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Abstract 
 

Distributed Hash Tables (DHTs) are the basic 
indexing mechanism for decentralized peer-to-peer 
systems. How to obtain best performance in a large-
scale wide area context for DHT operations is an 
important question.  Here we introduce parallelization 
of overlay and DHT operations using native multi-
destination multicasting, resulting in significant 
message traffic reduction for both overlay maintenance 
and lookup operations.  We show through simulation 
savings of up to 30% message reduction for the 1-hop 
EpiChord  peer-to-peer overlay. 

1. Introduction 
We are interested in improving the performance of 

peer-to-peer overlays by mapping overlay messaging to 
native multicast paths for overlay operations that are 
inherently parallel. Here we investigate the impact of 
using multi-destination multicast routing in the underlay 
to support overlay operations in the EpiChord [1] 1-hop 
overlay developed by Leong et al at MIT . 

Many multi-hop peer-to-peer structured overlays 
have been proposed for peer-to-peer applications, but 
are characterized by O(log N) hop count.  In addition, 
because each overlay hop is routed in the underlay in 
potentially many native hops, multi-hop overlays have 
poor latency characteristic for connecting large numbers 
of peers.  Consequently several systems have been 
developed to trade-off latency for larger routing tables. 
However these designs lead to increased network traffic 
for managing the larger routing tables. 

While multicast routing could offer efficiency and 
concurrency to overlay designers, host-group multicast 
protocols such as PIM-DM, DVRMP, and CBT are not 
well suited for P2P communication because of the large 
amount of state that would be needed in routers and the 
overhead in creating many small-multicast groups. By 
design, data and services in P2P overlays are widely 
distributed, so a particular multicast path is not likely to 
be reused. 

Several researchers have analyzed multi-destination 
routing for small group multicast applications. In multi-

destination routing, each packet contains a list of 
destination addresses. Routers use unicast routing tables 
to determine when to split a packet depending on the 
destination addresses contained in the packet. An 
experimental protocol for explicit multicast (XCAST) 
has been specified and used by a number of research 
groups [2].  

The concept of multi-destination routing was 
proposed in the early years of multicast protocol design 
[3], but as Ammar observes [4], subsequent protocol 
design focused on enabling large multicast groups.  
However in the past several years, there has been 
recognition of multi-destination routing as a 
complementary multicast technology that has 
advantages for applications which feature large 
numbers of small groups. In addition, we observe here 
that multi-destination routing can benefit overlay 
operations, and enhance additional features such as 
overlay multicast and replication. 

This paper contains the following contributions: 
− We identify for the first time the benefits of native 

multi-destination routing in parallelizing and 
reducing message traffic for several classes of peer-
to-peer overlays 

− We compare through simulation the performance of 
EpiChord [1], a 1-hop overlay, with XCAST-
enabled EpiChord, and show up to 31% messaging 
reduction for lookup intensive workload for 
medium sized overlays and a 25% messaging 
reduction for churn intensive workload.  XCAST-
enabled EpiChord otherwise retains the 
performance advantages of EpiChord versus multi-
hop overlays. 

Separately in [5] we explain how multi-destination 
routing can be used in several other categories of 
overlays, including certain multi-hop designs, and 
unstructured overlays. 

The remainder of this paper is organized as follows.  
We present related work in the next section. Section 3 
describes XCAST-enabled EpiChord and Section 4 
presents our simulation results under churn and lookup 
intensive workloads and Section 5 provides analysis of 
these results. Section 6 concludes the paper. 
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2. Related work 

2.1 Host group multicast 
Oh-ishi et al. have considered the use of Protocol 

Independent Multicast (PIM) [6] in sparse mode (PIM-
SM) and source specific mode (PIM-SSM) [7] to reduce 
message traffic in peer-to-peer systems.  Their analysis 
focuses on using multicast routes between peers in 
different ISP networks.   

The use of host-group multicast in DHT poses the 
following problems: There would be too much traffic 
and router overhead if each node maintained multicast 
addresses for all or many subsets of the overlay 
network, due to the large number of nodes involved. 

If a peer node wants to use native host-group 
multicast to some set of nodes in order to issue parallel 
queries, it must first create the state in the routers and 
bring the receivers into the multicast. This setup adds 
delay and is only appropriate if the multicast path is 
going to be re-used for some time.  However in peer-to-
peer networks the set of nodes is fairly dynamic and the 
set of requests between nodes is not predictable, so re-
use of such multicast groups is limited. 

IP multicast is designed for small numbers of very 
large sets of recipients.  So IP multicast is not a good 
choice for use in parallelizing DHT operations.  
However, multi-destination multicast routing does not 
require state in routers.  Further, due to overlay routing 
mechanism, destination peer addresses are already 
known so there is no group join overhead. 
2.2 Multi-destination multicast 

In multi-destination multicast, an application request 
to send unicast packets to p destinations is replaced 
with a single packet containing the p destinations.  
Multicast-enabled routers route these packets until a 
split point is reached (according to unicast routing 
decision). At each such point, duplicate packets 
containing the subset of destinations for each 
forwarding path are created and routed. This continues 
until a packet contains only a single address in which 
case it is converted to a unicast packet and is routed to 
its destination. 

Recently an experimental IP protocol for multi-
destination multicast called explicit multicast (XCAST) 
protocol has been specified [2] and several XCAST 
testbeds have been deployed.  He and Ammar [8] 
analyze the performance of XCAST.   

3. Explicit multicast-enabled EpiChord 
In EpiChord [1], peers maintain a full-routing table 

and approach 1-hop performance on DHT operations 
compared to the O(log N) hop performance of multi-
hop overlays, at the cost of the increased routing table 
updates and storage.   

An EpiChord peer’s routing table is initialized when 
the peer joins the overlay by getting copies of the 

successor and predecessor peers’ routing table.  
Thereafter, the peer adds new entries when a request 
comes from a peer not in the routing table, and removes 
entries which are considered dead.  If the churn rate is 
sufficiently high compared to the rate at which lookups 
add new entries to the routing table, the peer sends 
probe messages to segments of the address space called 
slices.  Slices are organized in exponentially increasing 
size as the address range moves away from the current 
peer’s position.  This leads to a concentration of routing 
table entries around the peer, which improves 
convergence of routing. 

To improve the success of lookups, EpiChord uses 
p-way requests directed to peers nearest to the node. 
During periods of high churn, a peer maintains at least 2 
active entries in each slice of its routing table.  When 
the number of entries in a slice falls below 2, the peer 
issues parallel lookup messages to ids in the slice.  
Responses to these lookups are used to add entries to 
that slice in the routing table. 

All parallel lookups in EpiChord are carried in 
separate unicast messages.  In our design, we replace 
these parallel unicast messages with a single XCAST 
packet.  This significantly reduces lookup message 
traffic for both edge links and internal links. 

In addition, probe lookups for slice refresh can be 
aggregated into p-way XCAST messages.  That is, 
during a stabilization cycle, there could be 10 slices that 
need lookups.  These can all be combined in one 
XCAST message with 10*p addresses.  We do not 
evaluate these savings in this paper. 

4. Analysis of XCAST-enabled EpiChord 
In this paper we evaluate through simulation the 

performance benefits of using multi-destination 
multicast to parallelize the EpiChord overlay.  The 
original EpiChord simulator was extended to enable 
XCAST packet routing.  The EpiChord simulator is 
implemented on SSFNet. 

All simulations were run for both unicast and 
XCAST cases. Following [1], lookup and churn 
intensive workloads were used.  These workloads are 
described later in this section. The underlay network 
contains 10,450-nodes consisting of 25 autonomous 
systems, each containing 13 routers and 405 hosts.  

The simulation parameters are those described in [1] 
with regards to timeouts, node life span, stabilization 
intervals, cache entry life span and lookup frequency. 
Following He and Ammar [8], the cost of a multi-
destination routing decision is comparable to that of a 
unicast routing decision, particularly for small address 
sets. We did not introduce any routing delay due to 
multi-destination routing in the simulation model.  
4.1 Lookup intensive workload 

In this workload, nodes join the network at a rate of 
2 per second and issue on average 2 lookups per 
second. The overlay network grows until it reaches 
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1200 EpiChord nodes. Measurements made in [1] were 
repeated for both EpiChord and XCAST-enabled 
EpiChord with parallelism ranging from 1 to 5-way.   

XCAST-enabled EpiChord performed equivalent to 
unicast EpiChord for average hop count, lookup latency 
and the success rates of lookups across all degrees of 
parallelism, thus retaining EpiChord’s performance 
advantages over Chord.  

In addition, XCAST significantly reduces message 
traffic for both overlay maintenance and DHT lookups. 
We evaluate this reduction for both edge and internal 
links. We define an edge link as a duplex link 
connecting a host and a router and an internal link as a 
router-router connection. Our results for the average 
number of messages per link follow. 
4.2 Measurement of lookup messages per link 

in lookup intensive workload 
Lookup messages are used by EpiChord for three 

purposes: joins, maintenance and application. Join 
messages are sent when a new node wishes to join the 
network and issues a p-way lookup message to its 
successor node and p-1 predecessor nodes. Maintenance 
lookup messages are sent when the routing table does 
not satisfying the required number of nodes per slice. 
Application lookups are standard lookups for some 
value in the DHT, issued twice per second per node. 

As shown by comparing Figures 1 and 2, XCAST-
enabled EpiChord reduces the number of application 
lookups per internal link by up to 30% for a 5-way 
mode versus unicast EpiChord. Similarly, Figure 3 and 
4 show that using XCAST reduces the number of 
messages on the edge link by up to 31%.  

In general, for a request-response protocol, replacing 
p unicast requests with 1 XCAST packet leads to a 
savings rate of (p-1)/(2*p) for an edge link, assuming 
all responses are returned as separate unicast packets.  
For p=5, the expected savings rate is 40%.  Three 
factors account for the reduced savings and are 
explained in the next section. 

 
Figure 1: Average number of lookup messages on 
internal links for a growing network in a lookup 
intensive configuration using unicast EpiChord. 

 
Figure 2: Average number of lookup messages on 
internal links for a growing network in a lookup 
intensive configuration using XCAST-enabled 
EpiChord. 

 
Figure 3: Average number of lookup messages on edge 
links for a growing network in a lookup intensive 
configuration using unicast EpiChord. 

 
Figure 4: Average number of lookup messages on edge 
links for a growing network in a lookup intensive 
configuration using XCAST-enabled EpiChord. 

      For maintenance messages, the savings achieved are 
an average of up to 28% per internal link and 29% per 
edge link. Finally, the message reduction for join 
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messages using XCAST-enabled EpiChord is an 
average of up to 25% for 5-way for both edge and 
internal links. 
4.3 Churn intensive workload 

For the churn intensive workload, on average 15 
nodes join the overlay network per second and issue on 
average one lookup every 10 seconds. Node lifespan is 
550 seconds and the network grows in size 
continuously to 9000 nodes. All measurements in [1] 
were repeated for the churn intensive workload with 
additional measurements taken for lookup messages per 
link. As before, the XCAST-enabled EpiChord results 
for the average hop count, lookup latency and failure 
and timeout rates were consistent with unicast 
EpiChord. 
4.4 Measurement of lookup messages per link 

in churn intensive workload 
In a churn intensive workload, the savings on both 

the internal and edge links are somewhat reduced. As 
shown in Figures 5 to 8, XCAST-enabled EpiChord 
shows a reduction of up to 24 % on the edge link and 
23% on the internal link for a 5-way simulation.  

 
Figure 5: Average number of lookup messages on 
internal links for a growing network in a churn 
intensive configuration using unicast EpiChord. 

 
Figure 6: Average number of lookup messages on 
internal links for a growing network in a churn 

intensive configuration using XCAST-enabled 
EpiChord. 

  
Figure 7: Average number of lookup messages on edge 
links for a growing network in a churn intensive 
configuration using unicast EpiChord. 

 
Figure 8: Average number of lookup messages on edge 
links for a growing network in a churn intensive 
configuration using XCAST-enabled EpiChord. 

Maintenance shows a reduction of 25% on the edge 
link and 24% on the internal link. Finally, the reduction 
for application lookup messages on the edge link for 
join messages is 23% and 22% on the internal link, 
again for a 5-way simulation. 

5. Analysis 
5.1 Measured and expected savings 

We have shown that XCAST-enabled EpiChord can 
reduce the number of lookup messages by up to 32% 
for edge links and 31% for internal links over standard 
EpiChord for a 5-way mode. So 3-way unicast 
EpiChord has the same message overhead as 5-way 
XCAST-enabled EpiChord. Next we discuss factors 
limiting these savings. These factors include lost 
messages, retransmissions, and negative responses to 
lookups.  Due to these factors and the nature of the 
EpiChord lookup algorithm, 5-way mode actually 
results in a mix of n-way messages, 2 ≤  n ≤ 5. 
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We discuss edge and internal links separately 
because edge links overhead is important for many 
users, such as those connecting through a home 
broadband connection or a mobile node’s GPRS 
connection. 

The quantitative benefits of multicasting have been 
formulated in the Chuang-Sirbu [9] scaling law which 
shows that the efficiency of multicast vs unicast is ~ m.8  
(where m is multicast group size). Further evaluation of 
Chuang-Sirbu has been done in [10] which derives 
another similar expression and confirms it with respect 
to various networks, and [11] which finds some 
shortcomings of Chuang-Sirbu with respect to large 
groups and provides a revised formulation. In our case, 
since the size of the group is small, then the Chuang-
Sirbu formulation should be accurate predictor of the 
savings inside the network.  So 5-way multicast would 
provide a 27% savings compared to unicast. 
5.2 An example 

When a lookup is initiated, the full saving of the 
XCAST packet is obtained on the local edge link, i.e., 
for p-way XCAST-enabled EpiChord, a saving of p – 1 
is achieved.  As the packet traverses the network, it 
encounters points where its path is split. At these points 
the router clones the packet and sends the cloned 
packets along separate links. For every split that occurs, 
the saving per internal link is reduced. The earlier the 
split occurs in the lookup path determines the reduction 
of the potential saving per link. Thus, it can be argued 
that a greater saving per edge should be possible than 
on the internal link. However, as our results show, the 
saving per edge link is not significantly greater. With 
reference to Figure 9, we show an example of a 4-way 
XCAST transmission on two simple network 
configuration to highlight possible reasons for this. 

In the diagrams, we denote edge links as dashed 
lines and the solid lines as internal links. 
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Figure 9: Two example network configurations with 
number of messages required for unicast EpiChord and 
XCAST-enabled EpiChord. 

The comma-separated values indicate the cost in 
messages per link to send the lookup using XCAST 
(right value) and EpiChord (left value). With reference 

to the savings per edge link, we first examine both 
diagrams. Although the saving on the local (sending) 
edge link is a maximum 75%, the destination edge links 
receive no benefit from XCAST at all. Subsequently, 
the maximum saving on the edge link is (1 – 
((n+1)/2n)). With regards to a 4-way lookup this 
becomes (1 – (5/8) * 100) = 37.5%. We now consider 
the internal links. 

With reference to the network model on the left, we 
observe an early 2-way split of the original 4-way 
packet. No more splitting occurs until the packet 
reaches its final destination. Identical behavior occurs 
for the network model on the right but with a shorter 
path length. For an internal link, the maximum saving 
that can be gained is (1 – 1/n). However the model on 
the left demonstrates a total saving of (1 – (6/14) * 100) 
= 57.1% and with a shorter path length, the model on 
the right demonstrates a saving of (1- (4/10) * 100) = 
60%. This suggests that reducing the path length 
increases the message saving after a split [12].   
5.3 Causes of reduced savings 

As we have shown, the saving on the internal link is 
potentially much greater than that on the edge link. 
However, our results do not follow such a theory. We 
identify the following reasons for such behavior: 

Invalid routing table entries: In a large scale 
overlay, the routing table is likely to be out-of-date due 
to churn. Should a lookup message be sent to a node 
that is offline, the message will never reach the 
destination edge link (thus improving the edge link 
saving) and shall traverse the internal network until its 
TTL expires (thus reducing the internal link saving). As 
shown in Figure 21 in [1], the percentage of stale 
entries in the cache is around 13% for a steady state 
network of 1200 nodes. This suggests that 13% of all 
lookups should fail to reach their destination, thus 
demonstrating the above behavior. If this figure could 
be reduced, an improvement in the savings per link 
could be achieved. 

Re-transmissions: When an individual message 
from a p-way lookup reaches timeout, the node will 
check the cache to determine if this node has reached 
timeout enough times to be considered dead. If not, it 
will retransmit a single UDP lookup message. After re-
transmission, if the number of responses the sending 
node is waiting for x is (> 0 && <= p), then it shall 
issue a (p–x) way lookup. Subsequently, for a p-way 
simulation, many lookups may be issued that 
demonstrate less than the allowed p degree of 
parallelism.   

Negative responses: When a node receives a 
lookup message, it will check to see if it is responsible 
for the requested item. If not, it shall respond with the l 
most likely nodes to try next. When the originating 
node receives this negative response, it shall add the l 
nodes to its routing table and then issue a new lookup 
message to the (p – x) next best nodes where x is the 
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number of responses it currently awaits. Again, as a 
high number of lookup responses will be negative, for a 
p-way simulation, a very high number of lookups may 
be issued that are less than the allowed p degree of 
parallelism.   

Now, consider that for a 5-way XCAST lookup in a 
lookup intensive workload, only 21.5% of packets on 
the edge link and 18.2% on the internal link are actually 
XCAST packets. All other packets are UDP. This 
reduces the possible saving per link. Also, from Figure 
10, we can see that of these messages, between 55-62% 
were in actual fact sent 2-way. Again, this will reduce 
the potential message saving per link. Large numbers of 
XCAST packets carrying two destinations stem from 
the number of re-transmissions and negative responses. 
As an XCAST message can carry at least two 
destinations, it is natural that this is the most common 
message.  
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Figure 10: Numbers of XCAST messages, which 
contain 2, 3, 4, and 5 destination addresses in a 5-way 
XCAST-enabled EpiChord setup with a lookup 
intensive configuration.  

In this section we have demonstrated that our 30% 
saving per link is a realistic value when stale cache 
entries, re-transmissions and negative responses have 
all been considered. As we discussed in Section 5.1, 
modeling a 5-way XCAST enabled network using the 
Chuang-Sirbu [9] scaling law should demonstrate a 
message saving of 27%. Clearly, this figure is close to 
our 30% but does not consider networking factors such 
as those discussed in this section. So the derivation may 
be slightly larger in practice.  

This may be due to the fact that the Chuang-Sirbu 
scaling law is a heuristic model, and is easily affected 
by a number of variables. Previous work identifies the 
randomness of the multicast trees in the overlay, the 
underlay network topology and the nodal degree [13].  

6. Conclusion 
We have shown that parallelizing the EpiChord 1-

hop overlay algorithm to use multi-destination 
multicasting instead of parallel unicast lookups benefits 
in significantly reduced message traffic on both edge 
and internal links.  Message reduction occurs for 

EpiChord messaging for joins, routing table 
maintenance, and application lookups.  The reduction 
for 5-way EpiChord is about 30%.  The EpiChord 
latency behavior and operational semantics are retained. 

We identified three factors that limit the gains of 
message reduction.  One of these (invalid routing table) 
seems to be a general issue not specific to EpiChord, 
while the other two (re-transmissions and negative 
responses) are somewhat associated with EpiChord 
itself.  We described but did not simulate possible 
further parallelization of the EpiChord routing table 
maintenance that could lead to further gains. 
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