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Abstract. A Hopfield Neural Network (HNN) with a new weight update rule
can be treated as a second order Estimation of Distribution Algorithm (EDA)
or Fitness Function Model (FFM) for solving optimisation problems. The HNN
models promising solutions and has a capacity for storing a certain number of
local optima as low energy attractors. Solutions are generated by sampling the
patterns stored in the attractors. The number of attractors a network can store (its
capacity) has an impact on solution diversity and, consequently solution quality.
This paper introduces two new HNN learning rules and presents the Hopfield
EDA (HEDA), which learns weight values from samples of the fitness function. It
investigates the attractor storage capacity of the HEDA and shows it to be equal to
that known in the literature for a standard HNN. The relationship between HEDA
capacity and linkage order is also investigated.

1 Introduction

A certain class of optimisation problem may be solved (or an attempt at solving
may be made) using metaheuristics. Such problems generally have the following
qualities: the search is for an optimal (or near optimal) pattern of values over
a number (often many) of random variables; any candidate solution, which is
an instantiation of each of those variables, has an associated score, which is its
quality as a solution; a fitness function exists that takes a candidate solution and
produces a score. The function (or algorithm) for calculating the score may be
evaluated for any input vector, but may not be inverted to produce an input vector
that would maximise the score. For this reason, the process of optimisation may
be viewed as a directed search. Metaheuristics are methods for making use of the
score returned by the fitness function to speed the search for good solutions when
an exhaustive search would not be practical.

Most metaheuristic algorithms maintain a memory of some kind that reflects the
input patterns previously chosen and the scores they received. In general such
algorithms proceed by generating one or more new candidate solutions based on
their memory of previous trials. Each new solution is then given a score using the
fitness function and the memory is updated. The new memory is then used to pro-
duce new (hopefully improved) solutions and the process continues until some
stopping criterion is met. One simple way to divide metaheuristic algorithms is
between those that develop an explicit model and those that maintain a population
of ‘good’ solutions in place of a model. Perhaps the best known population based
method is the Genetic Algorithm (GA) [1]. A GA maintains a population of good
solutions and uses them to produce new solutions that are combinations of two



(sometimes more) existing solutions. Combination is performed by picking val-
ues for each variable from one or other parent to instantiate the variables in a new
child solution. Better solutions have a higher probability of producing offspring
than poorer ones and some offspring may be altered slightly (a process called mu-
tation) to extend the search space. In a GA the population and the recombination
process are the memory and the generative process respectively.

An alternative to maintaining a population of solutions is to build a model of some
aspect of the fitness function and use that to guide the search. One well studied
method is to model the probability of each variable taking each of its possible
values in a good solution. As the model evolves, new candidate solutions are
drawn from the model’s distribution, which in turn cause the model to be updated.
This approach is known as an Estimation of Distribution Algorithm (EDA) and is
described in more detail in section 2.

A problem that many metaheuristic algorithms face (GAs and EDAs included)
is that of local optima. Local optima are globally sub-optimal points that are op-
timal in a local neighbourhood. That is, points from which a small change in
the variables’ values will not lead to an improvement in score. In terms of meta-
heuristic algorithms local optima are points from which the chosen algorithm
will not move, even when there are better scoring solutions in other parts of the
search space. For example, a population in a GA may reach a state where neither
recombination nor any small mutation will produce a sufficient improvement to
generate a candidate solution that is better than any in the existing population.
When sampling from an EDA, a local optimum is a solution that has a high prob-
ability of being sampled, but which is not the best solution. An EDA can contain
two types of local optima. Firstly, if none of the patterns that it produces are the
true global optimum, then they are all local optima. Secondly, an EDA can con-
tain many local optima — all of the high probability patterns — and one of those
will score more than the others, making those others local optima compared to the
model’s own global optimum. In a perfect model, the EDA’s global optimum will
be the global optimum of the problem being tackled. In less than perfect models,
it may well be a local optimum itself.

The number of local optima a fitness function contains is one measure of the
difficulty of finding the global optimum. Another related measure is the size of the
field of attraction around each optima. The field of attraction for an optimum is the
sub-space of points from which an algorithm will make a series of steps leading
to that optimum. For a simple hill climbing algorithm, the field of attraction for
a local optimum, x is the set of points from which a hill climb will lead to x.
So called deceptive functions are those in which the fields of attraction of local
optima are large and that for the global optimum is small [2].

A fundamental aspect of GA research considers the role played by subsets of the
variables being optimised. These subsets are often called building blocks [1] or
analysed as schemata [3]. For example, in a vector X = X ... x,, it may be that
variables x,, x3 and x4 all interact in a non-linear fashion and that the effect of
changing the value of any one of them can only be understood in terms of the
values of the other two. This interdependency between variable subsets and the
fitness function output is known as the linkage problem [4] or, sometimes in the
GA literature, epistasis [5]. The number of variables in a building block is known
as its order and we can talk about a problem being of order m if the order of its
highest meaningful building block is m. This introduces the question of how to
discover the linkage order of a function.



One way in which researchers have addressed the question of linkage order is
with the use of Walsh functions [6], [7]. These are described in detail in section
3 and summarised here. The Walsh functions form a basis for functions over
f :{0,1}* — R. Any such function can be decomposed into a weighted sum
of Walsh functions. The Walsh functions that contribute to the weighted sum are
of differing orders, defined by the number of bits they contain that are set to 1.
The process of performing a Walsh decomposition of a function produces the
weights (known as the Walsh coefficients) associated with each Walsh function
and many have values of zero. Consequently, the order of the functions with non-
zero coefficients tells us about the order of interactions in the function.

These two measures of problem difficulty — fields of attraction to local optima
and linkage order — are related. This paper addresses the relationship between
local optima attractors and linkage order for a particular type of EDA imple-
mented using a Hopfield Neural Network (HNN). The HNN is described in detail
in section 4. It can be understood variously as a neural network using an adjusted
Hebbian learning rule and McCulloch-Pitts neurons, or as a Markov random field
or as a second order EDA. It is well known [8] that HNN’s have a certain capacity
for storing patterns in memory and this capacity holds for the number of local op-
tima a network can learn. The important point to note is that in the standard HNN,
only second order linkages are learned. It is not the case, however, that the HNN
can only find all the attractors in problems of order 2 or below. We show that a
HNN can discover the local optima of functions with higher order linkages, up
to some capacity, and investigate the relationship between linkage order, network
capacity and local optima count.

The main contributions of this paper are the adaptation of a Hopfield network to
learn functions with real valued outputs and an analysis of the number of local
optima such networks can represent at one time. An algorithm for improving
the capacity of a Hopfield network is also adapted and its capacity analysed.
Several functions are analysed in terms of their linkage order and the number
of local attractors they contain. These results are then related to the capacity of
Hopfield networks and their ability to capture the local optima in higher order
functions. The paper suggests a parallel between the number of attractor states
in the network and population diversity in a GA. This should be of interest to
researchers developing multi-variate EDAs as it highlights the need to manage
the attractors of an EDA and demonstrates how all attractors in a model degrade
once capacity is exceeded. The main focus of the paper is on the second of these
contributions—the analysis of attractor capacity. An analysis of the ability of the
method to improve optimisation requires the study of algorithms for evolving
models and solutions and a large number of experiments, which are all the focus
of a future paper.

The paper is organised as follows. Sections 2, 3 and 4 introduce EDAs, Walsh
functions and Hopfield networks respectively. Sections 5 and 6 describe a Hop-
field EDA (HEDA) and presents two learning rules: one based on a standard Heb-
bian update and one designed to improve network capacity. Section 7 describes
a set of experiments and an analysis of network size, capacity and the time taken
during learning. Section 8 analyses the weights of a HEDA and section 9 offers
some conclusions and discusses future work.



1.1 Scope

The functions discussed in this paper are real valued functions of binary vectors,
that is:

f-L1" >R (1)

A single candidate solution is a point in n-dimensional binary space defined by a
vector ¢ of elements c¢; that can take binary values:

c=cCp,...,Cp cie{-1,1} 2)

The function f(c) that guides the search is known as the fitness function.

2 Estimation of Distribution Algorithms

A common class of model based optimisation methods are the Estimation of Dis-
tribution Algorithms (EDAs). Rather than maintain individual searches, an EDA
attempts to model the probability of a value or sub-pattern appearing in a high
scoring candidate solution. Reasons for building a fitness model include the ad-
vantages gained from being able to analyse the model to better understand the
problem to be optimised [9] and the improved speed of estimating fitness func-
tion output rather than making a time consuming calculation for every required
evaluation.

The simplest EDA models the marginal probability of each variable taking each
of its possible values in the optimal solution. Population Based Incremental Learn-
ing (PBIL) [10] is an example of such a method. PBIL works by sampling from
the set of possible solutions and maintaining a marginal probability distribution
for each variable. PBIL is a population based search as the probabilities are up-
dated based on the best scoring members of each generation of the population.
Subsequent populations are generated based on the probabilities in the distribu-
tion. PBIL makes use of a learning rate to smooth the evolution of the proba-
bilities. For solving problems with binary valued variables, PBIL’s update rule
is:

Plpi=1) <« (A -a)P(pi=1)+ap(pi=1) 3

where « indicates assignment, P(p; = 1) is the probability that p; = 1 in the
model, and p(p; = 1) is the probability that p; = 1 amongst the best of the current
population. « is the learning rate.

PBIL is a first order method as it models each variable independently. It will
solve first order problems as they have no local optima to trap it. For higher
order problems, it may find the global optimum or it may become trapped in a
local optimum. The evolutionary aspect of PBIL ensures that it converges on an
optimum of some kind (local or global). Other univariate algorithms include the
compact Genetic Algorithm (cGA) [11] and the Univariate Marginal Distribution
Algorithm (UMDA) [12].

Early attempts at capturing second order interactions included the Mutual Infor-
mation Maximising Input Clustering algorithm (MIMIC) [13]. This algorithm
imposes an ordering on the variables and links them in a chain so that each vari-
able (except the last in the chain) is linked to exactly one other. The ordering is



discovered using a greedy algorithm (a full search for the correct ordering is NP-
complete), and so is not guaranteed to find the optimal chain. Another pairwise
method is the Bivariate Marginal Distribution Algorithm (BMDA) [14], which
models second order linkage in a forest (a set of independent dependency trees).
Higher order interactions are learned by the Bayesian Optimisation Algorithm
(BOA) [15], which builds a Bayesian network to attempt to capture the joint
distribution of values in a population of promising solutions. Again, building a
correct Bayesian network is an NP-complete problem, so heuristics are needed
to build the network in sensible time. More recently, the Distribution Estimation
Using Markov networks (DEUM) algorithm [16] has modelled second and higher
order interactions using Markov random fields. DEUM models conditional prob-
abilities and generates new samples using Gibbs sampling.

Most EDA approaches consist of a method for representing the distribution and
a method for evolving a solution. The evolution of a solution generally follows a
pattern of generating a population of candidate solutions from the current model,
updating the model based on the quality of those candidates by either learning
only the most fit or by learning them all with a weight that depends on the fitness
score. The process is then repeated until the algorithm finds a good solution or
converges. There are a number of choices to be made when designing the evo-
lutionary algorithm: whether to learn a subset of the population or use the score
of every member; the size of each generation, which effects the accuracy of the
model; whether to start a new model at each generation or to add to the existing
one; and what schedule, learning rate or forgetting factor to use if a model persists
from generation to generation. These factors greatly affect the quality of an EDA
optimisation algorithm, but they are not the subject of this paper, which demon-
strates how a second order EDA can be built from a HNN and then makes use of
the fact that much is understood of the capacity and function of such networks.
These methods all share a common feature: they do not attempt to model the
distribution of values in all good solutions, just a small number of them. In the
case of the univariate methods, it should be clear that the number of solutions the
distribution can model is just one: the pattern produced by picking the value with
the highest probability from each variable. In multivariate models, the number of
different promising patterns that can be stored at any one time is greater than one.
This paper investigates this capacity for bivariate models.

3 Walsh Functions

Walsh functions [17] form a basis for functions of binary vectors. Any function
f :{0,1}" — R can be represented as a weighted sum of Walsh functions. The
contribution of each Walsh function to the sum is determined by its Walsh coeffi-
cient.

3.1 Generating the Walsh Functions

To decompose a function of n variables, Walsh functions of length 2" are used,
denoted y; where j = 0...2"—1. There are 2" such functions, each represented by
a string of 2" bits: ¢;(c) where ¢ = 0...2" — 1. ¢;(c) is the c" bit in the j™ Walsh
function. They are calculated in a bit wise fashion from the binary representation
of their indices, ¢ and j. Note the slight abuse of notation: j is an integer index, j



Fig. 1. A pictorial representation of the third order Walsh functions with black
squares representing 1 and white squares -1.

is the binary representation of j and j; is the i bit of j, counting from the right.
For example, j = 3, j = 011, j3 = 0. The same applies to c. To calculate ¥;(c),
first re-code the binary representation of ¢ so that 1 becomes -1 and 0 becomes
1. This slightly counter-intuitive re-coding allows multiplication to perform the
XOR function. This can be done bitwise using:

yi e —Qci— 1) )
Then use the recoded vector y and the binary representation of j to calculate each
bit y/;() as

i) =[ [ 5)
i=1

where j; € {0, 1} so y{’ = y; when j; = 1 and y-[” = 1 when j; = 0. The binary
word j acts as a mask to determine which values y; € {1, 1} are included in the
product. Figure 1 shows a pictorial representation of the order 3 Walsh functions.

3.2 Calculating the Walsh Coefficients

The Walsh transform of an n-bit function produces 2" Walsh coefficients, w;
where j = 0...2" — 1. Each coefficient is calculated as follows:

-1

1
w; = 5 > F©U() (©)
c=0

where f(c) is the real valued output of the fitness function when the input vari-
ables are instantiated with the values from the binary representation of c. Note
that for f : {—1, 1}", each O in the binary word must first be converted to -1.

3.3 Stating the Fitness Function as a Walsh Function
The function f(c) can now be restated as a Walsh sum:
2/1

fl© = 0o (7)
j=0

where c is the integer represented by the binary word ¢, with the same allowance
for converting 0 « —1 if required when converting from c to the bit index c.



Coefficient |Index|Order
wy=0.5 000 |0
w; = —0.167/001 |1
w, =0.167 010 |1
wy = —0.167[100 |1
w3 =0 o011 2
ws=0 101 |2
we =0 110 |2
w;=0 111 |3
Table 1. Walsh Coeflicients and linkage order for f(c) = 1 — Hamming(c, 101)

3.4 Analysis of Walsh Coefficients

We can now directly introduce the concept of linkage order with respect to Walsh
functions. A Walsh decomposition of an n-bit function leads to 2" Walsh coef-
ficients, w;(i = 0...2" — 1). The index i determines how the coefficient w; is
calculated (see equation 6). It also determines the linkage order of the coefficient.
Let the binary equivalent of the index i of w; be i, which acts as a mask, selecting
bit positions where there is a 1 in i. Counting the number of 1s in i tells you the
linkage order of w;. For example, wy is of zero order and w3 (011) is second order.
Consider the full results of a Walsh analysis of a first order binary problem over
three bits where the target pattern is 101 and the fitness function is an inverse
Hamming distance such that f(101) = 1 and f(010) = 0. The first order coeffi-
cients, w;, w, and wy all have none-zero values and the higher order coefficients
are all zero.

Table 1 shows how to extract the first order optimum from the Walsh coefficients
directly. The location of the 1 bit in the first order index, i of w; corresponds to
the location in the optimum whose value is determined by w;. If w; is positive,
the optimum contains a zero at that location and if it is negative, the optimum
contains a 1. Looking at table 1, we see that w; is negative, w, is positive and wy
is negative, so the optimum must be at 101.

A full Walsh decomposition requires 2" function evaluations and so is not a prac-
tical method for solving large optimisation problems. It is, however, a useful tool
for understanding concepts of linkage on small, toy problems.

4 Hopfield Networks

Hopfield networks [18] are able to store patterns as point attractors in n dimen-
sional binary space and recall them in response to partial or degraded versions of
stored patterns. For this reason, they are known as content addressable memories
where each memory is a point attractor for nearby, similar patterns. Tradition-
ally, known patterns are loaded directly into the network (see the learning rule
10 below), but in this paper we investigate the use of a Hopfield network to dis-
cover point attractors by sampling from a fitness function. A Hopfield network is
a neural network consisting of n simple connected processing units. The values
the units take are represented by a vector, u:

U= Uy,...,Up—1 u; € {—-1,1} (8)



The processing units are connected by weighted connections:

W= [Wij] )
where w;; is the strength of the connection from unit i to unit j. Units are not con-
nected to themselves, i.e. w; = 0 and connections are symmetrical, i.e. w;; = wj;.
The values of the weighted connections define the point attractors and learning in
a standard Hopfield network takes place by setting the pattern to be learned using
formula 11 and applying the Hebbian weight update rule:

Wij<—W,'j+l/tiMj vl?ﬁj (10)
A single pattern, c is set by

Vi U < C; (1 1)
Pattern recall is performed by allowing the network to settle to an attractor state
determined by the values of its weights. The unit update rule during settling is

n—1
a; (_ijiuj (12)
Jj=0

where a; is a temporary activation value, following which the unit’s value is
capped by a threshold, 6, such that:

1 ifa;, >0
"= {—l otherwise (a3)

In this paper, we will always use 6 = 0. The process of settling repeatedly uses the
unit update rule of formulae 12 and 13 for a randomly selected unit in the network
until no update produces a change in unit values. At that point, the network is said
to have settled. The symmetrical weights and zero self-connections mean that the
network is a Lyapunov function, which guarantees that the network will settle to
one of its fixed points from any starting point. With the above restrictions in place,
the network has an energy function that determines the set of possible stable states
into which it will settle. The energy function is defined as:

1
E= —Elzj:w,-juiu,- (14)

Settling the network, by formulae 12 and 13 produces a pattern corresponding
to a local minimum of E in equation 14. Hopfield networks have been used to
solve optimization tasks such as the travelling salesman problem [19] but weights
are set by an analysis of the problem rather than by learning. Other examples of
hand built Hopfield optimisers include [20], in which the authors comment on the
lack of a method for finding the right set of weights for an arbitrary optimisation
problem. In the next section, we show how random patterns and a fitness function
can be used to train a Hopfield network as a search technique.

5 Hopfield EDAs

We define a Hopfield EDA (HEDA) as an EDA implemented by means of a Hop-
field neural network. This section describes the training and use of a HEDA.
Figure 2 shows a four neuron HEDA with the units labelled u; and weights in one
direction labelled W ;.



Fig. 2. A four neuron HEDA with units »; and weights W; ;. Due to weight sym-
metry, only half the weights are shown as each W; ; = W;;.

5.1 Training a HEDA

In this section we describe a method for training a HEDA. The principles ap-
ply equally to HEDAs of higher order. During learning, candidate solutions are
generated randomly one at a time. Each candidate solution is evaluated using the
fitness function and the result is used as a learning rate in the Hebbian weight
update rule (see update rule 15). Consequently, each pattern is learned with a
different strength, which reflects its quality as a solution.

5.2 The New Weight Update Rule

Hopfield networks have a limited capacity for storing patterns. If a number of
patterns greater than this capacity are learned, patterns interfere with each other
producing spurious states, which are a combination of more than one pattern.
To learn the point attractors of local optima without ever sampling those points,
we need to create spurious states that are a combination of lower points. We do
this by over-filling a Hopfield network with samples and introducing a strength
of learning so that higher scoring patterns contribute more to the new spurious
states. This yields a simple modification to the Hebbian rule:

wij «— wij + f(Quiu; i# (15)
where c is the candidate solution to be learned and f(c) is the output of the fitness
function given c. This has the effect of learning high scoring second order sub-
patterns more than lower scoring ones. Note that due to the symmetry of the
weight connections, each attractor has an associated inverse pattern that is also
an attractor. The means that both the pattern and its inverse may need to be scored
to tell the solutions apart from their inverse twins.

5.3 The Learning Algorithm

The simplest version of the learning algorithm simply builds the network from
samples of ¢ and f(c) and proceeds as follows:

1. Set up a Hopfield network with W;;=0 for all , j

2. Repeat the following until one or more stopping criteria are met



(a) Generate a random pattern, ¢, where each ¢; has an equal probability of
being set to 1 or -1

(b) Calculate f(c)

(c) Load c into the network’s neurons using formula 11

(d) Update the weight matrix W using the learning rule in formula 15

(e) Sample attractor states (local optima) from the network and keep the
best found

(f) Stop when a pattern of required quality has been found or when the
attractor states become stable or the network reaches capacity.

There are a great many improvements that can be made to this simple algorithm.
The sampling can be done in a number of different ways, for example. Rather than
sample after each single weight update, sampling could occur less frequently.
Also, the sampled ‘good’ solutions from local optima could be used to drive the
choice of new candidate solutions in a number of ways (as it does in an EDA).
A degree of forgetting could also be introduced, either by starting a new HEDA
with zeroed weights for each new set of candidate solutions, or by something less
drastic such as dividing the weights by a constant. These questions are outside
the scope of this paper, but may be informed by an understanding of the capacity
of the HEDA to store a number of local attractors. In particular step 2e will be
limited by the number of attractors the HEDA contains.

5.4 Sampling a HEDA Model

During the search process, new candidate solutions are generated by sampling
the HEDA. The sampling process may be carried out in a number of ways. This
paper is more concerned with network capacity than with the details of sampling
methods, but some concepts are outlined here. Local optima can be sampled by
picking a random pattern or a pattern from the current population if a population
based search is being used and loading it into the network using equation 11. The
network is then settled to a local optima by repeatedly applying the update rule
12 to neurons picked in random order until no neuron produces a change in its
output value over an exhaustive sweep of the network. Neurons can be treated
stochastically by replacing the activation function with a probability based calcu-
lation. This turns the HNN into a Boltzmann machine [21] and allows simulated
annealing to be used as the search technique.

6 A Learning Rule for Improving Capacity

Storkey [22] introduced a new learning rule for Hopfield networks that increased
the capacity of a network compared to using the Hebbian rule. The new weight
update rule is:
1 1 1
Wij (_Wij+ ;u,-uj— ;M,‘hﬁ— ;ul,-hij (16)
where

hij < ) way (17)

k#i,j



The new terms, hj; and h;; have the effect of creating a local field around w;;
that reduces the lower order noise brought about by the interaction of different
attractors.

To use this learning rule in a HEDA, we make the following alterations to the
update rules:

1
Wij < Wij + ;(”iuj_uihji_”jhij)f(p) (18)
and
hij < ) wiin (19)
=y

where 8 < 1 is a discount parameter that controls how much damping is applied
to the learning rule and which keeps the weights at reasonable values.

7 Experimental Results

This paper investigates the effects of the number of local optima in a fitness func-
tion and the capacity of a HEDA to represent them, rather than the effectiveness
of the HEDA as an optimisation tool in its own right. The following experiments
reflect this focus.

7.1 Experimental Functions

We build functions with a fixed number of local attractors using a method based
on nearest Hamming distance. In this method, a number of target patterns are cho-
sen as the local optima and the function is evaluated by calculating the Hamming
distance to the closest of the set of target patterns. Consequently, the number of
local optima equals the number of target patterns. The set of target patterns are
denoted as the set T:

T={t,....t) (20)

We then define the fitness function as one minus the normalised Hamming dis-
tance between ¢ and each target pattern ¢; in T:

n

i
fley=1-> == @1

i=1 n

where 1;; is element i of target j and 6., is the Kronecker delta function between
pattern element 7 in ¢; and its equivalent in ¢. We take the score of a single pattern
to be the maximal score of all the members of the target set.

(e, T) = max;-,_s(f(c, 1)) (22)

This method of building the fitness function relates to existing research on HNN
capacity, which is often based on the capacity for storing random patterns.



7.2 HEDA Capacity Experiments

This section investigates the capacity of the HEDA, which is the number of dis-
tinct attractors it can model. As each attractor is a single local optimum, the ca-
pacity of the network determines the number of local optima a HEDA can rep-
resent at any one time. Depending on how the HEDA is being used, this has a
number of consequences. Most EDA approaches to optimisation try to model the
distribution of ‘promising solutions’. A local optima in the search space repre-
sents a single neighbourhood of promising solutions. Consequently, the ability to
model a number of different local optima requires the EDA to hold a number of
local attractors. A univariate EDA has a single attractor and multivariate EDAs
have higher capacities.

The literature on the capacity of a Hopfield network has generally concentrated on
the capacity for storing random patterns. A pattern is deemed to be successfully
stored in a Hopfield network if the pattern of activity corresponding to that pattern
is an attractor point in the network. This is tested by setting the chosen pattern
as a starting point using equation 11 and then settling the network using equation
12. If the network does not move away from the attractor point, then the pattern is
still in its memory. Other nearby points will also cause the network to settle to the
same attractor point, depending on the size of its basin of attraction. In terms of
storing random patterns, [8] states that the capacity of a HNN is n/(2 In n) where
n is the number of neurons in the network. This is the figure we will be using for
our analysis in this paper.

This set of experiments compares the capacity of a normally trained Hopfield
network with the search capacity of a HEDA. We will compare two learning
rules (Hebbian and Storkey). The experiments are repeated many times, all using
randomly generated target patterns where each element has an equal probability
of being +1 or -1.

7.3 Experiment 1: Hebbian HEDA Capacity

Experiment 1 compares Hebbian trained Hopfield networks with their equiva-
lent HEDA models. The aim is to discover whether or not the HEDA model can
achieve the capacity of the Hopfield network. Hopfield networks were trained on
patterns using standard Hebbian learning, with one pattern at a time being added
until the network’s capacity was exceeded. At this point, the learned patterns
were set to be the targets for the HEDA search using equations 21 and 22 and the
network’s weights were reset.

100 repeated trials were made training HEDA networks ranging in size from 10
to 100 units in steps of 5. For each trial, the capacity of the trained network, the
number of those patterns discovered by global searching and the time taken to
find them all (or give up short) were recorded.

Results Regardless of the capacity or size of the Hopfield network, the HEDA
search was always able to discover every pattern learned during the capacity fill-
ing stage of the test. From this, we conclude that the capacity of a HEDA for
storing local optima when searching for a set of random targets is the same as the
capacity of the equivalent Hopfield network.
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Fig. 3. The mean and inter-quartile range of the capacity of HEDA networks of
varying sizes and the theoretic capacity of similar HNNs (single line).

Figure 3 shows the relationship between HEDA network size and capacity. The
spread of capacity values is wide, varying with the level of interdependence be-
tween the random patterns. The chart shows the mean and the inter-quartile range
of capacity for each network size. The solid line shows the theoretical capacity of
HNNSs by size.

In these simple examples, no evolution takes place; the network is not used to
generate new populations. This paper is not concerned with algorithms to improve
search performance, it is concerned with memory capacity in EDAs (specifically
the HEDA). However, it is instructive to investigate the relationship between the
number of local optima a HEDA can store and the number of uniform random
samples required to model them. To that end, the number of samples that were
required to allow the HEDA to identify all of the local optima in the experiments
above was recorded. Figure 4 shows the number of samples required to find all the
local optima of a function plotted against network capacity. By curve fitting the
data shown, we find that the number of samples required to find all local optima
is quadratic with number of such optima.

In fact, as the search space grows, the number of iterations required to model
every local optima, as a proportion of the size of search space diminishes ex-
ponentially. For networks of size 100, the search space has 2'% possible states
and the HEDA is able to find all of the targets in an average of around 355,000
samples. That is a sample set consisting of 2.8 x 1072 of all possible patterns.

Experiment 2: Storkey HEDA Capacity As mentioned above, [22] sug-
gest an alternative to the Hebbian learning rule that increases the capacity of a
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Fig. 4. The mean and inter-quartile range of the number of samples needed to
find all local optima in a HEDA filled to capacity, plotted against the number of
patterns to find.

Hopfield network. This new learning rule can be used to increase the number of
attractors in a HEDA and so increase the number of local optima it is able to
model. A Hopfield network trained with Storkey’s learning rule has a capacity of
n/ V21nn. In experiment 2 we repeat experiment 1 but use the Storkey learning
rule rather than the Hebbian version. The experimental procedure is the same.

Results As with the Hebbian learning, the Storkey trained HEDA search was
always able to discover every pattern learned during the capacity filling stage of
the test. This shows that the improved learning rule will deliver the increased
capacity for capturing local optima that we sought. The cost of this capacity is a
far slower learning algorithm, however as equations 18 and 19 have more terms
to evaluate. Figure 5 shows the relationship between Hopfield network size and
capacity for the Storkey trained network.

Figure 6 shows the number of samples required to find all the local optima plot-
ted against network size when using the Storkey rule. Again, we see that search
iterations increase quadratically with network capacity.

7.4 Linkage Order and Network Capacity

Section 7.2 described how a HNN and a HEDA have a capacity for storing a
number of attractors, or local optima. In this section, we investigate the relation-
ship between network size, network capacity (in terms of attractor states), and the
highest order of linkage interactions in the fitness function. In these experiments,
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Fig.5. The mean and inter-quartile range of the capacity of Storkey trained
HEDA models and their theoretical limit (single line).

a standard Hopfield network is trained incrementally on patterns until the addition
of a new pattern causes one of the previous patterns to be forgotten, that is, the
pattern is no longer an attractor state. This is tested by setting each target pattern
as an input to the network, and then settling the network to a local attractor. If
the network moves away from its starting point, then that point is no longer an
attractor.

Once the network has reached capacity, the set of patterns that it has learned
are used as the local optima in a Hamming function as in equation 22. The
Walsh decomposition of this function is calculated and the highest order weight
is recorded. This process generates pairs of numbers: the network capacity and
the highest order of the function whose local optima are the patterns that fill that
capacity.

Figure 7 shows the results of these experiments as a set of histograms, one for
each network capacity from 2 to 5. A Hopfield network with capacity m has
learned all the attractors in a function with m local optima using the standard
Hebbian rule. This function undergoes a Walsh decomposition and the resulting
coeflicients have a maximal order at which the coefficient is non-zero. This high-
est order is recorded and counted for representation in the histograms. None of
the networks of order m had a highest order below m and the larger the capacity,
the more often the function had a larger highest order of interaction. It is clear
from the histograms that many high order functions may have their attractors
represented by a second order Hopfield network.



10

®

67
) 50 {
2
S
g
g ;
[
S %
[ 37
2 t
=
: ?

.| ﬁ

¢
L )
o‘E
.
L _eooo0ee® o 00000
05 n = b IS

Network Capacity

Fig. 6. The mean and inter-quartile range of the number of samples needed to
find all local optima in a Hopfield network filled to capacity using the Storkey
learning rule, plotted against the number of patterns to find.

8 Analysis of Network Weights

This section describes an analysis of the weights of a trained HEDA. Section
3 introduced Walsh functions and in section 7.3 they were used in the analysis
of fitness function linkage order. This section describes the equivalence between
the weights of a HEDA and the second order Walsh coeflicients. The important
finding is that the weights of an exhaustively trained HEDA, W are equal to the
second order Walsh coefficients, as stated in equation 23.

Wij = W¢ (23)

where c is the integer obtained by constructing a binary word of n bits, setting
every bit to zero except the two at indices i and j, and converting the resulting
word to an integer with the standard place encoding method. The binary word,
b(i, j) is constructed one bit at a time where b(i, j) is the k™ bit (least significant
first) of the word constructed for weight W;;.

1, ifk=iork=j

beli, j) = {O, otherwise (24)

Then c is calculated as

c e Z 26 (25)
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Fig. 7. Histograms showing the frequency of the highest linkage order across
10,000 trials, organised by Hopfield network capacity. Networks are trained
with the standard Hebbian rule. Networks with capacity greater than 5 require a
number of units greater than that for which it is possible to run multiple Walsh

decompositions.

An exhaustively trained HEDA is built by generating every possible pattern across
the input space, scoring each one, and training the HEDA on the resulting in-
put/output pairs. After training, the weights are all divided by the number of pat-
terns learned (i.e. 2"), so the learning rule for each weight, given every sample

is

Wye s > f@ee 26)
cef~1,1y

There is a clear parallel between equations 26 and 6 and between equations 14
and 7, which shows that the HEDA’s energy function is a second order approx-
imation of the learned function. Section 7.3 showed that second order HEDAs
can capture the local optima of higher order functions, but equation 7 suggests
that the inclusion of lower order weights in the HEDA might also be of use.
First order weights are the equivalent of adding bias weights to each neuron in
a Hopfield network. Let the first order weights be a vector, v of size n. To intro-
duce wy requires the addition of a zero order weight to the HEDA, wy, which has
the rather un-neural quality of being connected to no neurons. However, if these
weights are included in the HEDA energy function, then the approximation to the
fitness function becomes more accurate. Now, an approximation to f(c) can be

calculated as

f(c) =Wy — Z viu; + Z Wil (27)
iJ

i



where w;; are the second order weights, v; are the first order weights and wy is the
single order zero weight. Calculating the first and second order weights during
learning is done as follows.

wo < wo + f(¢) (28)

and

Vi — Vi + f(c)u,- (29)

After dividing by the number of training examples, wy becomes the mean of all
the function outputs, i.e. wy = (f(X)).

8.1 Comparing Network Energy to the Fitness Function

A series of experiments compared the energy function of the HEDA, as calculated
in equation 27 to the true output of the fitness function 22 for a variable number
of target patterns. As expected, with few target patterns, the output of the energy
function matched the output of the fitness function. As the number of targets
(local optima) rose, the second order approximation of the HEDA became less
accurate and its capacity for correctly scoring local optima above other patterns
diminished. Figure 8 shows some results of these experiments. Each graph shows
the energy output from a HEDA calculated using equation 27 plotted against
the target output from equation 22. Each graph in figure 8 was produced with a
different set of target patterns. It is clear from the figures that the HEDA'’s ability
to model the function and capture the optima reduces as the number of optima
increases.

The graphs showing functions with one and two local optima demonstrate that
the function output calculated using equation 27 is equal to the true function
output for every different input pattern. The graph for four local optima shows that
three of those optima have been captured by the network, and that there is some
difference between the network output and the function output. The last plot,
with eight local optima, shows the network performance degraded past the point
where it is useful. The plot shows a number of spurious optima — maximal in the
network output but not in the function and also shows that the true optima have
not been recorded. This illustrates a central point to this paper: if the population
of attractors being modelled is too large, the ability of the HEDA (and other
similar EDAs) degrades quickly to the point where all the local optima are lost.
The number of quality of the attractors needs careful management.

8.2 Comparing HEDA weights to HNN weights

A number of sampling methods for training a HEDA have been mentioned in this
paper. The simplest is uniform random sampling. A more directed evolutionary
approach is to let the current attractors of the HEDA guide the sampling of the
next generation of candidate solutions. The exhaustive method used above trains
the HEDA on every possible candidate solution, which is not of interest in terms
of optimisation, but is useful in revealing structure in the weights.

A standard HNN can be viewed as an extreme example of the second method:
an evolutionary approach where only the local optima of the fitness function are
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Fig. 8. HEDA energy plotted against fitness function output for functions with
different numbers of local optima

sampled and learned. In the simplest case, a HNN with a single pattern in its mem-
ory has learned a function where f(c) = 0 everywhere except where ¢ equals the
single learned pattern, where f(c) = 1. In this case, equation 10 differs only from
equation 15 by the constant term 5; as nothing is learned where f(¢) = 0 and the
pattern is learned once when f(c) = 1. In terms of the attractors, only the relative
magnitude and the sign of the weights are important. Scaling all the weights in
a network by dividing by a constant (in this case, 2") makes no difference to the
location of the attractors. The function described here has interactions all the way
up to order n, so although the network can model the attractor correctly, it cannot
reproduce the function correctly. Adding further attractors, up to the capacity of
the network, maintains the equivalence. The HEDA weights are simply a multiple
of the HNN weights.

L

Now consider a similar function, where the Hamming measure of equation 21 is
used with a single target pattern. When sampling f(c) at random and updating
the HEDA weights using equation 15 the first pattern sampled will become an
attractor point instantly, regardless of its score. Subsequent samples will first add
and then move the attractor points until the weights combine to produce a ‘spu-
rious’ attractor that happens to be the global optimum (this will happen without
the input pattern that leads to that optimum being sampled). At this point, the
weights will represent a second order approximation to the first order Hamming
function - just as they would in a HNN trained on the single pattern. In this ex-
ample, continuing to train would eventually move all the second order weights to



zero and the solution would only remain in the first order bias weights (if they
were included).

8.3 Comparison with Other EDAs

The purpose of this paper is to consider the capacity of a second order EDA for
storing local optima as attractor points. It is not to demonstrate that one EDA
structure or optimisation algorithm is better than any other. It is instructive, how-
ever, to compare the HEDA approach to other EDAs to demonstrate that the mea-
surement of capacity generalises across methods. Starting with the simplest first
order EDA (such as PBIL or UMDA), it is clear that such models have a capacity
of one—the single most probable pattern, which maximises [, P(c;). The com-
pact GA (cGA) [11] overcomes the limitation of a univariate EDA by building a
marginal probability model (MPM) that is a product of joint probabilities of sub-
sets of variables (building blocks). The name and motivation for the cGA come
from the idea that members of a GA population might be modelled by an area of
high probability (the attractors) in the MPM. This leads to the observation that
there is a strong relationship between the capacity of a probabilistic model and
the diversity of the population of a GA it is able to replace, which is one reason
why it is important to study the capacity of EDAs.

The Bivariate Marginal Distribution Algorithm (BMDA) [14] is an example of a
second order model. It does not build a fully connected model like the HEDA,
but discovers a sparse set of second order dependencies between variable pairs.
The sparse nature of the connections means that subsets of variables may be com-
pletely separate from the rest, meaning that a set of graphs (known as a forest)
is produced. The more sparse the network, the lower its capacity for storing at-
tractors. The connections in the BMDA are conditional probabilities, making the
model more akin to a Bayesian network, whereas the HEDA structure is more
like that of a Markov Random Field.

A recent example of a high order EDA can be found in the multi-variate DEUM
model, [23]. DEUM performs distribution estimation using Markov random fields
(MRF). The HEDA shares its structure with a second order MRF but differs in the
way it represents the fitness function. An MRF attempts to model the probability
distribution of highly fit patterns as a product across cliques in the graph, which
is equivalent to a Gibbs distribution, in which the probability of a pattern across
the inputs is calculated as the exponential of the energy state.

1
P(x) = 25“(’0 (30)

where u is the energy function, equivalent to equation 14 and Z is the normalising
constant, which can be ignored in the context of network capacity as dividing
the energy by a constant has no effect on the location or number of attractor
states. When using the MRF as an EDA, new candidate solutions are sampled by
a stochastic probability hill climb such as the Metropolis Hastings algorithm [24]
or simulated annealing. Attractor points have an exponentially higher probability
of appearing in a sample due to equation 30 so the number of attractors (and
hence, the capacity of the network) is an important consideration. The similarity
between a MRF based EDA and a HEDA is clear. The HEDA models the fitness
function rather than the probabilities explicitly, but differs from the probability
distribution in that the estimate of the fitness is the natural log of the estimate
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Fig. 9. Number of attractors correctly discovered from the same random set by
a HEDA with a standard linear learning rule (square markers and solid error
bars) and a HEDA trained with the log-Hebbian rule. In both cases, the target
function contained n(2 Inn) attractors and the graph shows how many of them
were found.

of the probability of a pattern. The HEDA can be made to learn the probability
distribution in the same way as the MRF by changing the learning rule to become
a log-Hebbian rule:

Wij — Wij + ln(f(c))u,-uj (31)
Testing the log-Hebbian rule on the Hamming distance function revealed it to
have a lower capacity than the standard HEDA rule, which is to be expected
because the Hamming function is based on a sum rather than a product across
variables. Figure 9 shows the results of testing the capacity of a number of dif-
ferently sized HEDAs trained on both the Hebbian and the log-Hebbian rule. The
models were tested on Hamming distance functions with m random attractors
where m was set to be the theoretical capacity for the size of the network. In these
experiments, capacity is defined as the number of attractors from the target list
successfully found. As the networks pass 70 neurons in size (6 patterns) higher
order interactions begin to damage stored memories and the number of patterns
correctly stored starts to fall.
It might be argued that the HEDA is not an EDA at all, but a fitness function
model as its energy function is a second order model of the fitness function. Its
use in optimisation, however, is akin to that of an EDA as it can be used to sam-
ple from promising areas of the input space by minimising its energy function.
The HEDA can be used as a true EDA by learning the natural log of the fitness
function rather than the function itself.

9 Conclusions and Further Work

Hopfield networks have previously been used as optimisation tools but the weights
have always been designed by hand. The contributions of this paper are twofold.



It presents a method for automatically discovering the weight values for a Hop-
field network from samples from a fitness function and an analysis of the capacity
of such networks for storing local optima as attractor points. An analysis of link-
age order and network capacity has shown that such second order networks can
learn all of the attractor states of some higher order functions, even when they
cannot reproduce the function output reliably.

The attractors of a HEDA can be viewed as diverse members of a GA population.
They are a set of current best points in the search. The capacity of the network
limits the number of such points that can be stored at any one time and exceeding
the capacity damages all the other existing memories held in the network. For this
reason, some form of attractor management may be required to ensure that newly
emerging attractors have higher scores than the ones they are destroying.

The next step in this research is to develop an evolutionary algorithm that can
store an evolving set of attractor states and sample from them to produce a model
of a small quantity of high fitness solutions. The role played by spurious states
needs further investigation, as does the effect of adding higher order weights.
[25] states that the capacity of order m associative memories over n neurons is
O(n™/In n) but the trade-off between network capacity, network size and model
overfitting needs careful management. Work on discovering useful heuristics for
sampling the space of possible weights to optimise the multiple goals of model
accuracy and small network size is ongoing, for example [26] describes some
work on the use of higher order versions of the HEDA to learn and sample from
distributions.
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