Onsets, autocorrelation functions and spikes for direction based source separation

Leslie Smith and Dagmar Fraser
Department of Computing Science and Mathematics, University of Stirling, Stirling, UK. Email: {lss, dsf}@cs.stir.ac.uk
With thanks also to Steve Collins, University of Oxford

We acknowledge the support of the UK EPSRC for funding

Overview

• Pre-processing
• Onset finding
• Cross-correlation estimation of ITD
• Onset-based estimation of ITD
• Results and comparison
Setup

Initial processing

- Each microphone signal is passed through a filterbank. Phase locked signals are generated by generating a pulse on positive-going zero crossings.
- Multiple spike trains per channel are generated. Coding of dynamic range is by predicating spike generation on the pre-spike signal level.
AN-like signals

Signal

AN-like spikes are converged on to leaky integrate-and-fire neurons through depressing spikes. These are clustered across time and frequency band to detect the intervals during which onsets occur.
The onsets

- Are detected channel by channel
 - Selectivity depends on number and sharpness of filterbank channels
- Are detected with minimal latency
 - Uses a fast depressing synapse and leaky integrate-and-fire neuron (see IEEE TNNS November 2004)
- Are detected over a wide dynamic range
 - Due to the use of multiple sensitivity AN-like spike trains
 - And clustering them provides an indication of the duration of the onset itself

Calculating ITDs during onsets

- Two techniques
 1. Cross-correlations: channel by channel during onset interval
 2. Use spikes to find signal ITD directly
Cross-correlation ITD estimation

Find peak of each channel’s x-correlation then histogram peaks with possible ITDs, and select largest bucket.

Spike based ITD estimation

- Which spikes to use?
 - Onset spikes from onset interval estimation
 - AN-like signals are converged to give reliable onset detection
 - But this reduces time accuracy because of different delays in different bands
 - Once we have converged the AN signals we cannot adjust for these differential delays.
 - Original AN-like spikes?
Calculating the ITDs using AN-like spikes

ITDs can be calculated from the AN pulses at times determined from the onsets intervals detected.

Why this might not be the best way (1)

- Need to keep AN pulse times
 - (and there’s a lot of them)
- Each sensitivity and each channel has multiple AN zero-crossing times during an onset interval
 - Difficult to interpret for ITD when bandpass filter period $<$ 2* ITD
Why this might not be the best way (2)

- There’s a considerable amount of intensity difference between the signals.
 - particularly from head/ear based microphones but also from microphones on a panel due to different source distances, variation in microphone responses
- Need to combine AN-like pulses from different sensitivities
 - Have tried this! (ASA 2002, Pittsburgh, 2003, Nashville!)
 - Difficult to get much accuracy

New technique: use two sets of onset spikes

- First set of onset spikes is as before
 - Used to robustly find the onset intervals
- Second set has no convergence of AN-like signals
 - Maintains the accuracy of the timing
Advantages of 2-onset technique

- There are (far) fewer onsets than AN-like spikes
 - Easier to keep
 - Can use onset spikes from channels where period < 2 * ITD because of sparseness of spikes
 - Can easily estimate ITDs from onsets from different sensitivity levels.

Converged and unconverged onsets (1)

Air-separated microphones, pink noise from 30 degrees. Different colours come from different sensitivity levels.
Converged and unconverged onsets (2)

Converged onsets Non-converged onsets
Panel separated microphones, pink noise from 30 degrees
ASA 2005 Vancouver

Converged and unconverged onsets (3)

Converged onsets Non-converged onsets
Head separated microphones, pink noise from 30 degrees
ASA 2005 Vancouver
Extracting the ITD from the spikes

• We use the peak of a simple histogram to make an estimate of the ITD
 – Project times onto Y (ITD) axis in (e.g.) 50 µsecond buckets.
 – Estimate ITD as centre of bucket with largest number of ITDs
• We can attempt to optimise this using
 \[
 \text{ITD}_{\text{estimate}2} = \text{ITD}_{\text{estimate}1} \pm N \times 1/f_c
 \]
 to improve the estimate
 – But this may be trickier than it looks

Example

Pale blue dot shows original estimate (bucket size=50 µS).

Dark blue dots show final estimate for each channel using a simple one-jump gradient descent technique which minimises the sum squared error of (1) while choosing N.

Pink dot is mean of final channel estimates, line is standard deviation.
ITD estimate from 2-onset technique

Applying to speech sounds

1 second of speech, straight ahead. Left shows all ITDs used at Onset times, right shows only ITDs at peak intensities.
What’s wrong

- The results are disappointing, compared with the results for the pink noise
- Problem: estimating f_c and N in equation 1.
 - Setting f_c to centre of band is ok if energy is equally distributed
 - As in noise
 - Or if signal peaks near f_c
 - Neither is true of speech
- May be better to stick with original estimate!

Results from original estimate

30dBSNR 15dBSNR
Speech with 1Khz tone in background. Speech is at 0 degrees, Noise is at 30 degrees

ASA 2005 Vancouver
Results from original estimate cont’d

- **9dBSNR**
 - Speech with 1KHz tone in background
 - ASA 2005 Vancouver

- **0dBSNR**
 - Speech with pink noise in background
 - ASA 2005 Vancouver

Results from original estimate cont’d

- **15dB SNR**
 - Speech with pink noise in background
 - ASA 2005 Vancouver

- **9dBSNR**
 - Speech with pink noise in background
 - ASA 2005 Vancouver
Results from original estimate cont’d

Speech with pink noise in background

ASA 2005 Vancouver

- **6dB SNR**
- **0dB SNR**

Comparing cross-correlation and spike based ITD estimation: head (ear) mounted microphones

- Sound is short pink noise pulse
- Red circle is cross-correlation ITD estimate,
- Blue circle is 1st estimate for onset based ITD calculation, blue cross and line is the adjusted estimate

ASA 2005 Vancouver
Comparing cross-correlation and spike based ITD estimation: panel mounted microphones

- Sound is short pink noise pulse
- Red circle is cross-correlation ITD estimate,
- Blue circle is 1st estimate for onset based ITD calculation, blue cross and line is the adjusted estimate

Comparison cont’d: speech in sine wave noise.

30 dB SNR 12 dB SNR

Speech (0 degrees) with 1Khz background noise (30 degrees) Microphones panel mounted
Comparison cont’d: speech in sine wave noise.

0 dB SNR
-3 dB SNR
Speech (0 degrees) with 1Khz background noise (30 degrees)
ASA 2005 Vancouver

Comparison cont’d: speech in pink noise.

15dB SNR
9dB SNR
Speech (0 degrees) with pink noise at 30 degrees
ASA 2005 Vancouver
Comparison cont’d: speech in pink noise.

Speech (0 degrees) with pink noise at 30 degrees

ASA 2005 Vancouver
Discussion (1)

Which method of ITD estimation is better?
- Cross-correlation uses the “whole” signal, but the onset system uses just the zero-crossing
 - But for many sounds there is virtually no difference.
- Both are relatively accurate, compared to non-onset based methods when there is more than one sound source
 - Cross-correlation seems marginally better in high noise levels: but difference is very small.
- Onset based technique may be less computationally intensive: but this depends on the implementation technology.
 - Refinement of the histogram-based estimate seems not to help

Discussion (2)

What are the sources of error?
- Initial sound quantisation (96 KS/sec)
 - About 10 μseconds
- Histogramming quantisation (50 μsecond buckets)
- Effect of IID on bandpassed signal
 - Large signals in adjacent bands which are of different sizes at each microphone affect bandpassed signal phase, moving of the zero-crossing time
- Onsets from different sources which occur at almost the same time will interfere with each other
 - We rely on actual onsets being sparse.
Discussion (3)

• Ways forward
 – How to join onsets across time?
 • By location? But people can separate speech/music from a mono radio
 • By the signal characteristic at onset? E.g. by estimating vocal tract length for speech, or the characteristic of the attack for musical instruments
 – Can we use the characteristics of the onset of the signal to help identify phonemes?
 • See poster 4ASCx
 – How about resynthesising sounds/speech just from the onsets?
 • Working on this!

End of talk

• Thank you for your attention.