
Parallelizing Peer-to-Peer Overlays with Multi-Destination Routing

John Buford
Panasonic Princeton Laboratory

Princeton, NJ, USA
buford@research.panasonic.com

Alan Brown
University of Stirling

Stirling, Scotland, FK9 4LA
abr@cs.stir.ac.uk

Mario Kolberg
University of Stirling

Stirling, Scotland, FK9 4LA
mko@cs.stir.ac.uk

Abstract

Distributed Hash Tables (DHTs) are the basic
indexing mechanism for decentralized peer-to-peer
systems. How to obtain best performance in a large-
scale wide area context for DHT operations is an
important question. Here we introduce parallelization
of overlay and DHT operations using native multi-
destination multicasting, resulting in significant
message traffic reduction for both overlay maintenance
and lookup operations. We show through simulation
savings of up to 30% message reduction for the 1-hop
EpiChord peer-to-peer overlay.

1. Introduction
We are interested in improving the performance of

peer-to-peer overlays by mapping overlay messaging to
native multicast paths for overlay operations that are
inherently parallel. Here we investigate the impact of
using multi-destination multicast routing in the underlay
to support overlay operations in the EpiChord [1] 1-hop
overlay developed by Leong et al at MIT .

Many multi-hop peer-to-peer structured overlays
have been proposed for peer-to-peer applications, but
are characterized by O(log N) hop count. In addition,
because each overlay hop is routed in the underlay in
potentially many native hops, multi-hop overlays have
poor latency characteristic for connecting large numbers
of peers. Consequently several systems have been
developed to trade-off latency for larger routing tables.
However these designs lead to increased network traffic
for managing the larger routing tables.

While multicast routing could offer efficiency and
concurrency to overlay designers, host-group multicast
protocols such as PIM-DM, DVRMP, and CBT are not
well suited for P2P communication because of the large
amount of state that would be needed in routers and the
overhead in creating many small-multicast groups. By
design, data and services in P2P overlays are widely
distributed, so a particular multicast path is not likely to
be reused.

Several researchers have analyzed multi-destination
routing for small group multicast applications. In multi-

destination routing, each packet contains a list of
destination addresses. Routers use unicast routing tables
to determine when to split a packet depending on the
destination addresses contained in the packet. An
experimental protocol for explicit multicast (XCAST)
has been specified and used by a number of research
groups [2].

The concept of multi-destination routing was
proposed in the early years of multicast protocol design
[3], but as Ammar observes [4], subsequent protocol
design focused on enabling large multicast groups.
However in the past several years, there has been
recognition of multi-destination routing as a
complementary multicast technology that has
advantages for applications which feature large
numbers of small groups. In addition, we observe here
that multi-destination routing can benefit overlay
operations, and enhance additional features such as
overlay multicast and replication.

This paper contains the following contributions:
− We identify for the first time the benefits of native

multi-destination routing in parallelizing and
reducing message traffic for several classes of peer-
to-peer overlays

− We compare through simulation the performance of
EpiChord [1], a 1-hop overlay, with XCAST-
enabled EpiChord, and show up to 31% messaging
reduction for lookup intensive workload for
medium sized overlays and a 25% messaging
reduction for churn intensive workload. XCAST-
enabled EpiChord otherwise retains the
performance advantages of EpiChord versus multi-
hop overlays.

Separately in [5] we explain how multi-destination
routing can be used in several other categories of
overlays, including certain multi-hop designs, and
unstructured overlays.

The remainder of this paper is organized as follows.
We present related work in the next section. Section 3
describes XCAST-enabled EpiChord and Section 4
presents our simulation results under churn and lookup
intensive workloads and Section 5 provides analysis of
these results. Section 6 concludes the paper.

 1

2. Related work

2.1 Host group multicast
Oh-ishi et al. have considered the use of Protocol

Independent Multicast (PIM) [6] in sparse mode (PIM-
SM) and source specific mode (PIM-SSM) [7] to reduce
message traffic in peer-to-peer systems. Their analysis
focuses on using multicast routes between peers in
different ISP networks.

The use of host-group multicast in DHT poses the
following problems: There would be too much traffic
and router overhead if each node maintained multicast
addresses for all or many subsets of the overlay
network, due to the large number of nodes involved.

If a peer node wants to use native host-group
multicast to some set of nodes in order to issue parallel
queries, it must first create the state in the routers and
bring the receivers into the multicast. This setup adds
delay and is only appropriate if the multicast path is
going to be re-used for some time. However in peer-to-
peer networks the set of nodes is fairly dynamic and the
set of requests between nodes is not predictable, so re-
use of such multicast groups is limited.

IP multicast is designed for small numbers of very
large sets of recipients. So IP multicast is not a good
choice for use in parallelizing DHT operations.
However, multi-destination multicast routing does not
require state in routers. Further, due to overlay routing
mechanism, destination peer addresses are already
known so there is no group join overhead.
2.2 Multi-destination multicast

In multi-destination multicast, an application request
to send unicast packets to p destinations is replaced
with a single packet containing the p destinations.
Multicast-enabled routers route these packets until a
split point is reached (according to unicast routing
decision). At each such point, duplicate packets
containing the subset of destinations for each
forwarding path are created and routed. This continues
until a packet contains only a single address in which
case it is converted to a unicast packet and is routed to
its destination.

Recently an experimental IP protocol for multi-
destination multicast called explicit multicast (XCAST)
protocol has been specified [2] and several XCAST
testbeds have been deployed. He and Ammar [8]
analyze the performance of XCAST.

3. Explicit multicast-enabled EpiChord
In EpiChord [1], peers maintain a full-routing table

and approach 1-hop performance on DHT operations
compared to the O(log N) hop performance of multi-
hop overlays, at the cost of the increased routing table
updates and storage.

An EpiChord peer’s routing table is initialized when
the peer joins the overlay by getting copies of the

successor and predecessor peers’ routing table.
Thereafter, the peer adds new entries when a request
comes from a peer not in the routing table, and removes
entries which are considered dead. If the churn rate is
sufficiently high compared to the rate at which lookups
add new entries to the routing table, the peer sends
probe messages to segments of the address space called
slices. Slices are organized in exponentially increasing
size as the address range moves away from the current
peer’s position. This leads to a concentration of routing
table entries around the peer, which improves
convergence of routing.

To improve the success of lookups, EpiChord uses
p-way requests directed to peers nearest to the node.
During periods of high churn, a peer maintains at least 2
active entries in each slice of its routing table. When
the number of entries in a slice falls below 2, the peer
issues parallel lookup messages to ids in the slice.
Responses to these lookups are used to add entries to
that slice in the routing table.

All parallel lookups in EpiChord are carried in
separate unicast messages. In our design, we replace
these parallel unicast messages with a single XCAST
packet. This significantly reduces lookup message
traffic for both edge links and internal links.

In addition, probe lookups for slice refresh can be
aggregated into p-way XCAST messages. That is,
during a stabilization cycle, there could be 10 slices that
need lookups. These can all be combined in one
XCAST message with 10*p addresses. We do not
evaluate these savings in this paper.

4. Analysis of XCAST-enabled EpiChord
In this paper we evaluate through simulation the

performance benefits of using multi-destination
multicast to parallelize the EpiChord overlay. The
original EpiChord simulator was extended to enable
XCAST packet routing. The EpiChord simulator is
implemented on SSFNet.

All simulations were run for both unicast and
XCAST cases. Following [1], lookup and churn
intensive workloads were used. These workloads are
described later in this section. The underlay network
contains 10,450-nodes consisting of 25 autonomous
systems, each containing 13 routers and 405 hosts.

The simulation parameters are those described in [1]
with regards to timeouts, node life span, stabilization
intervals, cache entry life span and lookup frequency.
Following He and Ammar [8], the cost of a multi-
destination routing decision is comparable to that of a
unicast routing decision, particularly for small address
sets. We did not introduce any routing delay due to
multi-destination routing in the simulation model.
4.1 Lookup intensive workload

In this workload, nodes join the network at a rate of
2 per second and issue on average 2 lookups per
second. The overlay network grows until it reaches

 2

1200 EpiChord nodes. Measurements made in [1] were
repeated for both EpiChord and XCAST-enabled
EpiChord with parallelism ranging from 1 to 5-way.

XCAST-enabled EpiChord performed equivalent to
unicast EpiChord for average hop count, lookup latency
and the success rates of lookups across all degrees of
parallelism, thus retaining EpiChord’s performance
advantages over Chord.

In addition, XCAST significantly reduces message
traffic for both overlay maintenance and DHT lookups.
We evaluate this reduction for both edge and internal
links. We define an edge link as a duplex link
connecting a host and a router and an internal link as a
router-router connection. Our results for the average
number of messages per link follow.
4.2 Measurement of lookup messages per link

in lookup intensive workload
Lookup messages are used by EpiChord for three

purposes: joins, maintenance and application. Join
messages are sent when a new node wishes to join the
network and issues a p-way lookup message to its
successor node and p-1 predecessor nodes. Maintenance
lookup messages are sent when the routing table does
not satisfying the required number of nodes per slice.
Application lookups are standard lookups for some
value in the DHT, issued twice per second per node.

As shown by comparing Figures 1 and 2, XCAST-
enabled EpiChord reduces the number of application
lookups per internal link by up to 30% for a 5-way
mode versus unicast EpiChord. Similarly, Figure 3 and
4 show that using XCAST reduces the number of
messages on the edge link by up to 31%.

In general, for a request-response protocol, replacing
p unicast requests with 1 XCAST packet leads to a
savings rate of (p-1)/(2*p) for an edge link, assuming
all responses are returned as separate unicast packets.
For p=5, the expected savings rate is 40%. Three
factors account for the reduced savings and are
explained in the next section.

Figure 1: Average number of lookup messages on
internal links for a growing network in a lookup
intensive configuration using unicast EpiChord.

Figure 2: Average number of lookup messages on
internal links for a growing network in a lookup
intensive configuration using XCAST-enabled
EpiChord.

Figure 3: Average number of lookup messages on edge
links for a growing network in a lookup intensive
configuration using unicast EpiChord.

Figure 4: Average number of lookup messages on edge
links for a growing network in a lookup intensive
configuration using XCAST-enabled EpiChord.

 For maintenance messages, the savings achieved are
an average of up to 28% per internal link and 29% per
edge link. Finally, the message reduction for join

 3

messages using XCAST-enabled EpiChord is an
average of up to 25% for 5-way for both edge and
internal links.
4.3 Churn intensive workload

For the churn intensive workload, on average 15
nodes join the overlay network per second and issue on
average one lookup every 10 seconds. Node lifespan is
550 seconds and the network grows in size
continuously to 9000 nodes. All measurements in [1]
were repeated for the churn intensive workload with
additional measurements taken for lookup messages per
link. As before, the XCAST-enabled EpiChord results
for the average hop count, lookup latency and failure
and timeout rates were consistent with unicast
EpiChord.
4.4 Measurement of lookup messages per link

in churn intensive workload
In a churn intensive workload, the savings on both

the internal and edge links are somewhat reduced. As
shown in Figures 5 to 8, XCAST-enabled EpiChord
shows a reduction of up to 24 % on the edge link and
23% on the internal link for a 5-way simulation.

Figure 5: Average number of lookup messages on
internal links for a growing network in a churn
intensive configuration using unicast EpiChord.

Figure 6: Average number of lookup messages on
internal links for a growing network in a churn

intensive configuration using XCAST-enabled
EpiChord.

Figure 7: Average number of lookup messages on edge
links for a growing network in a churn intensive
configuration using unicast EpiChord.

Figure 8: Average number of lookup messages on edge
links for a growing network in a churn intensive
configuration using XCAST-enabled EpiChord.

Maintenance shows a reduction of 25% on the edge
link and 24% on the internal link. Finally, the reduction
for application lookup messages on the edge link for
join messages is 23% and 22% on the internal link,
again for a 5-way simulation.

5. Analysis
5.1 Measured and expected savings

We have shown that XCAST-enabled EpiChord can
reduce the number of lookup messages by up to 32%
for edge links and 31% for internal links over standard
EpiChord for a 5-way mode. So 3-way unicast
EpiChord has the same message overhead as 5-way
XCAST-enabled EpiChord. Next we discuss factors
limiting these savings. These factors include lost
messages, retransmissions, and negative responses to
lookups. Due to these factors and the nature of the
EpiChord lookup algorithm, 5-way mode actually
results in a mix of n-way messages, 2 ≤ n ≤ 5.

 4

We discuss edge and internal links separately
because edge links overhead is important for many
users, such as those connecting through a home
broadband connection or a mobile node’s GPRS
connection.

The quantitative benefits of multicasting have been
formulated in the Chuang-Sirbu [9] scaling law which
shows that the efficiency of multicast vs unicast is ~ m.8
(where m is multicast group size). Further evaluation of
Chuang-Sirbu has been done in [10] which derives
another similar expression and confirms it with respect
to various networks, and [11] which finds some
shortcomings of Chuang-Sirbu with respect to large
groups and provides a revised formulation. In our case,
since the size of the group is small, then the Chuang-
Sirbu formulation should be accurate predictor of the
savings inside the network. So 5-way multicast would
provide a 27% savings compared to unicast.
5.2 An example

When a lookup is initiated, the full saving of the
XCAST packet is obtained on the local edge link, i.e.,
for p-way XCAST-enabled EpiChord, a saving of p – 1
is achieved. As the packet traverses the network, it
encounters points where its path is split. At these points
the router clones the packet and sends the cloned
packets along separate links. For every split that occurs,
the saving per internal link is reduced. The earlier the
split occurs in the lookup path determines the reduction
of the potential saving per link. Thus, it can be argued
that a greater saving per edge should be possible than
on the internal link. However, as our results show, the
saving per edge link is not significantly greater. With
reference to Figure 9, we show an example of a 4-way
XCAST transmission on two simple network
configuration to highlight possible reasons for this.

In the diagrams, we denote edge links as dashed
lines and the solid lines as internal links.

A

D E

4,1 4,1
2,1

2,1

2,1

2,1

2,1

1,11,1

C

B1,1

1,1

A

4,1 4,1
2,1

2,1

2,1

C

B1,1

1,1

E D

1,11,1

Figure 9: Two example network configurations with
number of messages required for unicast EpiChord and
XCAST-enabled EpiChord.

The comma-separated values indicate the cost in
messages per link to send the lookup using XCAST
(right value) and EpiChord (left value). With reference

to the savings per edge link, we first examine both
diagrams. Although the saving on the local (sending)
edge link is a maximum 75%, the destination edge links
receive no benefit from XCAST at all. Subsequently,
the maximum saving on the edge link is (1 –
((n+1)/2n)). With regards to a 4-way lookup this
becomes (1 – (5/8) * 100) = 37.5%. We now consider
the internal links.

With reference to the network model on the left, we
observe an early 2-way split of the original 4-way
packet. No more splitting occurs until the packet
reaches its final destination. Identical behavior occurs
for the network model on the right but with a shorter
path length. For an internal link, the maximum saving
that can be gained is (1 – 1/n). However the model on
the left demonstrates a total saving of (1 – (6/14) * 100)
= 57.1% and with a shorter path length, the model on
the right demonstrates a saving of (1- (4/10) * 100) =
60%. This suggests that reducing the path length
increases the message saving after a split [12].
5.3 Causes of reduced savings

As we have shown, the saving on the internal link is
potentially much greater than that on the edge link.
However, our results do not follow such a theory. We
identify the following reasons for such behavior:

Invalid routing table entries: In a large scale
overlay, the routing table is likely to be out-of-date due
to churn. Should a lookup message be sent to a node
that is offline, the message will never reach the
destination edge link (thus improving the edge link
saving) and shall traverse the internal network until its
TTL expires (thus reducing the internal link saving). As
shown in Figure 21 in [1], the percentage of stale
entries in the cache is around 13% for a steady state
network of 1200 nodes. This suggests that 13% of all
lookups should fail to reach their destination, thus
demonstrating the above behavior. If this figure could
be reduced, an improvement in the savings per link
could be achieved.

Re-transmissions: When an individual message
from a p-way lookup reaches timeout, the node will
check the cache to determine if this node has reached
timeout enough times to be considered dead. If not, it
will retransmit a single UDP lookup message. After re-
transmission, if the number of responses the sending
node is waiting for x is (> 0 && <= p), then it shall
issue a (p–x) way lookup. Subsequently, for a p-way
simulation, many lookups may be issued that
demonstrate less than the allowed p degree of
parallelism.

Negative responses: When a node receives a
lookup message, it will check to see if it is responsible
for the requested item. If not, it shall respond with the l
most likely nodes to try next. When the originating
node receives this negative response, it shall add the l
nodes to its routing table and then issue a new lookup
message to the (p – x) next best nodes where x is the

 5

number of responses it currently awaits. Again, as a
high number of lookup responses will be negative, for a
p-way simulation, a very high number of lookups may
be issued that are less than the allowed p degree of
parallelism.

Now, consider that for a 5-way XCAST lookup in a
lookup intensive workload, only 21.5% of packets on
the edge link and 18.2% on the internal link are actually
XCAST packets. All other packets are UDP. This
reduces the possible saving per link. Also, from Figure
10, we can see that of these messages, between 55-62%
were in actual fact sent 2-way. Again, this will reduce
the potential message saving per link. Large numbers of
XCAST packets carrying two destinations stem from
the number of re-transmissions and negative responses.
As an XCAST message can carry at least two
destinations, it is natural that this is the most common
message.

5-way XCAST under lookup intensive

0
10
20
30
40
50
60
70
80
90

100

2 Dest 3 Dest 4 Dest 5 Dest
Number of Destinations in XCAST packet

Pe
rc

en
ta

ge
 o

f t
ot

al
 X

C
A

ST

m
es

sa
ge

s

5-way XCAST Churn Internal

5-way XCAST Churn Edge

5-way XCAST Lookup Internal

5-way XCAST Lookup Edge

Figure 10: Numbers of XCAST messages, which
contain 2, 3, 4, and 5 destination addresses in a 5-way
XCAST-enabled EpiChord setup with a lookup
intensive configuration.

In this section we have demonstrated that our 30%
saving per link is a realistic value when stale cache
entries, re-transmissions and negative responses have
all been considered. As we discussed in Section 5.1,
modeling a 5-way XCAST enabled network using the
Chuang-Sirbu [9] scaling law should demonstrate a
message saving of 27%. Clearly, this figure is close to
our 30% but does not consider networking factors such
as those discussed in this section. So the derivation may
be slightly larger in practice.

This may be due to the fact that the Chuang-Sirbu
scaling law is a heuristic model, and is easily affected
by a number of variables. Previous work identifies the
randomness of the multicast trees in the overlay, the
underlay network topology and the nodal degree [13].

6. Conclusion
We have shown that parallelizing the EpiChord 1-

hop overlay algorithm to use multi-destination
multicasting instead of parallel unicast lookups benefits
in significantly reduced message traffic on both edge
and internal links. Message reduction occurs for

EpiChord messaging for joins, routing table
maintenance, and application lookups. The reduction
for 5-way EpiChord is about 30%. The EpiChord
latency behavior and operational semantics are retained.

We identified three factors that limit the gains of
message reduction. One of these (invalid routing table)
seems to be a general issue not specific to EpiChord,
while the other two (re-transmissions and negative
responses) are somewhat associated with EpiChord
itself. We described but did not simulate possible
further parallelization of the EpiChord routing table
maintenance that could lead to further gains.

7. Acknowledgement
The EpiChord simulator based on SSFNet and

developed by Ben Leong at MIT was kindly provided to
us.

8. References

[1] Ben Leong, Barbara Liskov, and Erik D. Demaine.
EpiChord: Parallelizing the Chord Lookup Algorithm with
Reactive Routing State Management. Computer
Communications, Elsevier Science, Vol. 29, pp. 1243-1259.
[2] R. Boivie, N. Feldman , Y. Imai , W. Livens , D. Ooms,
O. Paridaens, E. Muramoto, Explicit Multicast (Xcast) Basic
Specification, draft-ooms-xcast-basic-spec-09.txt, Work in
Progress. Dec. 2005.
[3] L. Aguilar, Datagram Routing for Internet Multicasting,
Sigcomm 84, March 1984.
[4] Mostafa Ammar. Why Johnny Can’t Multicast: Lessons
about the Evolution of the Internet. Keynote - NOSDAV 03.
[5] J. Buford, A. Brown, M. Kolberg. Multi-Destination
Routing and the Design of Peer-to-Peer Overlays. In
preparation.
[6] Tetsuya Oh-ishi, Koji Sakai, Hiroaki Matsumura, Akira
Kurokawa, Architecture for a Peer-to-peer Network with IP
Multicasting," 18th Intern. Conf. on Advanced Information
Networking and Applications (AINA'04) Vol. 2, 2004.
[7] Tetsuya Oh-ishi, Koji Sakai, Kazuhiro Kikuma, and
Akira Kurokawa. Study of the Relationship between Peer-to-
Peer Systems and IP Multicasting. IEEE Communications
Magazine. Jan. 2003.
[8] Qi He, Mostafa Ammar. Dynamic Host-Group/Multi-
Destination Routing for Multicast Sessions. J. of
Telecommunication Systems, vol. 28, pp. 409-433, 2005.
[9] Chuang, J., and Sirbu, M. Pricing multicast
communications: A cost-based approach. In Proceedings of
the INET’98 (1998).
[10] G. Phillips, S. Shenker, and H. Tangmunarunkit. Scaling
of multicast trees: Comments on the Chuang–Sirbu scaling
law. ACM SIGCOMM’99.
[11] Van Mieghem, P., Hooghiemstra, G., and van der
Hofstad, R. 2001. On the efficiency of multicast. IEEE/ACM
Trans. Netw. 9, 6 (Dec. 2001), 719-732.
[12] Chalmers, R.C, Almeroth, K.C, Developing a Multicast
Metric, Proceedings of the IEEE Global Internet
(GLOBECOM ’00), California, 2000.
[13] L. Lao, J.-H. Cui, and M. Gerla. A Framework for
Realistic and Systematic Multicast Performance Evaluation.
Computer Networks, Volume 50, Issue 12, Pages 2054-2070.

 6

	Introduction
	Related work
	Host group multicast
	Multi-destination multicast

	Explicit multicast-enabled EpiChord
	Analysis of XCAST-enabled EpiChord
	Lookup intensive workload
	Measurement of lookup messages per link in lookup intensive
	Churn intensive workload
	Measurement of lookup messages per link in churn intensive w

	Analysis
	Measured and expected savings
	An example
	Causes of reduced savings

	Conclusion
	Acknowledgement
	References

