Biologically inspired robust onset detection

Leslie Smith, Department of Computing Science and mathematics, University of Stirling, Stirling FK9 4LA, Scotland, UK
lsslss@cs.stir.ac.uk

- Why onsets
 - and robust against what?
- How to detect onsets robustly

Why onsets?

- All sound sources start up
 - and often contain internal onsets as well
- Useful grouping cue
 - most sounds are wide-band
 - the energy in different parts of the spectrum generally starts at the same time
 - so onsets that occur at about the same time in different parts of the spectrum can be used to group sound sources together
- coincident onsets are like coincident collinear edge segments
- First sound arrival is from direct path
 - so sound energy at onset arrives direct from sound source
 - usable for source direction finding (both ITD and IID)
- Robust onset detection provides an ecologically useful cue for source grouping and direction finding.

Robustness and onsets

- Detecting a signal onset from a zero base is straightforward
 - but noise can add false onsets
- However:
 - there is normally a noise level from which the signal rises
 - particularly when there are concurrent sound sources
 - direct path onsets are often followed by reflection mediated increases in level
- A robust onset detector would
 - find onsets in noise, and
 - not be confused by reflections

Onset detection techniques

- Simple “first difference techniques”
 - often used in music research
 - Bilmes 93, Goto 95, Schreier 96
- Optimal filter techniques
 - extension (improvement) to first difference
 - Smith 96, Tai 97, Majoli 2001
- Expectation based techniques
 - different extension to first difference
 - Huang et al 97
Problems:
- what exactly constitutes an onset?
 - we know what we mean psychophysically, hard to define in a signal processing sense
- real onsets are very variable in form
- can be short (1-2ms) or longer (up to 50ms)
Biologically inspired techniques

- The early auditory system is sensitive to onsets
 - AN type 1 fibers
 - CN onset cells (of various forms)
- Precedence effect and our sensitivity to onsets illustrates robust capability
- What underlies this?
 - wide dynamic range of the middle ear/inner ear/auditory nerve system
 - spectrum based filtering, allowing onsets in one part of the spectrum not to be swamped
 - characteristics of the neurons of the CN
 - e.g. non-constant leakiness
 - aspects of cell morphology
- We model the wide dynamic range, the filtering, and the high (but not non-constant) leakiness

Modelling the wide dynamic range

- Each side input starts with a transducer (microphone)
- followed by a gammatone filterbank
 - multichannel, cochlea-like response (static)
- followed by spike generation
 - on positive-going zero-crossings
 - geometric range of sensitivities
 - spike generation predicated on pre-zero-crossing level
 - levels increase geometrically
- result is AN-like representation of sound signal
 - with a form of log compression
 - similar to Ghitza 1986

Although signal is 'log-compressed', representation is made up from sequences of spikes (horizontal lines), which can be processed independently.
Detecting onsets from these AN signals (1)

First attempt: 1 onset cell per "AN" signal

Spike coded AN signal
Leaky I+F Neuron
Depressing excitatory synapse
Onset spikes

Generates multiple onset signals, in phase with AN signal, low latency, but rather sensitive to noise.

Detecting onsets from these AN signals (2)

Second attempt: 1 onset cell per band-passed channel

Spike coded AN signals, multiple sensitivities, all from one band-passed channel
Leaky I+F Neuron
Depressing excitatory synapses
Onset spikes

Generates a single onset signal, except at low frequencies, where multiple onsets are sometimes generated. Tends to miss onsets that start from a medium level.

Onsets generated this way

1 onset cell/AN
1 onset cell/band
left

right

1 onset cell/AN
1 onset cell/band

Detecting onsets from these AN signals (3)

Spike coded AN signals, multiple sensitivities, all from one band-passed channel
Leaky I+F Neuron
Depressing excitatory synapses
Shunting synapse
Facilitating inhibitory synapses
Onset spikes

Generates a single onset signal even at low frequencies. Still tends to miss onsets that start from a medium level. Complicated as well. Precise time constants in shunting synapse matter.
Detecting onsets from these AN signals (4)

Spike coded AN signals, single sensitivity, from a number of adjacent band-passed channels (spread = 2 here)

Leaky I+F Neuron

Depressing excitatory synapses

Generates onset spikes for each band, and for each sensitivity level. Picks up onsets even though they start from a medium level.

Onsets generated (type 4)

Noisy signals

Speech signal plus white noise.

SNR approx 0dB overall

Onsets: 1st, 2nd technique

1 onset cell/AN

1 onset cell/band

1 onset cell/band
Onsets, 4th technique

Level

150-7500Hz, 15 sensitivities, 3dB apart, spread = 2

...and again (different parameters)

Band

200-5000Hz, 8 sensitivities, 6dB apart, spread = 6.

Synthesised sounds: ‘AN’ signal

5 harmonics of 150 Hz (3-7) plus bandlimited white noise (4kHz), SNR 0dB.

Onset signal

SNR 0dB.
AN with noise 10dB lower

5 harmonics of 150Hz (3-7), plus band-limited white noise (4kHz) shelf 10dB

Onsets found

Direction finding: ITD, little noise

Direction finding: ITD in noise
Conclusions

- We have developed a biologically-inspired onset detection technique which is
 - able to deal with wide dynamic range
 - able to cope with onsets starting from a non-zero level
- This has been used to cluster onsets
 - and hence to find the directions of concurrent sound sources

Issues: on onsets
- Would probabilistic AN spike generation widen the dynamic range?
- Would incorporating inhibition into type 4 onset detection assist?
- Need to characterise the precise capabilities of this technique fully.

On onset-feature based streaming
- How to string grouped features together over time
 - use direction of sound!
 - use characteristics of the features themselves: level, signal energy structure, post-onset envelope