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Abstract 

As computational neuroscience matures, many simulation environments are available 
that are useful for neuronal network modeling. However, methods for successfully 
documenting models for publication and for exchanging models and model components 
among these projects are still under development. Here we briefly review existing 
software and applications for network model creation, documentation and exchange. 
Then we discuss a few of the larger issues facing the field of computational 
neuroscience regarding network modeling and suggest solutions to some of these 
problems, concentrating in particular on standardized network model terminology, 
notation, and descriptions and explicit documentation of model scaling. We hope this will 
enable and encourage computational neuroscientists to share their models more 
systematically in the future. 
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1 Introduction 

While the availability of a diverse array of general purpose and more specialized 
neuronal network simulators facilitates the development of models in neuroscience, the 
specialized languages and model descriptions that they utilize generally are not 
interoperable, limiting model reproducibility, exchange and re-use. As models become 
increasingly more complex and cross multiple scales, attempting to convert code to a 
different simulator format becomes even more time consuming. Recent work comparing 
numerical results across simulators (Gleeson et al. 2010, Henker et al. 2012) and 
examining implementation issues that are inherent to network modeling (Crook et al. 
2012) point to the need for benchmarks for simulator testing and also reinforce the need 
for simulator-independent descriptions for model publication and exchange. The lack of 
standardized terminology, notation, and graphical representations for documenting 
networks also negatively impacts progress in our field (Nordlie et al. 2009). 

From the early days of computer design (von Neumann 1986), the computer hardware 
community has addressed many of the same issues facing the network modeling 
community. For example, how should a designed structure be described, and how can 
one check that the architecture is what is intended? Because different hardware 
simulator tools are used for the various modules of a design, hardware designers must 
be able to interface tools easily. Thus, simulator interoperability is critical. Originally 
hardware design was performed at the circuit level, where early design tools aided the 
creation of full schematics and provided automatic simulation. However, gradually, 
design became more abstract as hardware became more complex. Toward the end of 
the 1980’s, the level of abstraction made design at the circuit level impossible, and 
design tools began to use libraries of pre-built functions. Diverse notations for these 
components were developed and the rapidly moving target of the state-of-the-art circuit 
made standardization difficult. However, these notations slowly became standardized, 
developing into a formal notation for digital circuits composed of gates and boxes that 
are described in a hierarchical manner. Attempts to develop functional languages for 
describing hardware have not been widely adopted, although currently Bluespec’s 
(http://bluespec.com) high-level language facilities are gaining interest. 

Like the hardware community, the network modeling community needs an extremely 
concise, high-level description of model architecture that can be mapped onto a 
simulator. It is important that it be possible to implement different modules of the 
architecture at different levels of abstraction. As model complexity grows and 
development relies on high-level tools, validation is critical so that modelers are able to 
trust that the model is the intended one and that it is implemented correctly. In this article 
we briefly discuss some of the ways in which our community is slowly building an 
infrastructure for efficiently creating, documenting and sharing network models. Then we 
address a few of the larger issues facing the field of computational neuroscience as we 
move forward, concentrating in particular on standardized model descriptions and 
explicit documentation of model scaling. 

2 Current resources 

Simulation environments 
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The creation and simulation of network models is facilitated by a large number of freely 
available software packages (Brette et al. 2007). For more than 20 years, the NEURON 
(Hines 1989, Hines and Carnevale 1997) and GENESIS (Bower and Beeman 1997) 
simulation environments have supported the modeling of networks of conductance 
based neuronal models that include a large amount of biological detail. These simulators 
have a large user base, and are both under active development, with the original 
GENESIS simulation software now being superseded by the GENESIS-3 / Neurospaces 
(Cornelis and De Schutter 2003, Cornelis et al. 2012a, Cornelis et al. 2012b) and 
MOOSE (Ray and Bhalla 2008) initiatives. Other software packages including NEST 
(Gewaltig and Diesmann 2007), Brian (Goodman and Brette 2008), PCSIM (Pecevski et 
al. 2009), and Topographica (Bednar 2009) are more appropriate for the simulation of 
large-scale networks of abstract neuronal models such as integrate-and-fire (see review 
by Burkitt 2006), Izhikevich (Izhikevich 2004) and firing-rate models (Wilson and Cowan 
1972). The increasing scale of such models is also driving the development of 
alternative computer architectures and simulation paradigms such as the use of graphics 
processing units (GPUs) (Nageswaran et al. 2009) and specialized chips (Furber and 
Temple 2007), described in more detail below. Moreover, a number of simulators such 
as Cx3D (Zubler and Douglas 2009), NETMORPH (Koene et al. 2009) and NeuGen 
(Eberhard et al. 2006) have been designed to specifically model the biological 
development of neurons and neuronal networks.  

While the existence of such a wide range of neural simulators is beneficial for the field of 
computational neuroscience as it provides researchers with ample flexibility and 
opportunities to choose a simulator that has been optimized for a specific research 
question, it also complicates the exchange of computational models and therefore 
collaboration between different laboratories. A complex neuronal network model can 
take months or even years to develop, analyze, and document, and a full understanding 
and further development of the simulator-specific scripts can be challenging for users of 
the same simulator, let alone for someone who is not familiar with the specific simulator 
that has been used. The desire for model exchange among laboratories that use 
different simulation platforms and for portability of models between different simulators 
has stimulated the development of several interoperability frameworks. For example, 
many simulators such as NEURON, GENESIS-3, MOOSE, Cx3D, and others, now 
provide support for the simulator-independent model description language NeuroML 
(Goddard et al. 2001, Crook et al. 2007, Gleeson et al. 2010). Other software packages 
allow the simulator-independent development of computational models that can then be 
run on a number of different simulation environments. For example, the PyNN software 
package (Davison et al. 2009) provides a Python API for the creation of neural network 
simulations for use with several different simulation platforms. Similarly, the Multi-
Simulation Coordinator (MUSIC; Djurfeldt et al. 2010) supports the runtime interaction of 
multiple simulator tools in multi-level simulations. The neuroConstruct software (Gleeson 
et al. 2007) facilitates the development, visualization and analysis of biologically detailed 
neuronal networks in three-dimensional space. These network models are stored in 
NeuroML format, and neuroConstruct can automatically generate scripts for several 
simulators. More details regarding some of these approaches are provided below. 

Code sharing 

There are several possible formal methods for sharing code such as on a publisher’s 
website or in a public source-code repository. Although many journals offer the 
possibility of making model code available as supplementary material attached to a 
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journal article, there are disadvantages to this option, including lack of standardization in 
the code format or the associated metadata, difficulty in updating the code archive if 
bugs are found, improvements are made or contact details are changed, and quality 
control. Curated model repositories, where a curator verifies that the code reproduces 
one or more figures from the published article, and which often have standardized 
metadata making it easier to find models of a certain type, address the issues of quality 
control and standardization (Lloyd et al. 2008). Some examples are ModelDB (Peterson 
et al. 1996, Davison et al. 2002, Migliore et al. 2003, Hines et al. 2004), the Visiome 
platform (Usui 2003), the BioModels database (Le Novère et al. 2006), and the CellML 
Model Repository (http://models.cellml.org). The model database most relevant to 
neuronal network models is ModelDB, a well-established database of computational 
models of neurons, cellular mechanisms and networks in a variety of different simulators 
and programming languages, which is curated by the SenseLab initiative at Yale 
University. In addition, the use of ModelDB is strongly supported by journals such as the 
Journal of Computational Neuroscience that recommend that all models described by 
articles in the journal should be uploaded into this database. 

A further step towards enabling collaborative model development has been taken by the 
Open Source Brain (OSB; http://opensourcebrain.org) project initiated by the Silver 
Laboratory at University College London, which currently involves 11 laboratories as well 
as partners outside academia in Europe and the United States. The OSB initiative 
provides a public repository for detailed models of neurons and networks that can be 
developed collaboratively in any simulator format. The aim is to facilitate collaboration by 
storing the models in simulator-independent NeuroML format, and to provide access to 
curated models that reflect the latest experimental findings and that will evolve in parallel 
with the development of new simulation technology and modeling paradigms. 

Code sharing does not ensure reproducibility or model exchange 

As detailed by Crook et al. (2012), sharing code may provide a means for replicating 
results using the same code, but it does not ensure independent reproducibility of model 
results, which requires a simulator-independent approach. In fact, it is sometimes the 
case that a given result from a published paper cannot be re-created with code that has 
been made available, although the use of curated model code repositories is helping in 
this regard. Reasons for lack of reproducibility may involve differences in the version of 
the simulator, the compiler, or of shared libraries that are used by either the simulator or 
the code, differences in the computing platform, or simply poor record keeping on the 
part of the researcher. Ideally, models and their sub-components should be exchanged 
easily for re-use across many different simulators. This is the motivation behind 
approaches discussed in the next section. 

3 Formal approaches for describing networks 

To facilitate independent reproduction of neuronal network modeling studies, a 
systematic approach is needed for reporting models. Here we discuss approaches for 
both human-readable and machine-readable standardized formats that can provide 
descriptions of network models that are independent of any particular simulator. 

Tables and graphical descriptions 
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Nordlie et al. (2009) provide a checklist for model descriptions, requiring information on 
the following aspects of a model: (i) model composition, (ii) coordinate systems and 
topology, (iii) connectivity, (iv) neurons, synapses, and channels, (v) model input, output, 
and free parameters, (vi) model validation, and (vii) model implementation. They further 
propose a concise tabular format for summarizing this information in publications. 
NeuroML tools can generate tables in this format from a formal model description. 

Another popular approach is to represent networks graphically in publications, which is 
an important tool for providing a quick overview to the reader. Although graphs are not 
sufficient for describing all aspects of a model, they are useful and would be much more 
useful if a standard approach were adopted by the network modeling community, similar 
to the use of the Systems Biology Graphical Notation, or SBGN, by the systems biology 
community (Le Novère et al. 2009). Often, graphical representations must be 
hierarchical to depict the details at different levels of spatial scale, and the use of ad hoc 
notations with conflicting symbols from one publication to the next makes it difficult to 
share these complex ideas. The issues with the current use of graphical representations 
for network models in neuroscience are articulated well by Nordlie and Plesser (2010), 
who also advocate a connectivity matrix approach. This method of visualizing network 
connectivity can be used at different levels for either full details or summary information, 
and is currently available by using the ConnPlotter package (Nordlie and Plesser 2010) 
with the NEST simulator. However, there are some aspects of networks that cannot be 
provided in a connectivity matrix. In particular, some network descriptions require 
procedural information about the order and manner of creating connections, as 
discussed in more detail below.  

Description languages 

Software and database developers in many fields, including neuroscience, have 
enthusiastically adopted Extensible Markup Language (XML) technology (Bray et al. 
2008) as an ideal representation for complex structures such as models and data. A 
major advantage of XML is that it provides a machine-readable format that is 
independent of any particular programming language or software encoding, which is 
ideal for a structured, declarative description that can provide a standard for an entire 
community. Like HTML, XML is composed of text and tags that explicitly describe the 
structure and the semantics of the content of the document; however, the tags are 
defined by developers as a specific XML-based markup language that is appropriate for 
a particular application. 

A number of ongoing projects focus on the development of these self-documenting 
markup languages that are extensible and can form the basis for specific 
implementations covering a wide range of modeling scales in neuroscience. The 
Systems Biology Markup Language, SBML, (Hucka et al. 2003) and CellML (Hedley et 
al. 2000, Lloyd et al. 2004) are two popular languages for describing systems of 
interacting biomolecules that comprise models often used in systems biology, and both 
languages are relevant to network models since they can be used to describe complex 
models of synaptic signaling processes. NeuroML (Goddard et al. 2001, Crook et al. 
2007, Gleeson et al. 2010) differs from these languages in that it is a domain specific 
model description language, and neuroscience concepts such as cells, ion channels and 
synaptic connections are an integral part of the language. Recently, the International 
Neuroinformatics Coordinating Facility facilitated the initiation of a markup language for 
models of spiking neural networks composed of abstract cell types (Network Interchange 
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format for Neuroscience; http://nineml.org), which is complementary to NeuroML. 
Additionally, the Simulation Experiment Description Markup Language (SED-ML) (Köhn 
and Le Novère 2008) is a language for encoding the details of simulation experiments, 
which follows the requirements defined in the MIASE (Minimal Information About a 
Simulation Experiment) guidelines (http: //biomodels.net/miase). Taken together, these 
markup languages cover the majority of network models. The use of namespaces allows 
for unambiguous mixing of several XML languages; thus, it is possible to use multiple 
languages for describing different modules of a multiscale model. This is the approach 
employed by NeuroML to include very detailed models of synaptic processes using 
SBML for example. 

Tools that support simulator interoperability 

neuroConstruct is an example of a successful software application that uses declarative 
descriptions to its advantage (Gleeson et al. 2007). This software facilitates the creation, 
visualization, and analysis of networks of multicompartment neurons in 3D space, where 
a graphical user interface allows model generation and modification without 
programming. Models within neuroConstruct are based on the simulator-independent 
NeuroML standards, allowing automatic generation of code for multiple simulators. This 
has facilitated the testing of neuroConstruct and the verification of its simulator 
independence, through a process where published models were re-implemented using 
neuroConstruct and run on multiple simulators as described in Gleeson et al. (2010). 

In a different approach, PyNN (Davison et al. 2009), provides a programmatic simulator-
independent format. In particular, it provides an API in the Python programming 
language that supports computational studies using the software simulators NEURON, 
NEST, PCSIM and Brian, as well as a number of neuromorphic hardware systems 
(Brüderle et al. 2009, Galluppi et al. 2010). This allows the code for a simulation to be 
written once and then run on different simulator engines. Unlike declarative 
specifications, this description is immediately executable without an intermediate 
translation step, which gives a more direct link between description and results. The use 
of a programming language also provides the full power of such a language, with loops, 
conditionals, subroutines and other programming constructs. The great flexibility and 
extensibility this gives can be a strong advantage, especially in an exploratory phase of 
model building. It may also be a disadvantage if misused, leading to unnecessary 
complexity, bugs, and difficulty understanding the essential components of the model, 
which are less common with declarative specifications. 

A third approach involves the standardization of interfaces through which different 
software components communicate at runtime. This has been used to good effect in 
MUSIC (Djurfeldt et al. 2010) to allow different parts of a network model to be run on 
separate simulators. It is also a key aspect of the design of MOOSE, which takes an 
object oriented approach for the simulation engine and supports a wide range of 
pluggable components which perform different parts of the calculation. The benefits here 
are much the same as with plugin architectures for more mainstream applications such 
as web browsers and word processors. These mainstream applications have benefited 
from software design philosophies developed over many years (see Gamma et al. 
(1994) for an overview).  In computational neuroscience a first such design philosophy 
for appropriate modularization of a simulator is described by the GENESIS-3 / 
Neurospaces CBI architecture (Cornelis et al. 2012b). The benefits of such a 
modularization are that the plugin developer does not need to master the entire system, 



! 8!

but only the interfaces it must implement, and the same plugin may be used in different 
contexts. As such, this approach has the potential to reduce the overhead for developing 
new modules, which is particularly important in a loosely coupled software community 
like ours. However, some of the pitfalls are also the same as for browser plugins. 
Development schedules are rarely synchronized, leading to considerable potential for 
version compatibility problems, and it is much harder to achieve good performance and 
scalable behavior with a combination of plugins working through a restricted interface 
than it is with a monolithic system designed as a single entity. This last issue can be 
addressed by an alternative approach to runtime interaction in which the simulation 
problem is separated by processing tasks rather than by model components. Each of the 
different computational tasks involved in running a simulation such as processing model 
descriptions, operating on cell morphologies, discretizing meshes or solving differential 
equations can form the basis of a specialized library. This practice is already widespread 
for some parts of the problem, with independently developed packages often used for 
XML processing or solving differential equations, but has potential to be extended to 
finer scales with highly specialized libraries dedicated to particular aspects of model 
processing and simulation. 

Formal specification and verification of connection primitives 

Desirably, connectivity on various levels should be describable in one common 
framework and terminology, irrespective of what is to be connected, e.g. synaptic 
contact points on dendritic tree structures, point neurons, or also whole populations or 
areas. These descriptions should be clear and concise, but must not lack crucial details. 

For example, if connectivity in a network of ! nodes is described as random, it might 
appear clear that every possible connection between two nodes !, ! ∈ 1,2,… ,! , ! ≠ !, is 
established in a Bernoulli-trial fashion with a certain probability !. This network ensemble 
strictly corresponds to the class of Erdos-Rényi (ER) networks, implying that no 
connection is established twice (no multapses) and no neuron is synaptically connected 
to itself (no autapses), properties that modelers however often allow for. Moreover, for 
ER random networks there might be nodes that are not connected to any node at all, 
another feature that is often explicitly excluded. Another assumption often made is that 
nodes have a pre-described distribution of the number of connections per node, e.g. that 
all nodes receive exactly (Brunel 2000) or at least (Watts and Strogatz 1998) ! 
connections, while for an ER network both the number of incoming and outgoing 
connections are distributed binomially (Albert and Barabási 2002). 

Even though such connectivity details may appear minor, they can have measurable 
impact on the dynamics of spiking neuron networks. Assume for a moment that all spike 
trains are Poisson processes with intensity ! and that a neuron receives ! input spike 
trains, all with the same weight !. If all !!input currents are independent, the variance of 
the input current is proportional to !!!", while if all currents are sampled from the same 
neuron it rather corresponds to one spike train of weight !" and the variance is thus 
instead proportional to !!!!!. Similar differences due to multapses are induced in the 
input current covariances due to common input. Thus minor details potentially alter the 
entire covariance structure of the network activity and can lead to problems in 
reproducing results that relate to second order properties if not properly documented. 

If the aim is conciseness of description, even the simple balanced random network of 
Brunel (2000) can become cumbersome. A possible, already lengthy yet incomplete 
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description could be: “every neuron receives !!synapses from randomly drawn subsets 
of !! excitatory neurons and !! = ! − !! ! inhibitory neurons, such that no connection is 
established more than once and no neuron connects to itself”. A more concise and 
formal description in tabular form was suggested in Nordlie et al. (2009). When it comes 
to more complex network models with additional biologically motivated detail (e.g. Hill 
and Tononi 2005, Izhikevich and Edelman 2008, Phoka et al. 2012) the situation soon 
becomes worse, and the benefit of a formalized tabular representation is evident 
(Nordlie et al. 2009). 

A first step towards standardizing the description of connectivity is to agree on a 
common terminology or ontology, such as the Computational Neuroscience Ontology 
that is currently under development (http://purl.bioontology.org/ontology/CNO) to 
unambiguously describe and annotate network models. Along these lines, we suggest 
unambiguous definitions for the terminology and structure of connectivity primitives, 
defined by community agreement. These can be high-level, relating to network classes 
such as “ER random networks”, “all-to-all” or “ring networks”, but also can be very low-
level primitives, specifying connection patterns on the basis of individual nodes and 
connections, such as “random convergent connect” (Nordlie et al. 2009). This approach 
allows for both declarative, shorthand descriptions of networks as a whole, if the network 
class is well-defined and the procedure of network generation does not matter. It also 
allows for more refined procedural descriptions in terms of connectivity building blocks, 
which is particularly important when operations during network generation need to be 
performed in a certain order. The approach is also useful when connectivity patterns are 
highly stereotypic and only the parameters vary (as in the models of Hill and Tononi 
(2005) and Phoka et al. (2012)). Such connectivity patterns can have different properties 
in that they can be: 

node-centric versus set-centric: For a node-centric approach, one might ask, “given a 
node, what nodes is it connected to?”. Random convergent connections are an example 
(Nordlie et al. 2009). For a set-centric approach, in contrast, one asks “what 
characterizes a set of connections?”. As an example, form a set by drawing ! 
connections with random sources and targets.  

local versus global: In a local approach, individual connections are established 
irrespective of the state of the rest of the network. Global requirements establish 
connections in a way that depends on the state of other nodes or connections. 

deterministic versus probabilistic: A deterministic pattern invariably will result in the same 
connectivity with every instantiation, whereas a probabilistic connectivity pattern 
specifies the statistics of connectivity across instantiations. 

value-dependent versus attribute-dependent: An example of value-dependent 
connectivity is distance-dependent connections. Attribute-dependent connections are of 
the form “has property A” or “is of type B” for example. 

Finally, boundary conditions should be specified, and if networks are embedded in some 
type of metric space, also this metric and the node conditions should be given.  
 
Finding naming conventions however often collides with the inertia of established 
terminology, or simply the complexity of the network objects to be described. Thus a 
formally minimal, i.e. mathematical, specification of connectivity would resolve the 
problem of terminological ambiguities. This was recently put forward in the form of the 
Connection Set Algebra (CSA; Djurfeldt 2012). This operator-based approach 
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automatically resolves the problem of expressing the procedural order of certain network 
generation operations, since this is inherently expressed in the order of operator 
composition. In CSA, a set of network connections is represented by an object called a 
connection-set. This object can be subdivided into a mask, expressing the existence of 
connections, and zero or more value sets, expressing parameters associated with 
connections, such as a weight or delay. The CSA uses index sets to refer to the nodes 
(synapses, neurons, etc.) to be connected. For example, when connecting a source and 
target neuron population, source neurons are enumerated using non-negative integers, 
which together form an index set !. Similarly, an index set ! enumerates the targets. The 
mask can then be regarded as a set of pairs !, !, ! ∈ !, ! ∈ !, with one pair per existing 
connection. This is equivalent to a connection matrix. A value set is a function of source 
and target indices !×! → ℝ. 
 
Connection-sets typically express a type of connectivity, such as “ER random” or “all-to-
all” rather than a specific finite set of connections. This is possible because connection-
sets are allowed to be of infinite size rather than adapted to the sizes of specific source 
and target populations. CSA is an algebra over connection-sets, where operators are 
applied to elementary connection-sets to form the desired connectivity. Given source 
and target populations of definite sizes, finite portions of a connection type can be “cut 
out” using the CSA intersection operator. CSA objects and operators can be efficiently 
implemented as iterators.  A demonstration of the CSA implementation in Python is 
available at the INCF software center (http://software.incf.org/software/csa).  

Since the aim of such precise network structure descriptions is reproducibility, there is 
also a need to specify how to test whether a generated network actually corresponds to 
the intended structure. This might be a straightforward task, especially if the network is 
small and connectivity is simple and stereotypic. For example, for a grid network, one 
might check if each node is connected to its!!!nearest-neighbors or generate the 
adjacency matrix and determine whether it has the typical, expected band structure. 
However, what if the connectivity is probabilistic and each instantiation will be slightly 
different, or connectivity is dependent on pairwise distances, but the number of potential 
target nodes in a given distance is not homogeneous? The latter is the case when nodes 
are embedded on a grid with open boundary conditions: a node in the center of the grid 
will have the same number of potential targets in all directions, while a node sitting at the 
boundary of the grid will have none beyond that boundary. So if the connection rule is to 
connect to all nodes within a certain distance, the number of established connections per 
node (the degree) depends on the location of the node. An additional complication is that 
the number of nodes and connections is also often very large so that reading out or 
storing the complete connectivity for testing purposes may not be practical. 

For deterministic networks it is often sufficient to check connectivity for subsets of 
neurons. For example, for the grid with open boundary conditions mentioned above, one 
could check if nodes in the center, on the edges and in the corners have the expected 
number of connections, given the spatial connection profile. For probabilistic networks, 
measuring the distribution of the number of connections ! per node, the degree 
distribution !(!) can be a useful way to validate the network structure. For the ER 
network, the expected degree distribution is a Binomial distribution and a Kolmogorov-
Smirnov (KS) test can be employed to quantify significance. If connectivity is 
probabilistic and also dependent on pairwise distance, the number of expected 
connections of a node at position !, !(!|!), is in general given by the convolution of the 
spatial connection probability profile and the node density distribution. If this is soluble, 
as in the case of uniform node density and a Gaussian connectivity profile, the 
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cumulative density function can be derived and KS testing is again possible. For the 
topology library in NEST, a comprehensive test suite for all offered standard connection 
routines is currently under development.   

 
4 Implementation issues and solutions 

Because of their high computational processing and memory requirements, and to ease 
analysis, nearly all existing computational models of neuronal networks are significantly 
downscaled versions of the corresponding biological system. Downscaling involves 
using a smaller number of model elements to represent a larger population in the 
underlying system. Unfortunately, neuronal simulators rarely provide explicit support for 
such downscaling, leading to ad hoc approaches for model scaling that currently make it 
difficult to interpret, share, and connect models. Moreover, publications very often fail to 
state explicitly what type of downscaling was used, precisely how the model relates to 
the underlying system, and what limitations result from the downscaling. 

Model scaling should be explicit 

Here we primarily focus on neuron, synapse, and dendrite downscaling for clarity, but 
similar arguments apply to other model elements. Two fundamentally different 
approaches to downscaling may be distinguished: lumping and subsampling. For 
lumping, multiple neurons or synapses are combined into larger units for simulation, with 
properties averaged or summed as appropriate. For subsampling, each model element 
retains a one-to-one relationship with an element in the biological system, but is treated 
as a representative of a larger population not explicitly modeled, with adjustments to 
parameters to compensate for the missing elements. Two types of subsampling can be 
further distinguished, depending on the spatial layout of the elements: either modeling a 
small patch at full density (a clustered approach), or a larger patch at low density (a 
distributed approach). Of course, combinations of approaches are also possible. Clearly, 
each of these types of downscaling requires different adjustments to parameter values 
and has different implications for the analysis and interpretation of results. For instance, 
lumped models will tend to have longer effective time constants than subsampled ones 
(see for example Borisyuk et al. (2002)), and time delays between neurons will be larger 
in a distributed sample than in a clustered sample. 

For simple firing-rate point neurons, downscaling by lumping or distributed subsampling 
is reasonably well defined, with linear scaling that works well over a large parameter 
range (Bednar et al. 2004). For example, each synaptic input to a neuron in a distributed 
subsampled firing-rate network that simulates 10% of the actual neurons in a region will 
have to be scaled up by a factor of 10 to represent the contribution from the 90% of the 
neurons not being modeled. The Topographica simulator provides explicit support for 
downscaling networks of firing-rate neurons, requiring all parameter values to be 
expressed independently of the type and amount of downscaling (Bednar 2008). With 
scale-independent parameters, the amount of downscaling can then be varied easily for 
each run (e.g. to test that results are robust to downscaling), and the specific scaling 
assumptions can be reported explicitly in publications. 

However, other simulators rarely provide any direct support for downscaling neurons or 
synapses in networks, and the various ad hoc approaches in use can dramatically affect 
model behavior. Some theoretical results are available that help to systematically 
downscale numbers of synapses while preserving basic characteristics of the network 
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dynamics under certain conditions. In the asynchronous irregular state, characteristic of 
large cortical networks, the summed current-based synaptic input to each neuron is well 
approximated by a Gaussian noise. The mean and variance of this noise determine the 
firing rate in networks of binary (van Vreeswijk and Sompolinsky 1998) and integrate-
and-fire model neurons (Brunel 2000). Maintaining the same firing rate is one particular 
choice for defining equivalence between the full-size system and the downscaled 
version. This can be achieved by an appropriate choice of synaptic weights, the ratio 
between excitatory and inhibitory weights, and external input (van Vreeswijk and 
Sompolinsky 1998, Brunel 2000, Burkitt 2006). These results remain useful even under 
sufficiently mild deviations from the conditions under which they were derived. Modelers 
should use such theoretical findings in order to increase the chance that downscaled 
models are in fact comparable to their full-scale counterparts. 

Scaling networks of compartmental model neurons connected through conductance-
based synapses presents its own unique challenges. The central issue is preserving the 
effects on the postsynaptic cell of hundreds or thousands of synapses spread across 
highly branched dendrites. To produce a computationally tractable network model, two 
compromises must be considered at the cellular level: (1) a reduction in the number of 
afferent cells, and (2) a reduction in the complexity of the modeled dendrites (by 
lumping). 

A reduction in the number of afferent cells can be handled as a reduced number of 
synapses on the target cell, with each synapse having a suitably increased peak 
conductance (a lumping approach). With such scaling, the target cell will receive 
stronger, more spatially localized inputs. This could distort the postsynaptic response by 
enhancing nonlinear interactions between inputs and active membrane currents and 
result in significant distortion of network dynamics (Djurfeldt et al. 2008). For example, 
dendritic calcium spikes could occur more frequently than expected, due to a few, strong 
inputs driving the dendritic membrane to the spiking threshold. An alternative is to 
preserve, as far as possible, the actual number of synapses, but with groups of 
synapses being driven by the same presynaptic cell (rather than separate cells, as in the 
real system). The disadvantage of this subsampling approach is that the inputs, though 
of a realistic number, will have unnatural temporal correlations. For intrinsic network 
inputs, one of these approaches must be adopted, despite the limitations, if a full-scale 
network model is infeasible. In order to properly interpret simulation results, different 
sized networks should be simulated with whichever scaling scheme is adopted in order 
to assess the likely effects, for example, changing the size of particular neuronal 
populations while preserving the number of synapses on each target cell (Orban et al. 
2006). Extrinsic inputs can be handled with further alternatives. If a cell receives a large 
number of inputs from outside the network being modeled, then those inputs can be 
modeled by a reduced population of synapses that preserve the synaptic strength 
expected in the full population, but receive inputs at a higher mean frequency. This 
preserves the mean driving conductance across the population of extrinsic inputs, and 
may still maintain appropriate target cell firing statistics due to this input. This has been 
demonstrated for a 100-fold reduction in the number of synapses on modeled Purkinje 
cell dendrites (De Schutter and Bower 1994, Steuber et al. 2007). The fluctuating current 
arriving at the cell body due to spatially and temporally distributed inputs to the dendrites 
may possibly be captured by a suitable statistical model, allowing extrinsic inputs to be 
modeled as a simple current injection into the cell body. Background input to neocortical 
pyramidal cells has been fitted by a single-variable stochastic model similar to an 
Ornstein-Uhlenbeck process (Destexhe et al. 2001). 
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Scaling compartmental models of single neurons is also a necessity when building a 
large-scale biologically realistic network model, but remains something of an art form 
when dealing with highly branched dendrites that have active, nonlinear membrane 
properties. Such nonlinear properties may induce specific local processing of synaptic 
inputs (see for example Poirazi et al. (2003)). This provides constraints on the level of 
morphological detail that needs to be preserved in any reduced compartmental model. 
Detailed single cell modeling may need to be undertaken to try to understand how to 
preserve such local processing in a simplified dendritic morphology. A two or three 
compartment model that captures the distinction between input to the cell body and to 
the dendrites may, in fact, be too simple in many cases. 

Overall, due to the complex relationship between the downscaled system in these 
simulations and the underlying biological system, it is critical for simulators to start to 
provide explicit support for downscaling. One possible ideal (implemented in 
Topographica, but not yet in spiking simulators) would be to specify all parameters and 
architecture in terms of the biological system being modeled, and then separately 
specify the scale to be used in a particular simulation, as well as whatever scaling (linear 
or nonlinear) is necessary to map between the original and downscaled systems. 
Publications can then report both the unscaled network, as an explicit statement of what 
assumptions are being made about the underlying system; and the scaling equations, as 
an explicit statement of what assumptions are being made about how the simulation 
relates to the real system. 

Hardware approaches to large-scale modeling 
 
An alternative approach to dealing with scaling issues is to attempt to simulate networks 
at the scale of the brain; however, the memory demands of such large networks are 
prohibitive. The use of generators rather than specific positions for connectivity, where 
data are stored efficiently and accessed as needed, allows for the implementation of 
larger networks using traditional software approaches (Smith, 1992).  But recently, the 
desired increase to brain-scale neuronal network models has driven the development of 
novel neuromorphic computer architectures. The use of GPU implementations (see for 
example Nageswaran et al. (2009)) has resulted in the development of specialized 
simulator environments as well, such as NeMo (http://nemosim.sourceforge.net) and 
GeNN (http://sourceforge.net/projects/genn). However, these large-scale GPU based 
simulations still require a great deal of memory, limiting overall speed-up. The use of 
specialized chips with on-chip communication networks for direct spike transfer can 
dramatically improve run-time requirements. This innovative approach is the basis of the 
SpiNNaker (Spiking Neural Network Architecture) machine, which is a multi-processor 
machine designed specifically to run large-scale networks of point neuron models in 
biological real time using millisecond integration steps (Furber and Temple 2007). It has 
a bespoke communications infrastructure tuned to carry very large numbers of small 
packets, where each packet conveys information about one “spike”. As neuron, synapse 
and plasticity models are implemented in software, there is considerable flexibility in how 
these are used, and hybrid networks can be accommodated. In principle neural network 
models can be mapped onto SpiNNaker from any suitable high-level description 
language. An automated design flow from PyNN has been established, which maps the 
network topology into the SpiNNaker packet routing hardware and maps neuron 
populations onto one or more processors, loading leaky integrate and fire or Izhikevich 
neuron models (Izhikevich 2004) from a library as required, where some synaptic 
plasticity models, such as spike-time-depending plasticity, are available. 
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The SpiNNaker execution model employs asynchronous concurrency, so model results 
are to a degree non-deterministic, although there is a millisecond synchronous mode 
that supports deterministic operation provided that the neuron input processes are linear 
(as it is impractical to control the order in which input spike packets arrive within each 
millisecond). The non-determinism of the normal operating mode makes direct 
comparison at the level of individual spike times with the results from other platforms 
problematic, although higher-level network properties normally will be comparable. The 
SpiNNaker machine also performs all computations using fixed-point arithmetic, again 
making direct comparisons difficult with most other platforms that use floating-point 
arithmetic. These compromises allow for the execution of spiking neural networks of up 
to a billion point neurons distributed across a million processors in biological real time, 
but lead to questions about how network results should be interpreted and how they can 
be compared across architectures. However, similar questions arise when comparing 
results across supposedly deterministic simulation environments, as described by Crook 
et al. (2012), and these issues should be the subject of further discussion in the 
community. 
  
5 What can our community do to help?  

Although recent efforts to create an infrastructure throughout the computational 
neuroscience community for describing and sharing models are promising, much more is 
needed to improve efficiency and ensure reproducibility in our field. There are several 
tasks that should be explicitly embedded in simulator environments to aid with some of 
the issues outlined here. In particular, simulator developers should ensure that models 
and model components can be shared easily using multiple description standards such 
as tables, graphs, connection matrices and simulator-independent description 
languages, which would aid modelers in effectively documenting models for publication 
and exchange. In addition, to promote reproducibility, simulators should provide more 
self-documentation such as unit tracking, records of parameter values, version control 
approaches, and explicit descriptions of model assumptions. As outlined above, a more 
formalized approach to model scaling is needed to aid in interpreting results and linking 
models across scales. The community should also continue to invest in efforts to 
standardize terminology through the development of ontologies and formal notation, and 
to standardize libraries and interfaces across tools, and a sincere effort to create 
benchmarks for simulator testing is needed. 
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