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Abstract

We present a neurally inspired technique for detecting onsets and am-
plitude modulation in sound. This starts with a cochlea-like filter. The
outputs from this filter are spike coded, in a way similar to the auditory
nerve. These AN-like spikes are presented to leaky integrate-and-fire
(LIF) neurons through a depressing synapse. The spike outputs from
these are then processed by another layer of LIF neurons. Onsets are
detected with essentially zero latency. Amplitude modulation is detected
in a way similar to that of onset chopper cells. We present results from
some of the TIMIT database.

1 Onsets, onset cells, and onset chopper cells

The aim of this work is to provide features for sound source streaming and interpretation.
Biological systems far outperform current artificial systems. Thus modeling aspects of the
biological system seems a good way forward. Here, we model aspects of the cochlea, audi-
tory nerve and cochlear nucleus, aiming to provide engineering insight into early auditory
processing.

Onsets are rapid increases in energy. Different sound sources have different types of on-
sets. Some are wideband, with sudden co-occurring increases in intensity (e.g. percussive
sounds). Others are narrowband, with the increase in energy in some small area(s) of the
spectrum (e.g. a note played on a flute). Some sound onsets are very rapid, (e.g. a glass
falling on to a stone floor), and others less so (e.g. a note played on a flute). Every sound
that starts has an onset, and many have internal onsets (e.g. animal vocalisations, such
as human speech, or sequences of musical notes). The energy increase may be anything
between 10 and 100dB, and there may be any pre-onset sound level.

Mammalian auditory systems are strongly attuned to onsets. The auditory nerve responds
more strongly, with many neurons in the cochlear nucleus spiking strongly at stimulus
start [1]. Ecologically, onsets provide a useful cue. The onset comes at the start of the
sound (or of some change in the sound), and is therefore useful for priming a response.
Onsets are relatively undamaged by reverberation, since the first onset in the received signal
will normally be from the direct path, and further onsets caused by reflections will be
smaller. Indeed, these are normally ignored by animals when they estimate the sound



source location. (This is the Precedence Effect, or Law of the First Wavefront [2].) Other
cues such as offsets are severely smeared out in time in reverberant environments.

Onsets are a form of envelope modulation. Some of the cochlear nucleus neurons sen-
sitive to onsets are also sensitive to other forms of envelope modulation, in particular to
amplitude modulation (AM) [3]. AM in particular ranges of frequencies is characteristic of
animal vocalisations, including speech (as well as musical instruments), and is therefore of
ecological importance. AM frequency is unaffected by reverberation, although AM phase
and modulation depth can be affected.

1.1 Onset detection

Onset detection systems have been used in music transcription [4, 5], for sound segmenta-
tion [6], lip synchronisation [7], monaural sound source streaming [8, 9], and determining
when to measure interaural time differences for sound direction finding [10]. On-line appli-
cations (e.g. real-time speech segmentation or source streaming, real time sound direction
finding, or real-time music transcription), may use the sound only up to the time of onset,
and the latency of the detector becomes important.

Bandpassing the sound signal into many bands stops onsets in some small part of the spec-
trum from being overwhelmed by the overall signal strength, unless it is in an adjacent part
of the spectrum. Also, it allows onsets found to be characterised, by annotating them with
the bands in which they have been detected. This is important for transcription, streaming,
and direction finding applications.

The simplest onset detection techniques are based directly on signal energy, and have been
used to segment hummed or sung notes [11] to improve the note differentiation capability
of early music transcription systems (such as [12]). An alternative is to use first order
difference based estimates, [4, 13], which take the maximum of the rising slope of the
amplitude envelope as an index of onset. A variant of this is [5] which uses the relative
difference, calculating∆I/I. Another variant is [14] which uses troughs in loudness to
segment sung notes. A different approach uses optimal filter based techniques: [7] uses
a wavelet based filter and [6, 15, 16] use the difference between a long-term and a short-
term average. A related approach uses expectation based techniques [17] to detect sudden
increases in intensity. Simple techniques tend to find only the most prominent onsets, while
techniques which rely on finding troughs have a longer latency. Filter techniques can be
optimised for particular source types and for particular reverberation characteristics, and
can perform better, but require a convolution, and can have a long latency.

1.2 Amplitude modulation and voicing detection

AM is an important source of information about certain types of sounds. For speech, the
primary cause of AM in the bandpass filter output is unresolved harmonics of the funda-
mental frequency. This occurs for voiced sounds. Finding voiced parts of speech has a long
history [18]. This source of AM provides a biologically plausible mechanism for voicing
detection [19]. Onset chopper neurons (stellate cells) in the cochlear nucleus appear to be
part of this process, as they amplify AM in the auditory nerve signal. Although voicing
is not necessary for speech intelligibility (whispered sounds can still be understood), it is
necessary for intelligibility in noisy situations.

1.3 Auditory mechanisms

The detailed mechanism of the auditory system’s onset and AM responses are not clear.
Onset enhancement starts at the auditory nerve, and this aspect appears to be related to
the depletion of the neurotransmitter reserves at the synapse between the inner hair cell (in
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Figure 1: Onset spike generation system. AN-like spike generation is shown for only three
bands. Depressing synapses and onset generation are shown for a single sensitivity level
for these three bands.

the Organ of Corti) and the spiral ganglion neuron (see [20]). The onset response is much
stronger in the auditory brainstem cochlear nucleus, where there are a number of cell types
(octopus, and some bushy and stellate cells) which respond specifically to onsets [1, 3]. In
addition, some onset cells also enhance AM. How this onset or onset chopping response
is mediated is not known: it may be due to their synaptic innervation (many AN fibers
converge on these cells), or to the nature of the synapses themselves, or to the form of the
leakiness of these cells (i.e. to the particular ion channels expressed in their membrane),
or to their morphology, or to some combination of these. Nor is precisely known how
the outputs of these cells are used: they appear to innervate the MSO and LSO [3], both
implicated in sound direction finding, as well as other auditory brainstem areas. Certainly,
sensitivity to onsets and to AM is well documented at higher level auditory processing
centers.

2 The model

The model we use is illustrated in figure 1. Sound from a microphone (or sound file) is
bandpass filtered, using a Gammatone filterbank [21]. The filterbank response is similar to
that of the basilar membrane in the Organ of Corti in the cochlea: that is, the 6dB down
point bandwidth is approximately 20% of the centre frequency. The filter density provides
considerable overlap between adjacent filters. The precise bands used are described in
section 3. An important issue in the design of the filters is delay: since we will be using the
output of each filter in conjunction with adjacent filters, we would like the insertion delay
to be similar for all the filters. However, the Gammatone filter delay is proportional to the
reciprocal of the bandwidth [9]. Other filters, such as Butterworth have a more constant
delay.

The spike based representation we use enables the system to work over a wide dynamic
range through the use of multiple spike trains coding the output of each channel. Each
spike codes a positive-going zero crossing. Each spike trainSi, for i = 1 . . . N , (where
N is the number of spike trains generated from a single bandpass channel) has a minimum
mean voltage levelEi that the signal must have reached prior to crossing zero during the
previous quarter cycle (where the cycle is assumed to be at the filter centre frequency). If
there areN spike trains, theseEi are set by

Ei = DiE0 (1)

for i = 1 . . . N , for someE0 fixed for all bands.D was set to 1.414, providing a 3dB



difference between the energies required in each band. Note that if a spike is generated
in bandk, then a spike will also be generated in all bandsk′ for 0 ≤ k′ ≤ k. This tech-
nique is similar to that used by in [22], where Ghitza noted that it led to an improvement
in automatic speech recognition in a noisy environment. This auditory nerve-like represen-
tation enhances neither onsets, (unlike the real mammalian auditory nerve) nor amplitude
modulation. However, the way in which it codes the signal can be used to build a neurally
inspired onset detection system which can detect AM as shown in section 3.

The AN-like spikes are applied to depressing synapses on onset neurons (figure 1) which
are leaky integrate-and-fire (LIF) neurons with depressing synapses. LIF neurons are the
simplest model neurons which maintain any semblance of the temporal behaviour of real
neurons: see [23], chapter 14 for a review. The neurons used here are characterised by
their leakiness and refractory period. Each onset cell is innervated by a number of auditory
nerve-like spike trains. These arrive from a number of adjacent bandpass channels, but all
have the same sensitivity (i.e. value ofi in equation 1). Each single post-synaptic potential
is insufficient to make the onset neuron fire, so that a spike on more than one AN-like input
is required. The neurons used are leaky, so that these spikes need to be nearly co-incident
in time. This tends to reduce the effects of noise (which might result in occasional but
uncorrelated firing in auditory nerve-like inputs in adjacent channels). However, as the
number of innervating channels is increased, the post onset evoked post-synaptic potential
(EPSP) level can result in the onset cell firing if it is too large.

A number of different models for depressing synapses have been put forward [24–26]. The
primary effect of all of them is that the first few spikes to arrive at a depressing synapse have
a much larger effect than those that follow soon after. This is a form of onset enhancement.
Hewitt and Meddis [20] suggested a form of depressing synapse at the inner hair cell to
spiral ganglion dendrite synapse. We are not aware of work suggesting depressing synapses
in the cochlear nucleus, but depressing synapses are very common in mammalian neural
systems. We use a three reservoir model, [20,25] and this enhances the onsets in each spike
train. The three reservoirs are pre-synaptic (available), cleft (in use), and reuptake (used,
but not yet available again). The model parameters (which are the rates of transfer between
each reservoir) are set so that the first few spikes arriving result in near total depletion of
the presynaptic reservoir. For a strong enough signal, spikes will arrive at approximately
Fc spikes per second, whereFc is the centre frequency of the bandpass channel. However,
an EPSP will only be generated for the first few spikes. The recovery time is set by the
rate of transfer from the cleft to the reuptake reservoir (which we keep constant), and from
the reuptake reservoir to the pre-synaptic reservoir. If this last rate is low, then there will
need to be a considerable gap in AN signals before a new onset is marked. By adjusting
this parameter, we can change cells from being sensitive purely to onsets to being sensitive
to AM as well. If it is set too high, the post onset EPSP (i.e. the EPSP produced by an
indefinite train of AN spikes) will be relatively high, resulting in unwanted onset firing.
For simplicity, we set the maximal weight on each depressing synapse to the same level.

3 Results

We first present results from a brief section of a TIMIT utterance [27] and from a syn-
thetic sound, We then investigate the relationship between onsets found and the phoneme
structure of some of the TIMIT dataset.

In figure 2 we show the effect of processing a brief piece of a TIMIT utterance. The speech
was filtered into 72 bands between 100 and 4000Hz. There were 20 AN-like spike trains
for each band, with a 3dB energy difference between each. Some of these spike trains are
shown in figure 2a. It is clear that onsets occur at different times in different bands, as
is visible in figure 2b. From this image it is also clear that the onset is generally found
later in lower sensitivity bands (tracing the spikes in a single channel generally results in a



line with positive gradient). This is due to the finite length of actual onsets (as measured
from the start of the sound to maximum intensity). Figure 2c shows the summary of these
onsets. This was produced by merging together those onsets from the same channel but
from different sensitivity bands which were judged to come from the same source by virtue
of occurring at approximately the same time. This results in a considerable reduction in the
total number of onset spikes, and is easier to use for analysing what in the signal is causing
the onsets. Figure 2d shows the effect of altering the parameters for the onset cell: here,
the AN-like spikes input were from 20 bands between 2000 and 4000 Hz. For this image
the reuptake rate for the depressing synapse was increased, so that the depressing synapse
recovers more rapidly. Thus the gap between spikes required to cause larger EPSPs is
reduced. In addition, the dissipation of the onset cell was increased (so that the onset cell is
more of a coincidence detector). This also necessitated an increase in the maximal weight
between AN-like spike train and the onset neurons. The overall effect is that the neurons
detect the amplitude modulation in the signal.
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Figure 2: Effect of processing a 0.7 second long extract from male utterance MJWT0SA1
from TIMIT dataset (2.57-3.27seconds).



A short tone complex consisting of 4 neighbouring harmonics of a 140Hz signal (between
2100 and 2520 Hz) on top of a white noise background was analysed the same way: see fig-
ure 3. High sensitivity channels show a pure onset response, and lower sensitivity channels
(towards top of figure 3b) show both an onset response and a response to the envelope of the
signal. During the tone complex, the AM has a modulation depth of approximately 60%.
The AM-onset cells in the lowest two sensitivity levels fire reliably at the AM frequency.
This behaviour mimics that of the onset chopper cells of the cochlear nucleus.

           
0

10

20

           
0

10

20

           
0

10

20

           
0

10

20

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0

10

20

(a) AN spikes from 60ms before to
140ms after tone complex starts. Only
the bands centred at 3.00, 2.48, 2.43,
2.38 and 2.00 Khz are shown.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20            

10
20

(b) AM-onset cell spikes. The AM firing can
be clearly seen in second and third top sub-
graphs

Figure 3: Processing of tone complex in background noise.

The TIMIT database [27] is a database of short read utterances in many US English dialects,
and includes phonetic transcriptions. We have correlated the onset times found with the
starts of the phonemes, and the results are shown in table 1. Phoneme onsets may be

Phoneme Male Female
type uttered identified % correct uttered identified % correct
affricative 3 3 100 4 4 100
fricative 74 68 91.9 78 71 91.0
nasal 41 16 39.0 52 22 42.3
semivowel 124 64 51.6 148 66 44.6
vowel 219 153 69.9 331 232 70.1
stop 113 85 75.2 148 105 70.9
false pos’ve 99 114
selectivity 0.797 0.814

Table 1: Phoneme types in the 24 TIMIT utterances processed (12 male and 12 female), and
those detected (within 28ms of recorded onset) by the onset detecting system. Selectivity
is defined as (correctly identified)/(correctly identified + false positives)
.

missed because the onset of this phoneme and the previous one overlap, or because that
phoneme does not start with an onset. Many of the vowel, semivowel and nasals that are
missed follow other voiced sounds: finding the frequency modulation that marks the change
would require more or sharper filtering (as suggested recently [28]). The few fricatives that
are missed are either just missed by a few milliseconds, or occur just beside a stop. Non-
existent onsets may be found because a single onset breaks into more than one due perhaps



to slow rise times, or because envelope variations inside a phoneme are misidentified as
onsets. Two particular stops account for 75% of the missed stops: we believe that these
stops are largely not associated with an increase in energy. Of the 213 false positives, 176
occur inside vowels, and 25 inside sibilances. The remaining 12 occur in stops. The starts
of almost all sequences of voiced sounds (vowel, nasal and semivowel) are found.

4 Conclusions and further work

The system modelled has some similarity to the biological system, and some of the qualities
of that system. The spiking AN-like representation provides an effective early representa-
tion over a wide dynamic range, enabling onset detection and amplitude modulation (even
for relatively low modulation depth) over this wide range. Because of the spiking nature
of the system, the latency is essentially that of the filterbank: indeed, the onset pulses are
essentially phase locked (see [10]). The onsets detected fit with an informal definition of
an onset. We have investigated how this model’s onsets correspond to phonemes in the
TIMIT dataset: fricatives and affricatives are almost all detected, as are the starts of voiced
sequences. In addition, we have shown that the onset and onset chopper behaviours in
the cochlear nucleus can be mediated either by relatively small changes in the parameters
of the onset neurons, or simply by altering which AN-like spike trains innervate the model
neurons. We believe that by using both onset and AM-onset neurons we can improve on the
detection of vowel onsets in [29] in terms of level dependence: this requires further inves-
tigation. Further by using both the spectral areas in which onsets occur, and the AM-onset
information we believe we will be able to characterise fricative, voiced and stop onsets. In
addition, the improved onset time estimation should assist onset qualified ITD and IID esti-
mation, improving sound source direction finding in reverberant environments. The model
is currently implemented entirely in software: work on VLSI implementation is ongoing.
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