Neuron/Electronic Interfacing

Leslie Smith, Centre for Cognitive and Computational Neuroscience and Department of Computing Science and Mathematics, University of Stirling, Stirling, Scotland. lss@cs.stir.ac.uk

Content:
Contrasting neural and electronic systems
Connecting neural and electronic systems
In vitro approaches
Signals, applications and interpretation
Cultural and ethical issues

Collaborators: Nhamo Mtetwa, Alan Murray, Mike Hunter, Brad Dworak, Nikki Macleod, Adam Curtis, Chris Wilkinson.
Financial assistance from: EPSRC grant number GR/R65602

Neural and Electronic Systems

<table>
<thead>
<tr>
<th>Electronic</th>
<th>Neural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed</td>
<td>Evolved</td>
</tr>
<tr>
<td>Logic levels (digital)</td>
<td>Spike trains</td>
</tr>
<tr>
<td>Voltages/currents (analogue)</td>
<td>Chemical Signalling</td>
</tr>
<tr>
<td>0 to 3 volts (approx) (varies)</td>
<td>-100 to +75mV</td>
</tr>
<tr>
<td>Transistors</td>
<td>Concentration levels and gradients</td>
</tr>
<tr>
<td>Electrons</td>
<td>Ionic Channels</td>
</tr>
<tr>
<td></td>
<td>Membrane morphology and channel distribution</td>
</tr>
<tr>
<td></td>
<td>Multiple species of ion</td>
</tr>
<tr>
<td></td>
<td>Neuromodulators, Neurotransmitters</td>
</tr>
</tbody>
</table>
Silicon electronics and neural systems

Silicon Electronics

- **Input/Output Signal Levels**
 - Base
 - Internal Signal Levels
 - Digital Analogue: 0-2,3,or 5v
 - Analogue: 0-2,3,or 5v

Neural

- Spiking: 75mv spikes
- Ionic concentrations, neuromodulator levels, local depolarisation (Voltage across membrane)
- Behaviour of ions and neuromodulators in aqueous solution. Protein (in membrane) conformation.

Neurons and Electronics

... or perhaps ionics and electronics

- Electronic systems work using potential differences mediated by the movement of electrons (electron currents)
- Semiconductor-based computers use a mixture of crystal-based electron energy (band) localisation and electrostatic effects.
- Neural systems utilise potential differences, mediated by the movement of a number of different species of ions
- Many mechanisms for modulating ion movement
 - numerous ion channel types
 - numerous modulating chemicals

Neural systems and electronics are tenuously connected by their use of electrical potentials

This can mislead us: even the mechanisms of conduction and of potential generation are different.
Field effect transistor

Diagram of piece of cell membrane
Note that there are many types of charge carriers

Excitable cell membrane

(Kandel)
Mechanisms of conduction

- Electronic: movement/diffusion of electrons in electric field
- Neural:
 - Ionic diffusion due to concentration gradient (thermodynamic diffusion) and potential difference
 - Active ion transportation
 - ion pumps
 - selective ionic channels

Conduction modulation

- Electronic: modulating the electron banding in crystalline Silicon using dopants (static) and electric fields (dynamic)
- Neural:
 - Modulating ion channel proteins by altering potential difference across them, or using large ions (e.g. Mg++, NMDA channels)
 - Neuromodulators

Differences at higher levels

- Information Coding
- Little agreement about what spikes in neural tissue mean
 - sometimes clear: rate codes at neuromuscular junctions
- Rate codes, timing codes, synchronisation, synchronous oscillation, chains of spiking, ...

- Even with electronic systems, evolved codes are hard to comprehend
 - often impossible when number of neurons > 10
 - e.g. when GA’s are used to evolve controllers
- ...and since brains are not defined precisely by genetics
 - (genetics defines structure, plasticity, etc., but not at an exact level)
- it may be that different brains code things differently
Connecting neural and electronic systems

- Electro-encephalography (EEG)
 - relatively non-invasive
 - records only overall potentials generated by millions of neurons
 - does have the possibility of controlling electronic equipment (or biofeedback equipment)
 - but signal is very noisy and difficult to control/interpret reliably
 - see Brain/Computer Interface (BCI) competition 2003

Recording using metal electrodes

- Improving the localisation of the detection of signals entails placing the sensor and the neural system close together.
- Small metal electrodes (Platinum usually) are inserted into the neural tissue.
- These record field potentials,
 - again from many neurons, namely those near the electrode.
 - Not as many as EEG
- Technique is much more invasive than EEG
Single electrode

Single electrode in cortex

Note that cell density is much higher than shown!
Actual electrode in at tip of spike
30-100 microns in size

Picture from Bionic Technologies, LLC, Utah

Multiple electrode array

Electrode array is inserted into brain tissue.
Multiple signals are simultaneously recorded.
Picture from Bionic Technologies, LLC, Utah
Charge transfer to an electrode

- Voltage sensor or current sensor?
 - infinite impedance sensor detects potential at that point
 - finite impedance sensor detects charge carriers
 - different species of ions
- Actual charge transfer process can be complex
 - depends on ion species, electro-chemical processes at the electrode
- Interpreting the signal is also difficult
 - field potential
 - caused by a number of processes near the electrode
 - events at a number of nearby neurons
 - spikes are what we are interested in, but they are not the only events
- Spike sorting is the (difficult!) technique of finding the spikes (and their sources) from the electrode signal
 - see later

Patch clamping

From “Microelectrode Techniques”
Standen, Gray, and Whitaker
Patch clamping

- Alternative technique for detecting neural signals.
- Micro-pipette is used to measure ionic flow across cell membrane, while holding membrane voltage constant
 - hence “clamp” in name

- Micro-pipette is usually boro-silicate glass
 - precise shape and chemical properties of the micro-pipette matter
- Aim is to get a good seal between the glass and the cell membrane
 - electrical resistance direct to the medium surrounding the cell is to be maximised
In vitro vs. in vivo

- Instrumented neural systems may be
 - **in vivo**
 - in the living animal
 - **in vitro**
 - brain slice preparation
 - cells from a brain slice prepared and kept alive in a culture
 - cultured neurons
 - taken from embryonic or young animals, or immortalised cell lines

- **In vivo** systems are good for understanding overall brain systems, but
 - there are ethical problems
 - one does not know what other signals the neurons are receiving

- **In vitro** systems have fewer ethical problems, and the experimenter is much more in control.

In vitro systems

There are many difficulties with in vitro systems of neurons.

- **Neurons are difficult to grow**
 - they are relatively choosy cells
 - they need to grow in special serums

- **Keeping them alive for long periods is difficult**
 - usual cell culture problems
 - best to keep the cell culture chamber sealed
 - avoids evaporation, reduces contamination

- **Instrumenting them is also difficult**
 - electrodes can introduce contamination
 - difficult to keep chamber closed

- **Real neurons have “helper”cells**
 - glial cells frequently surround the neurons
 - appear to provide them with chemicals, and also to insulate them electrically
 - incompatible with instrumentation
Desiderata

What we would like...

1: Cell culture that lives indefinitely
2: Ability to record from identified cells at high SNR
3: Ability to stimulate identified cells

2 and 3 imply that we can actually identify neurons. Real neural systems are 3-dimensional and very dense.

Generally, one tries to grow neurons in a thin sheet, possibly with glial cells as well (for 1).
- Though this means capacitative coupling, and lower SNR

Approaches to neural culturing and recording

Essentially three different approaches appear to have been taken: many varieties of each approach

• Multielectrode array approach
 - Potter group, Univ. Freiburg and MCS/Ayanda (Reutlingen/Lausanne), EU VSamuel project. Plexon, Panasonic MED, Glasgow University + many others
 - neurons cultured on small dish, with multielectrode array at surface

• “Neural FET” approach
 - Fromherz group (MPI Biochemistry, Martinsried, Munich)
 - dissociated neurons, cultured on Si/SiO₂, neuron forming gate of FET

• Patch clamping approach
 - Aviva Biosciences (San Diego), Cytocentrics (Reutlingen), Edinburgh University
 - neurons cultured over (multiple) patch clamp electrodes
Multielectrode array approach

- Cells are cultured on top of a multielectrode array

Multichannel Systems, Germany: this is inserted into a system which contains all the electronics.

Means that the cell culture (the “wet”) side can be processed (e.g. incubated) on its own.

Multielectrode array approach (cont’d)

- Detail of the MCS array

- Can also have 3-d electrodes
 - Ayanda
MEA approach cont’d

- Potter’s group (Georgia, US) have a transparent MEA
 - uses indium tin oxide electrodes
- so they can identify what they are recording from

70 µM interelectrode spacing

(Courtesy of Steve Potter)

MEAs continued

- Electrodes may be either for recording or for stimulating

For recording
- field potentials are recorded
- capacitative connection
 - glial cells increase thickness of dielectric
- small signals
 - can cause noise problems

Stimulation can be tricky:
- there can be unwanted ionic effects
 - often a bi-phasic signal is used
- relatively high voltages may be required
 - connection is not direct
 - may interfere with nearby recording as well
“Neural FET”

- Use neuron as gate of a de-metallised FET.
 - “direct” unidirectional amplification of voltage changes on neuron
 - large signal => low noise

- Also direct stimulation of neurons on silicon has been achieved.
Communication between Lymnea neurons

A: Two snail neurons: left one is acting as a neural FET. Action potential is picked up, digitised, delayed, then applied capacitively to other neuron, which then fires.

SEM showing 4 pairs of neurons

Slice through Fromherz transistor

Copyright 2003 © Leslie Smith
Atlanta Seminar April 2003
Equivalent point circuit

\[\text{Free membrane Area} = A_{\text{FM}} \]
\[\text{Junction membrane Area} = A_{\text{JM}} \]

\[I_{\text{EXT}} \]
\[V_{\text{M}} \]
\[V_{\text{J}} \]
\[V_{\text{Bath}} \]
\[C_{\text{M}} \]
\[C_{\text{OX}} \]

\[g_{\text{FM}} \]
\[g_{\text{JM}} \]

Non-point model

Currents in a multi-point model
Neural FET Continued

- Can provide high SNR
 - but actual mode of signal detection is still unclear
- Directly detects depolarisation
 - highly localised
 - depends on actual ion channels in gate cleft
 - and on precise location of these channels
- Not easy to see how to use for stimulation of neurons

Patch clamping approach

- A number of groups are trying to build multiple patch clamp systems
 - rather like multi-electrode arrays, but at an earlier stage
- Aim is to provide multiple
 - or possibly single, but automated
- patch clamp system for recording, and possibly stimulating, excitable cells
 - Better noise figures than MEAs
 - Precise recording of a single neuron
 - Well understood mechanism of charge transfer
 - though what is actually recorded depends on ion channels in patch
Patch clamping approach (ctd)

- Multiple patch clamping requires
 - accurately machined tiny holes
 - complex fluidics
- Automating patch clamping is useful not just for neural interfacing, also for drug testing etc.
- Several companies are interested:
 - Aviva Biosciences (San Diego), Cytocentrics (Germany)
Cytocentrics approach

- Microfluidics used to transfer solution containing cells, to hold cell in place and to form patch clamp.

Edinburgh approach

- The Edinburgh group is using healthy dissociated hippocampal neurons from 5-7 day old rats.
- Aim is to produce a 16 channel system, for use in a culture with few glial cells.

Circular holes 1-2um in diameter etched in a silicon nitride layer with chamfered edges; used as a micro-pipette.
New Ideas (1)

- Recording and stimulating from the same electrode
- MCS have developed the electronics
 - rapid switching between recording and stimulating modes
 - still issues due to chemical changes in medium due to stimulation voltages
 - minimised using biphasic stimulation
 - but still present

New ideas (2)

- Stimulate neurons using neurotransmitters
 - instead of electrically

- Why?
 - Real synapses use e.g. Glutamate for excitation, or Glycine for inhibition.
 - the electrical effects occurring postsynaptically are the results of neurotransmitters

- How? Two approaches:
 - Pisa group (De Rossi, Ahluwalia and Rocchia) are working on placing neurotransmitters in conductive polymers, and releasing them using voltage pulses
 - Stanford Opthalmology (Fishman and Blumenkranz) are developing a microfluidic neurotransmitter delivery device.
Neurotransmitters in conductive polymers

- Ions can be embedded in conductive polymers (CP)
- They can be released by applying a voltage to the CP
- Cover some electrodes in an MEA with CP, with neurotransmitter ions
 - glu, glycine, GABA,...
- Apply voltages to release neurotransmitter

- If neurotransmitter release is controllable, have a stimulation technique which is
 - local
 - excitatory or inhibitory, depending on ion embedded

Micro-fluidic neurotransmitter delivery

- Developed in context of retinal stimulation
- Micro-aperture can release chosen neurotransmitter
- Excitatory or inhibitory

- Can the delivery of the neurotransmitter be made sufficiently localised?
Picking out the signals that matter: spikes

Neurons communicate using spikes
• Field potentials (from electrodes) need to be converted to spike times
 - yet each electrode may collect signals from multiple spiking neurons
 - and spikes may overlap
• Spike sorting may use
 - simple or multiple thresholding
 - characteristic spike shapes found using
 • PCA
 • Wavelet based transforms (NMT)
• Generally off-line
 - signal is analysed and characteristic spike shapes found
 - signal is returned into spike times using these shapes
• ... but some applications may require real-time response
 - simpler techniques or dedicated hardware

Picking out the signals that matter: sub-threshold

• Much processing takes place on the dendrites of neurons
• Not spiking, but linear and non-linear interactions on the dendrite itself
• Detectable either by
 - impaling dendrite on a micro-electrode or
 - patch clamping dendrite
• Both are difficult, and often incompatible with neural longevity.
Applications 1: Neuropharmacology

- Examining the effect of different chemicals on a culture can allow assay of neuropharmacological preparations without using live animals.
- Requires only that we can stimulate and record over a reasonable time period.
- One of the major reasons for industrial interest in MEAs and cell cultures.

Understanding neuronal communication

- Stimulating and recording alone are not enough for higher-level applications.
 - prosthetics, hybrid neuronal/computing machines.
- Need to understand what is being transmitted between neurons.
- This has been a major aim of neurophysiologists for decades!
 - Can in vitro systems help?
- Unlike real neural systems,
 - we can control the stimuli.
 - we can record for longer.
 - we can record simultaneously from more sites.
- How can we go about this task?
• Steve Potter’s system: (SAB 2002)

Closing the loop: semantics

• How can we provide stimuli which deliver the information we want the neural culture to use?
• How can we interpret the spike trains produced by a neural culture?

• We need to associate a semantics with the state of the neurons in the culture
 - or at least with those whose state we are measuring

• The semantics of an electronic system are implicit in its design
 - usually. One exception is genetic algorithm generated designs.
Inventing a semantics

• One possibility is to directly associate measurable states with particular outputs.
 - Like turn left, or go straight ahead, etc.

• Straightforward for a single neuron

• For multiple neurons, real system states are very complex

• We need to reduce the dimensionality of the signals in order to interpret them.
 - So we can use (e.g.) Kohonen Self-organised mapping to map the high dimensional space of measured states into a small number of clusters.

• Note that the final coding depends on the input to the network
 - hard not to imply decisions about the coding being used by the network
Coding possibilities.

- **Windowed full state**
 - For each neuron, create a vector V, v is 0 or 1 (1=spike) T_s is sampling rate, and j indexes the neurons

 \[V_j(t) = (v_j^1, \ldots, v_j^{t/T_s}) \]

 \[V_j^K(t) = (v_j^{(t/T_s-K)}, \ldots, v_j^{t/T_s}) \]

 \[M_{j,k}(t) = [V_j^K(t)] \]

- Window this vector, so that only some of the recent past is used
- Use the matrix M to train the Kohonen net
- Problem: very high dimensional input space:
 - dimension = $N \times K$ (no of neurons * window length)
 - also precise training data depends on T_s
- Alternative 1: use

\[V_j^K(t) = \sum_{i=t/T_s-K}^{t/T_s} v_j^i \]

Lower dimensionality (N) essentially spike rate in $K*T_s$ interval

Adaptation

- We expect the input-output characteristic of the system to alter
 - due to synaptic modification, in the light of the inputs the system receives, and the outputs it produces
 - could one keep the Kohonen network plastic, but with a reduced weight change rate

- If we invent a semantics, then use feedback from the controlled system to the culture, will it learn this semantics?
 - (learn, in that it will control appropriate behaviour in the target system)

 - Will it learn an arbitrary semantics, or do we need to choose a suitable one first?
Ethical and cultural issues

• Using long-lived neural cultures can have ethical implications.
 - Do cultured neurons have animal rights?

• Different cultures have different views of what to do with this sort of technology

• Pharmacological and medical applications aside,
 - USA: cyborg soldier
 - Europe: assistive technologies for the aged and disabled
 - Hybrid animal/machines systems for (otherwise) uninhabitable ecologies?

• The possibilities of replacing or augmenting sensory systems pose major ethical challenges
 - artificial/implanted retinas
 - artificial/implanted cochleae and brainstem implants
 - new/novel senses
 - when and on whom should they be used?

In conclusion

• There are many difficulties in interfacing neurons and electronics
• There are a number of competing techniques for achieving this
• Each has advantages and disadvantages:
 - electrodes: SNR, stimulation
 - Neural FET: stimulation, precise mode of operation
 - patch clamp: stimulation, workability over long periods
 - ...and the issue is not resolved: new advances change the balance

• The question of interpreting neural outputs, and coding neural inputs is not settled
 - and the techniques used often make assumptions about the neural coding

• and lastly: there are ethical implications which we are just starting to discuss.