (including the Status field). When a
service gets triggered with this INVITE, the cocoon
will check the data in the ConType header. If the
triggered service matches the ID and triggering
party in this header, the actions of that service will
be discarded and the ConType header be removed
from the message. Thus the session setup will
progress without that service being activated.

Clearly, because a service is disabled the path the
INVITE takes subsequently may be different to the
first session setup attempt. Consequently, further
pairs of incompatible services may be encountered.
This is unavoidable and repeated session attempts
may be required to resolve the situation. However,
this is not uncommon in SIP; especially redirection
works in a similar fashion. Furthermore, it is
expected that re-attempts caused by this approach
will be rare.
4.2.3. Services triggered on responses

However, not all services involved in a session
setup are triggered by the INVITE message sent
by the user agent client. For instance, with services
triggered on busy responses there will be INVITE
messages and also busy response messages involved
in the call setup. For such cases, response messages
Fig. 15. Disabling a CFU Service.

Fig. 17. Call Forwarding Loop.

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 549
also need to contain the ConType headers which
were added to the corresponding INVITE. Thus if
a user agent server receives an INVITE request with
ConType headers, the ConType headers need to be
copied into the response message. This way,
cocoons for services triggered by response messages
are also aware of services that previously have been
operating on the INVITE. Clearly, if a service which
is triggered by a response message issues a new
INVITE request, then the cocoon needs to copy
any ConType headers from the response to the
new INVITE message. The approach of copying
headers from the request to response message is a
common approach taken in SIP. For instance, the
standard VIA header is also used in this way. The
interaction between CFU and CFB is shown as an
example of such a message flow in Fig. 16.

In this example, Alice tries to invite Chris,
however, at the local proxy server the INVITE gets
forwarded by a CFU service to Bob. A ConType
header is attached to the INVITE message and set
on. The message then passes through the second
proxy and is sent to Bob’s user agent. However, as
Bob is busy, a 486 Busy response is returned. This
response also contains the CFU ConType header.
At the proxy, CFB is triggered by the 486 Busy
message. The CFB service forwards all calls to Chris
if Bob is busy. Thus the cocoon checks for an inter-
action and using the ConType header of the 486
response message, discovers an interaction. The
descriptions of the two services are shown in Fig. 17.

Resolving such an interaction follows the same
pattern as discussed above. If the second service is
to be disabled (CFB in the example), its actions
are disregarded and the 486 Busy message is
INVITE Chris

INVITE Bob
Contype CFU

486 Busy
Contype CFU

Alice Proxy (CFB) BobProxy (CFU)

INVITE Bob
Contype: CFU

FI detected
between

CFU and CFB

CFU Triggered

CFB Triggered

s

FI detected
between

CFU and CFB

CFU Triggered

CFB Triggered

Fig. 16. Message flow with CFU and CFB.
forwarded back to Alice. If, however, the first ser-
vice (CFU in the example) is to be disabled, a 380
message as discussed above is returned to Alice. It
will have one ConType header with the ’Status’ set
to ’disabled’. Consequently, a new INVITE will be
initiated as above.
4.2.4. Impact on SIP

Implementing the approach in SIP extends SIP
with an additional header, ConType. This extension
is in line with the SIP standard and follows SIP
conventions. Clearly, in order for the approach
to work, implementations of SIP components,
especially proxy servers and user agents, need to
be aware of the new header to make use of the infor-
mation provided. However, if a message with a
ConType header passes through a SIP component
which does not support the header, it simply ignores
it. This is one of the fundamental principles of SIP
to allow for extensions. Thus, a component which
does not support this extension does not fail to
work properly, and does not prevent other compo-
nent which support the header from using the
information.

An investigation was carried out if an already
defined SIP header could be used, rather than defin-
ing the ConType header. Strong candidates were the
History-Info (RFC 4244 [26]) and Reason headers
(RFC 3326 [27]). However, both headers have been
designed for a particular purpose which is defined
rather narrowly. This is also reflected in the defined
format for these headers. Hence the decision was
made to define a new header. In time, it may be
possible to integrate the information with the
History-Info header.

The use of the 380 Response message to indicate
a resolution to a feature interaction needs to be
agreed within the related IETF working groups. In
the current RFC [14] the meaning of this message
is left largely undefined and hence may be available
for the purpose described here. However, the used
message code does not affect the working of the
approach.

Our experiments showed that beside the
ConType header, a second additional header is

550 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
required to allow this approach to operate in prac-
tise. This is discussed in Section 5.2.

5. Experimental case study

The approach has been implemented in a SIP
testbed. SER [28] was chosen as proxy server, and
a Pingtel SIP phone [29] and kphone [30] were used
as user agents.

Currently, it is difficult to get access to implemen-
tations which support the provisioning of services
generally, and even more to implementations which
support the CGI interface. However, SER offers a
proprietary interface to provide services. This inter-
face provides access to full SIP messages and in
principle this is the same as a CGI interface would
offer. Thus the implementation discussed here is
using the proprietary interface offered by SER and
not the CGI interface.

The approach was tried with a number of service
combinations. Unfortunately, there are no call
control services available off-the-shelf. Thus simple
service prototypes adhering to the functionality
described in the relevant IETF RFC [15] were devel-
oped to carry out the experimentation.

In the next two sections two example interactions
are described and it is demonstrated how the
approach can deal with them. Section 6 presents a
summary of all scenarios tried and a discussion of
the results.

5.1. A simple example

In the following the approach is applied to the
interaction between Call Forwarding and Terminat-
ing Call Screening. An overview is depicted in
Fig. 18.

There are two proxy servers involved: discus.
cs.stir.ac.uk and d254203.cs.stir.ac.uk. The public
address of the user agent client (Pingtel phone) is
chris@discus.cs.stir.ac.uk and is thus associated
Fig. 18. Applying the Algorithm to the I
with the first proxy server. In the scenario, Chris
attempts to invite Bob to a session, however, due
to a forwarding service on the first proxy server,
the invitation is redirected to Alice at the second
proxy server. Alice has a terminating call screening
service deployed on the second proxy server with
Chris on the screening list.

Initially, the user agent client sends a INVITE
message to invite to the first proxy server (payload
and some unrelated headers have been omitted).

INVITE sip:bob@d254203.cs.stir.ac.uk

SIP/2.0

From: sip:chris@discus.cs.stir.ac.uk;

tag=1c18932

To: sip:bob@d254203.cs.stir.ac.uk
Contact: <sip:chris@139.153.254.222>
Via: SIP/2.0/UDP 139.153.254.222

At this proxy server, the CFU service is invoked.
This changes the message in a way that it is sent to
Alice rather than Bob. Furthermore, as the service
changed the message, the cocoon inserts a ConType
header into the INVITE request (payload and unre-
lated headers have been omitted).

INVITE sip:alice@d254203.cs.stir.ac.

uk SIP/2.0

From: sip:chris@discus.cs.stir.ac.uk;

tag=1c18932

To: sip:bob@d254203.cs.stir.ac.uk
Contact: <sip:chris@139.153.254.222>
Via: SIP/2.0/UDP 139.153.254.50;

branch=z9hG4bK6d0d.a5da393.0

Via: SIP/2.0/UDP 139.153.254.222

ConType: ID=CFU;TP=sip:bob@d254203.cs.
stir.ac.uk;

OrigFrom=chris@discus.cs.stir.ac.uk;
OrigTo=bob@d254203.cs.stir.ac.uk;
FinalFrom=chris@discus.cs.stir.ac.uk;
FinalTo=alice@d254203.cs.stir.ac.uk
nteraction between CFU and TCS.

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 551
At the second proxy server, the TCS service is
called. After execution, the service notifies the
cocoon that it was triggered and the cocoon checks
the INVITE message for an existing ConType
header. The message contains the CFU ConType
header and thus the cocoon applies the service
interaction algorithm to the CFU and TCS descrip-
tions. As a result an interaction was detected by
rule 3.

As discussed in the previous Section, a decision
has to be made which of the two services will be
disabled. For this example it is assumed that the first
service, CFU, was chosen to be disabled. Conse-
quently, a 380 response is sent back to the originat-
ing user agent. For this example, the following 380
response message will be sent to Chris’ user agent.
Note the Status field in the ConType header. The
proxy servers on the way will simply forward the
message in standard SIP fashion.

SIP/2.0 380 Alternative Service

From: sip:chris@discus.cs.stir.ac.uk;

tag=1c18932

To: sip:bob@d254203.cs.stir.ac.uk
Via: SIP/2.0/UDP 139.153.254.50;

branch=z9hG4bK6d0d.a5da393.0

Via: SIP/2.0/UDP 139.153.254.222

ConType: ID=CFU;TP=sip:bob@d254203.

cs.stir. ac.uk;

OrigFrom=chris@discus.cs.stir.ac.uk;
OrigTo=bob@d254203.cs.stir.ac.uk;
FinalFrom=chris@discus.cs.stir.ac.uk;
FinalTo=alice@d254203.cs.stir.ac.uk;
Status=disabled

On reception of the 380 message, Chris’ user
agent will initiate a new INVITE message to be sent
to the first proxy server. The message is depicted
below.

INVITE sip:bob@d254203.cs.stir.ac.uk

SIP/2.0

From: sip:chris@discus.cs.stir.ac.uk;

tag=1c18932

To: sip:bob@d254203.cs.stir.ac.uk
Contact: <sip:chris@139.153.254.222>
Via: SIP/2.0/UDP 139.153.254.222

ConType: ID=CFU;TP=sip:bob@d254203.cs.
stir.ac.uk;

OrigFrom=chris@discus.cs.stir.ac.uk;
OrigTo=bob@d254203.cs.stir.ac.uk;
FinalFrom=chris@discus.cs.stir.ac.uk;
FinalTo=alice@d254203.cs.stir.ac.uk;
Status=disabled

The only difference to the original INVITE is the
inclusion of the ConType header, again with the
Status field. The message is received by the first
proxy server and will trigger the CFU service again.
However, the cocoon discovers the existing
ConType header with the Status field. The ID and
TP fields of that ConType header are checked
against the ones from the CFU service. As they
match, the actions of the CFU service are discarded,
and the ConType header removed from the mes-
sage. Subsequently, the INVITE message will be
forwarded to Bob. The approach has successfully
detected and resolved the interaction.

5.2. A more complex example

This section provides an example where the sec-
ond service is triggered by a response message.
The example used is the interaction between Origi-
nating Call Screening and Call Forwarding.
Fig. 19 shows the setup.

When considering service interactions, one issue
which is often discussed with Originating Call
Screening is its actual purpose. That is, should it
only prevent Chris from dialing Bob’s number
(perhaps because of additional costs being
involved), or is it intended that Chris is not
connected to Bob. If the aim is the former, then
checking INVITE messages is sufficient and no
interaction between the two services exists. In this
paper, this service is then referred to as Originating
Dial Screening (ODS). However, if the goal is the
latter, 200 OK responses sent in reply to INVITE
requests are checked by the service. This functional-
ity is assumed in this section (see Fig. 20).

In the scenario, OCS is called on the first proxy
server with no calls to Bob being allowed. OCS
checks the destination of the INVITE request
(address in the first line of the message) and since
the request is directed towards Alice, the request is
not screened. The cocoon is notified that OCS took
no actions and hence the cocoon does not add a
ConType header for the OCS service. Thus the
INVITE message is sent on unchanged.

At the second proxy, the call forwarding service
is called and it redirects the INVITE towards Bob.
The cocoon inserts a ConType header for the
CFU service. This INVITE message is then deliv-
ered to Bob’s user agent server which responds with

Fig. 19. Service Interaction between OCS and CFU.

Fig. 20. Results of SIP case study.

552 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
a 200 OK message signalling that he accepts the
invitation. This 200 OK response message also
contains the CFU ConType header from the
INVITE request. The 200 OK message is then sent
back to the first proxy where the 200 OK response
message triggers the OCS service again.

SIP/2.0 200 OK

Via: SIP/2.0/UDP 139.153.254.50;

branch=z9hG4bKafde.6e4854d4.0

Via: SIP/2.0/UDP 139.153.254.222

ConType: ID=CFU; TP=sip:alice@ d254203.
cs.stir.ac.uk;

OrigFrom=chris@discus.cs.stir.ac.uk;
OrigTo=alice@d254203.cs.stir.ac.uk;
FinalFrom=chris@discus.cs.stir.ac.uk;
FinalTo=bob@d254203.cs.stir.ac.uk
Forwarded-To: <sip:bob@d254203.cs.
stir.ac.uk>
From:<sip:chris@discus.cs.stir.ac.uk>;
tag=1c8060

To: <sip:alice@d254203.cs.stir.ac.uk>;
tag=1A8019B3

Contact: "root" <sip:root@139.153.
254.203: 5062;transport=udp>
Record-Route: <sip:alice@139.153.
254.203;ftag=1c8060;lr=lr>,
<sip:alice@139.153.254.50;ftag=1c8060;
lr=lr>

However, there is an issue with the response sent
by Bob as it does not necessarily reveal that the
response is sent from Bob and not from Alice.
The To header in the request and response is not
changed by the forwarding service. In the SIP stan-
dard, the To header is defined as the address of the
invited user the session setup started off with.
Indeed, experiments showed that if the To header

Table 2
Specifications of the case study services

Service Triggering Party Connection Type

CFU B (A, B)! (A, C)
CFB B (A, B)! (A, C)
OCS A (A, B)! (A, Treat)
TCS B (A, B)! (A, Treat)
VMS B (A, B)! (A, Treat)
AR B (A, B)! (B, A)
DND B (A, B)! (A, Treat)
GR B (A, B)! (A, C)
HL A (A, B)! (A, B)

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 553
is changed by the forwarding service, the user agent
client does not recognise related responses.

In SIP, the party the invitation was finally deliv-
ered to is identified by the Contact header. How-
ever, from the address given in this header it is
not possible to derive who the other party is. The
address in the contact header reflects the system
username at the address given, not the SIP user-
name. The SIP username and the system username
do not relate to each other. For instance, in the
example above, the contact header contains the
address root@139.153.254.203:5062.

The second option of finding out the SIP name of
the user agent server is checking the Record-Route
header. Proxy servers put the SIP address in the
Record-Route which they have been dealing with.
In the above response the header only shows entries
for Alice. This is because both proxy servers
received an INVITE for Alice. However, if there
were a third proxy server (IP address 139.153.
254.23) in the chain, the Record-Route would look
like:

Record-Route: <sip:alice@139.153.254.
203;ftag=1c17644;lr= lr>,
<sip:alice@139.153. 254.50;ftag=1c17

644;lr=lr>
<sip:bob@139.153.254.23;ftag=1c17644;
lr=lr>

Thus if the forwarding happens on any proxy ser-
ver except the last in the chain, the Record-Route
header can be used by the OCS service. However,
because of the limitation this cannot be accepted
as a general solution.

There does not appear to be any header defined
in SIP which contains the SIP address of the invited
party. However, for the screening service to work,
this information is required. To overcome this issue
another header was defined which contains the SIP
address of the user agent server. The header is called
Forwarded-To and is inserted into a message when-
ever a service redirects an INVITE request. As
discussed above for the ConType header, the For-
warded-To header is also copied from the INVITE
request to responses generated by the user agent
server. The response shown above contains the
Forwarded-To header.

When the OCS service checks the reply, it will
find the Forwarded-To header with Bob’s address.
Because calls to Bob are not allowed, the cocoon
is notified that OCS was active on the message.
The cocoon will apply the service interaction
algorithm to the data in the ConType header for
the CFU service and the data for the OCS service
and an interaction will be detected by rule 3.

As with the previous example, a decision needs to
be made which of the two services should be dis-
abled for resolution. For this scenario it is assumed
that the second service, OCS, is chosen to be dis-
abled. As discussed in Section 4.2, in this case the
algorithm prescribes that the actions of the services
will simply be disregarded. Hence the session
between Chris and Bob will be setup in this exam-
ple. Again, the approach has successfully detected
and resolved the interaction.

If the other service (CFU) is to be disabled, the
approach as discussed in the previous section is
adopted.
6. Results

6.1. Selected services

For the case study nine common services were
selected. These are Call Forwarding Unconditional,
Call Forwarding Busy, Originating Call Screening,
Terminating Call Screening, Voice Mail System,
Automatic Ringback, Do Not Disturb, Hotline,
and Group Ringing. A short description of their
behaviour is provided in Section 1.2.

Following the modelling approach from Section
3.1 the connection type for each of the services
was developed. Table 2 contains the specifications
of the services. As can be seen from the table, some
services which are actually quite different are mod-
elled in a rather similar way. For instance, the ser-
vices OCS and TCS differ only in their triggering
party.

Furthermore, some rather different services have
identical descriptions. For instance, TCS, DND and

554 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
VMS are very different from another. However,
even though the three services are quite different,
they have some commonalities - these are captured
by the notation of the approach. For instance, with
all three services it is not the intended party who
answers the call, but a network treatment. Thus at
the chosen level of abstraction, the services exhibit
the same interaction. For instance, CFU will inter-
act with all three services because a forwarded call
is not answered by the intended party, but rather
by a network treatment.

6.2. Discussion

Fig. 20 provides details of the performance of the
approach. Ticks show a successfully handled inter-
action, an ‘x’ symbolises an interaction which is
not detected by the approach (see below). Double
entries in the table refer to multiple call scenarios
between two services exhibiting interactions. These
scenarios involved both SIP servers and SIP user
agents. All detected interactions were also success-
fully resolved.

All the ‘x’-entries in the table refer to a single
issue with the approach. This only concerns single
component interactions, i.e., both services are
deployed on the same proxy where the services are
triggered by an INVITE request, but one service
drops the INVITE and generates a response
message (e.g., Terminating Call Screening). In this
case an interaction can only be detected if the
service dropping the INVITE is triggered second.
If the service dropping the INVITE is triggered first,
the second service will not be triggered at all. Hence
the detection algorithm in the cocoon of the second
service is not activated. This also applies to scenar-
ios where both services drop the triggering message.
In a way, such interactions which in the PSTN could
be classified as Shared Trigger Interactions (accord-
ing to Marples’ taxonomy) [22,10] have essentially
become Missed Trigger Interactions in SIP. Missed
Trigger Interactions are notoriously difficult to
detect and cannot be handled by this approach.

On the other hand, it could be argued that
interactions between services deployed on the same
server (or user agent) are in fact not interactions
in SIP components. This is because deployed ser-
vices are usually configured in a list in SIP, i.e.,
the first service is executed first followed by the next
service and so on. It could be argued that this list
represents implicit priorities. That is, the order of
the services in the list represent user preferences.
Thus if one service prevents subsequent services
from executing, it is likely to be in the interest of
the user.

In SIP, interactions between two services may
occur in different call scenarios. For instance, the
interaction between HL and OCS can be observed
in two different scenarios. Firstly, the arguably more
traditional setup where both services are deployed
at the same location. However, the interaction can
also successfully be verified and resolved when HL
and OCS are deployed at different locations, i.e.,
Hotline at the user agent client and OCS at the local
proxy server. The reason is that the approach works
with public SIP addresses. The public SIP address of
a user is identical regardless of whether the user
agent or the local proxy is considered.

SIP offers some differences to PSTN services and
poses some issues. The most important one is the
possibility of identifying a single user by a number
of different SIP addresses. This leads to difficulties
in identifying a party, e.g., for screening purposes.

Related to this is the issue of identifying a party
from a response message. This was rather surpris-
ing. The use of the To header appears redundant,
as messages belonging to a session can also be
identified by the Call-Id header. The introduction
of the Forward-To header solved this problem.
Arguing whether the usage of the SIP header is ideal
as it is or even changing its meaning is beyond the
scope of this paper.

Another issue is that in SIP, services which han-
dle the busy condition will be triggered differently
than in the PSTN. Assuming that the services are
deployed on a proxy server, they are not triggered
by the INVITE message, but by the 486 Busy
response sent by the user agent server. Due to this
fact a number of Single Component interactions
known from the PSTN do not exist in SIP. This
applies to interactions which involve a service which
handles a busy condition and another service which
is triggered regardless of the party being busy. The
message flow for the classic example between TCS
and CFB is depicted in Fig. 21.

In this scenario Alice tries to call Bob. Bob has a
CFB service which redirects all calls while he is busy
to Chris. Furthermore, Bob has a TCS service which
screens all calls from Alice. If Alice calls Bob while
he is busy the call gets screened and there is no
conflict with the CFB service. This is because the
TCS service is triggered by the INVITE request.
Thus the CFB service which waits for a 486 Busy
response is never triggered. The CFB messages

INVITE Bob

486 Busy

Alice Proxy (CFB, TCS) Bob

INVITE Bob

INVITE Chris

Chris

403 Screened

Fig. 21. SIP Call Scenario between CFB and TCS.

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 555
which are not sent because of TCS are shown by
dashed lines. Thus in SIP, there is no interaction
in this scenario.
7. Summary and further work

This paper has discussed the feature interaction
problem between SIP call control services. A prag-
matic approach has been implemented to operate
at runtime. The approach does not require detailed
service knowledge. This is essential in an open and
competitive market environment as expected for
SIP services.

As was shown in the experimentation, the
approach can easily be implemented on a SIP plat-
form. The approach only requires service informa-
tion at a very abstract level, which is readily
available.

Conversely, the approach does not expose any
service information beyond what users can observe
from normal session setup behaviour anyway. For
instance, redirecting a call or sending an invitation
to voice mail is clearly visible to users. In the exam-
ples in this paper, the name of the service is used as
the ID within the ConType header. If revealing
which service triggered the action is of concern,
the ID can be constructed differently. It just has to
be unique between services on a particular SIP com-
ponent. Hence privacy is not an issue with the
approach.

The approach requires extensions to the SIP pro-
tocol. However, the extensions are in line with the
rules for SIP extensions as defined by the SIP stan-
dard. For the approach to work fully, all compo-
nents involved in a session setup need to support
these extensions. However, if some components do
not support the extensions, sessions can still be set
up but with limited feature interaction handling.

The particular strength of the approach is the
detection of interactions between services deployed
on different SIP components. As often there will
be a number of SIP components involved in a ses-
sion setup, distributed services will be common
practise. As shown in the experiments, the presented
approach is able to handle all these scenarios. Fur-
thermore, the approach is fully distributed, and
does not need any central component. This makes
the approach very scalable.

Once an interaction is detected it also needs to be
resolved. In this paper the resolution approach is
based on disabling one of the services involved in
the interaction. The decision which one of the two
services involved in the interaction should be dis-
abled is user specific. A strong candidate to imple-
ment this are policies. Policies are very flexible and
can be adjusted to particular user preferences. The
approach in this paper provides support to imple-
ment the decision by the external algorithm. The
approach incurs minimal overhead and integrates
well into the SIP protocol.

Clearly, the presented approach has some
weaknesses detecting some Single Component inter-
actions. However, as discussed above, single compo-
nent interactions may not represent undesired
behaviour as in PSTN. This is because the services
are configured in a list which may represent users’
preferences (most important service first).

One potential issue with the distributed nature of
the approach is the existence of rouge components
in the signalling chain. Such components may abuse
the additional header included in the message or do
not implement the approach correctly. However,
this problem also applies to standard SIP compo-
nents without the extension suggested here. As such,
dealing with malicious components is beyond the
scope of this paper.

Finally, this paper concentrates on core SIP func-
tionality. However, there are many extensions to
SIP, such as presence and event notification. These
additions may have an impact on the message flows
and hence on interactions. It will be interesting to
investigate common SIP extensions in light of
feature interactions.

In summary, the presented approach closes a
major gap by providing a runtime resolution mech-
anism distributed across the SIP components. This
will be necessary if distributed call control architec-
tures, such as SIP, are to be successful. It will be
interesting to investigate the applicability of this
approach to the emerging Peer-to-Peer SIP (P2P-
SIP) architecture currently being discussed within
IETF.

556 M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557
References

[1] J. Lennox, H. Schulzrinne, Feature interaction in internet
telephony, in: [7], May 2000, pp. 38–50.

[2] M. Calder, M. Kolberg, E.H. Magill, S. Reiff-Marganiec,
Feature interaction: a critical review and considered forecast,
Computer Networks: The International Journal of Com-
puter and Telecommunications Networking 41 (1) (2003)
115–141.

[3] L.G. Bouma, H. Velthuijsen (Eds.), Feature Interactions
in Telecommunications Systems, IOS Press, Amsterdam,
1994.

[4] K.E. Cheng, T. Ohta (Eds.), Feature Interactions in
Telecommunications Systems III, IOS Press, Amsterdam,
1995.

[5] P. Dini, R. Boutaba, L. Logrippo (Eds.), Feature Interac-
tions in Telecommunication Networks IV, IOS Press,
Amsterdam, 1997.

[6] K. Kimbler, L.G. Bouma (Eds.), Feature Interactions in
Telecommunications and Software Systems V, IOS Press,
Amsterdam, 1998.

[7] M. Calder, E. Magill (Eds.), Feature Interactions in
Telecommunications and Software Systems VI, IOS Press,
Amsterdam, 2000.

[8] D. Amyot, L. Logrippo (Eds.), Feature Interactions in
Telecommunications and Software Systems VII, IOS Press,
Amsterdam, 2003.

[9] S. Reiff-Marganiec, M. Ryan (Eds.), Feature Interactions in
Telecommunications and Software Systems VIII, IOS Press,
Amsterdam, 2005.

[10] M. Calder, M. Kolberg, E.H. Magill, S. Reiff-Marganiec,
Hybrid solutions to the feature interaction problem, in: [8],
June 2003, pp. 295–312.

[11] D.O. Keck, P.J. Kuehn, The feature and service interaction
problem in telecommunications systems: a survey, IEEE
Transactions on Software Engineering 24 (10) (1998) 779–
796.

[12] M. Kolberg, E.H. Magill, A pragmatic approach to service
interaction filtering between call control services, Computer
Networks: The International Journal of Computer and
Telecommunications Networking 38 (5) (2002) 591–602.

[13] M. Kolberg, E.H. Magill, Detecting feature interactions
between sip call control services, in: [9], June 2005, pp. 147–
162.

[14] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley, E. Schooler, SIP: Session
initiation protocol, Request for Comments (Standards
Track), 3261, Internet Engineering Task Force, 2002.

[15] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, K.
Summers, Session Initiation Protocol (SIP) Basic Call Flow
Examples, IETF RFC 3665, December 2003.

[16] J. Lennox, X. Wu, H. Schulzrinne, Call Processing Language
(CPL): A Language for User Control of Internet Telephony
Services, RFC 3880, Internet Engineering Task Force, 2004.

[17] X. Wu, H. Schulzrinne, LESS: Language for End System
Services in Internet Telephony, Internet Engineering Task
Force, 2005, in preparation.

[18] J. Lennox, H. Schulzrinne, J. Rosenberg, Common Gateway
Interface for SIP, RFC 3050, Internet Engineering Task
Force, 2001.

[19] Java Community Process, SIP Servlet API, Java Specifica-
tion Request 116, 2003.
[20] D. Marples, E.H. Magill, The use of rollback to prevent
incorrect operation of features in intelligent network based
systems, in: [6], September 1998, pp. 115–134.

[21] M. Calder, E. Magill, D. Marples, A hybrid approach to
software interworking problems: managing interactions
between legacy and evolving telecommunications software,
IEE Proceedings—Software 146 (3) (1999) 167–180, June.

[22] D. Marples, Detection and Resolution in of Feature Inter-
actions in Telecommunications Systems at Runtime, Ph.D.
Thesis, Communications Division, Department of Electrical
and Electronic Engineering, University of Strathclyde, 2000.

[23] K.J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray,
P. Perry, J. Ireland, Policy support for call control, Com-
puter Standards and Interfaces, Elsevier Science, in press,
available online.

[24] M. Rizzo and A. Garyfalos. Using SIP to negotiate over user
requirements in personalized Internet Telephony services, in:
Proceedings of SIP 2000, Upper Side Conferences, Paris,
January 2000.

[25] M. Kolberg, E. Magill, Handling incompatibilities between
services deployed on ip-based networks, in: IEEE Intelligent
Networks Workshop 2001 (IN2001), Boston, USA, May
2001.

[26] M. Barnes, An Extension to the Session Initiation Protocol
(SIP) for Request History Information, RFC 4244, Internet
Engineering Task Force, 2005.

[27] H. Schulzrinne, D. Oran, G. Camarillo, The Reason Header
Field for the Session Initiation Protocol, RFC 3326, Internet
Engineering Task Force, 2002.

[28] SER SIP Express Router. Available from: <http://www.ip-
tel.org/ser>.

[29] Pingtel SIP Phone. Available from: <http://www.pingtel.
com>.

[30] Kphone SIP User Agent. Available from: <http://www.wir-
lab.net/kphone>.

Mario Kolberg studied computer science
at the HTWS Zittau/Goerlitz in
Germany. After spending one year in
the computer science department at
Humboldt University in Berlin he joined
the Communications Division in the
Department of Electronic and Electrical
Engineering at the University of Strath-
clyde in June 1997. In September 2000 he
moved to the Department of Computing
Science and Mathematics at Stirling

University.
He is a member of the Communications and Services research
group within the department. His research interests include
Home Networks, Feature Interaction, Service Creation, and IP
Telephony. He has extensive experience of home networking
protocols and of implementing services on the OSGi platform. He
is leading a project funded by Panasonic (USA) investigating
service discovery for networked appliances. He is also involved
with the MATCH project, focusing on integrating different
technologies for care in the home. He was leading an effort
providing a proof-of-concept demonstrating the integration of
digital pen and paper with networked appliances. This is being
exhibited in the trial home of The Home Application Initiative
(TAHI), a DTI funded UK consortium on home automation.

http://www.iptel.org/ser
http://www.iptel.org/ser
http://www.pingtel.com
http://www.pingtel.com
http://www.wirlab.net/kphone
http://www.wirlab.net/kphone

M. Kolberg, E.H. Magill / Computer Networks 51 (2007) 536–557 557
Previously he has worked on an EU funded project (TOSCA) on
issues related to the rapid development of distributed telecom-
munications services. On invitation by Telcordia Technologies, a
leading presence in home automation, he has visited their labo-
ratories in the USA for an extended period. He holds a Ph.D. in
Electrical Engineering from the University of Strathclyde.

Evan H. Magill leads the Communica-
tions and Services research group at
Stirling. His main research focus is on
the creation and interworking of net-
work services and applications with het-
erogeneous sets of devices and protocols.
In particular he has sought ways to
automate these processes to allow self-
management.

He has published widely on these
topics through scientific papers, confer-

ences and books. He has served on a number of programme
committees, and is currently on the IEEE ICC-2007 local orga-
nizing committee. He has been institutional lead on both Euro-
pean and UK funded projects. He was a founding member of the
UK-wide FORCES project to conduct collaborative research on
service creation. He is currently co-investigator on PROSEN; a
project across 4 UK universities investigating wireless sensor
networks. He is also closely involved with MATCH; a project
across 4 Scottish universities investigating technologies for care in
the home. He has been awarded external funding for research on
communications systems from companies such as British Tele-
com, Edinburgh Network Technologies, GPT, Panasonic, and
SysNet. His interests include data, voice, multimedia, and home
networks. His career spans both university and industry, and,
Computing Science and Electrical Engineering.

	Managing feature interactions between distributed SIP call control services
	Introduction
	Basic terms
	Service examples
	Basic approaches

	SIP
	Architecture and components
	SIP messages
	Consequences for feature interactions

	The applied approach
	Overview
	Interaction analysis

	Applying the approach to SIP
	SIP services
	Call Forwarding Unconditional
	Call Forwarding on Busy
	Terminating call screening
	Originating call screening

	Implementation of the approach in SIP
	The ConType header
	Interaction resolution
	Services triggered on responses
	Impact on SIP

	Experimental case study
	A simple example
	A more complex example

	Results
	Selected services
	Discussion

	Summary and further work
	References

