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_______________________________________________________________________________ 
Abstract— We produce a formal description of the problem of finding events in noisy 

signals. The particular problem of finding action potentials in noisy electrophysiological 
recordings is examined, and a method based on simulation of the underlying processes is 
used to assess different signal interpretation techniques.  We discuss the broader application 
of this approach. 
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I  INTRODUCTION 

Finding events in noisy signals is an 
archetypical task throughout physics (and biosignal 
analysis is one corner of this area). The task can be 
straightforward if the signals associated with each 
event type are quite distinct, and the noise is small, 
but can be impossibly difficult if the signals for each 
event type are less distinct, and/or there is a large 
amount of noise. 

Here we start by formalising the problem, and 
use this to introduce the different issues that arise 
particularly in biosignal analysis. We will then 
discuss one particular biosignal analysis problem 
(namely finding the spikes for different neurons in an 
electrophysiological recording) which is of 
importance to us as we are supplying signal 
processing services for the CARMEN 
neurophysiology data archive  [1]). For this, we use a 
biophysically based signal and noise generator to 
compare processing techniques. We then discuss 
how this approach may be relevant in other areas. 

 
II  FORMALISING THE PROBLEM 

The general formulation is that we have some 
type of experimental apparatus in which events 
occur, and we receive information about these events 
from instrumentation which provides signals. One 
example event from the biosignal domain could be 
an eye blink, measured (instrumented) using an 
infra-red camera.  Normally, (i) there are many 
different types of events (and we are only interested 
in some of them), (ii) the relationship between the 
actual event and the signal resulting from that event 
is quite complex, and often only partly characterised, 
and (iii) the instrumentation also produces signals 
which are not related to the events of interest (noise). 

This formulation could apply to detecting or 
classifying sunspots as easily as to detecting or 
classifying events in biomedical systems. 

We assume that there are a number of event 
types, 

! 

E
i
: i = 1...N

E
, where 

! 

N
E

 is the number of 
event types. For each event type 

! 

E
i
 there is a 

sequence of events 

! 

ei ( j), j = 1...NEi
where 

! 

N
E
i
 is the 

number of events of type 

! 

E
i
. Each  event is 

characterised by some form of change inside the 
experimental apparatus, which we write as 

! 

s(ei ( j)) . 

! 

s(ei ( j)) is not directly measurable. We consider that 
the 

! 

s(ei ( j)) are partially ordered in time. Each event 
may have a non-zero duration,  so we fix on some 
specific point inside the event  and call that the time 
of the event, 

! 

t(ei ( j)) . The measurements that we use 
have come from a set of detectors 

! 

D
k
: k = 1...N

K
, 

each producing a signal 

! 

d
k
(t) . The general task is to 

find information about the 

! 

ei ( j)   from the 

! 

d
k
(t) : 

this could be (for example) to find the event times 
(

! 

t(ei ( j))), or other characteristics of 

! 

s(ei ( j))  such as 
location, duration, strength, etc. Exactly what we 
wish to know will depend on the nature of the events. 

In order to tackle this problem, we need to 
understand the nature of the changes in the 

! 

d
k
(t)  

caused by the 

! 

s(ei ( j)) . Further, we need to 
understand the nature of the noise in the system. 
Noise may arise from some  of the event types  in 
which we are not interested, from other activity 
inside the experimental apparatus, from the detectors 
themselves, to name three possibilities.  

 
a) The Biosignal Context 

In the biosignal context, the events could be 
(e.g.) heartbeats, neural action potentials, or even 
(for brain/computer interfacing, BCI) particular 



directed thoughts. The detectors might be (e.g.) skin-
based electrodes, or an array of extracellular 
electrodes, or an array of pixels in a camera. In some  
cases, the nature of the transformation from 

! 

s(ei ( j))  
to 

! 

d
k
(t)  is known and characterisable: however in 

other cases (the BCI example above, particularly) 
this relationship is entirely unknown.  Generally, we 
have some information about this transformation. 
The noise sources similarly may be characterisable 
(for example, noise from other neurons, or from 
other skin electrical potentials), or it may be more 
difficult to gauge. In general, the better we can 
characterise the signals from the events and the 
noise, the more we can prescribe particular 
processing techniques. If we have little information 
about the actual signal and noise it becomes more 
difficult to know how to proceed. 

One major issue is determining the validity of 
the results. To achieve this, we need to have some 
independent (and accurate) measure providing the 
characteristics of the events in which we are 
interested. In some circumstances this may be 
possible, (for example, in many BCI paradigms, 
subjects are asked to direct their thoughts in response 
to a particular icon being displayed on a screen), but 
in others (for example measuring the different 
intervals in the ECG, or determining which neurons 
have fired) this may be almost impossible. Since 
knowing how accurately we are characterising events 
is vital to assessing different techniques, we need to 
find techniques for coping with the absence of such 
“ground truth” data. To investigate this further we 
concentrate on one specific area. 

 
III: DETECTING NEURAL SPIKING ACTIVITY USING 

EXTRACELLULAR  ELECTRODES 
Detecting neural action potentials (spikes) 

using an extracellular electrode (that is, an electrode 
which is in the medium near the neurons) is a good 
example problem: the transformation from event to 
signal is not easily characterisable, and there is 
considerable interest in accurate timing of these 
events for later spike train analysis. 

In this case, we can interpret the 

! 

E
i
 to be 

either the event that some nearby neuron has 
generated an action potential (in which case 

! 

N
E

= 1), 
or we can have each 

! 

E
i
 be that a specific nearby 

neuron has generated an action potential (in which 
case 

! 

N
E
≥1). The detector  is a small high impedance 

metal electrode some (short) distance away from the 
neurons. The precise nature of the transfer of the 
signal from the inside of the neuron, through the 
membrane and intracellular fluid, to the electrode  
[2,3] may be complex and un-characterisable 
because the geometry of the electrode/neuron 
interface is unknown. The transduction of the signal 
at the electrode into a voltage may also be complex 
[4]. As a result we do not know the precise form that 

! 

d
k
(t)  takes for each 

! 

ei ( j) . What we are interested in 

generally is the time of the spike 

! 

t(ei ( j)) , since this 
is what the downstream spike train analysis is based 
on. 

However complex the transduction process 
may be, we do have a fairly clear idea of the nature 
of 

! 

s(ei ( j))  from intracellular recordings. Further, 
from extracellular recordings in which we are 
confident that the noise level is low and from the 
experimental work in [2], and the theoretical work in 
[3], we have a clear idea of the types of signal that 

! 

s(ei ( j))  is likely to result in. This knowledge can be 
used to help determine how to process 

! 

d
k
(t) . 

Processing here takes a standard form. Firstly 
d(t) (we drop the subscript because we are dealing 
with one sensor) is processed to produce d'(t), in 
such a way as to emphasize the type of  signal 
expected to arise from  

! 

s(ei ( j)) .  For the case where 
we seek to find out simply whether a nearby neuron 
has fired, d'(t) is thresholded to determine the 

! 

t(ei ( j)) . There are many different forms of 
processing that might be used, and a variety of ways 
in which the threshold might be set. Often this 
process (“spike detection”) is used prior to 
attempting to assign the detected spike to a specific 
neuron (“spike sorting”): see  [5] for a discussion of 
this.  We are interested in finding ways to compare 
the many different possible techniques. 

In earlier work we used real recordings, and 
compared the effects of a number of spike detection 
techniques [6], particularly investigating automated 
threshold setting. However, this is imprecise because 
we do not know exactly what the correct answers 
should be, so that making comparisons is difficult. 
More recently we have developed a technique for 
generating realistic extracellular signals, and used 
this to compare spike sorting techniques [3]. The 
signals are generated by first deciding on the 

! 

t(ei ( j))  
then determining the shape of the 

! 

s(ei ( j)) , and using 
a biophysically justified model of the transfer of the 
signal to determine the contribution of each event to 
d(t). In  [3], spike detection used a simple 
thresholding technique (i.e. d'(t) = d(t)). Here, we 
describe using the data generation technique to 
compare different spike detection techniques. 

Another possibility would be to take some 
particularly good real data (for which the ground 
truth is clearly visible), and add noise to it so that we 
have test signals for which we know the ground 
truth, but in which this is not clearly visible. This has 
been quite a common approach, certainly in neuronal 
signal analysis. There are, however, still two issues: 
firstly, is the type of system for which clean data are 
available restrictive, and secondly, how should the 
noise be generated? The answer to the first question 
will be system dependent. For the second question, 
one might either take noisy parts of (real) signals, 
and add some scalar times that noise to the signal, or, 
indeed, one might use the biophysical model purely 
for noise generation. 



a) The spike detection techniques 
A number of spike detection techniques have 

been compared: each technique has at least one 
parameter which can be varied, and these are noted 
below: 

 
plain: no processing (d'(t) = d(t)), thresholding both 
positively at the median plus a number (parameter)  
of standard deviations and negatively at the median 
minus a (different) number (parameter) of standard 
deviations 
wav: Wavelet based preprocessing, as described in 
[7]. The following types of wavelet (parameter) were 
applied: biorthogonal spline wavelets (with of order 
1 for reconstruction, and 3 and 5 for decomposition), 
Daubechies (order 2), Symlets (order 2), and Haar, 
all as supplied by the MATLAB toolbox. In addition, 
the parameter L (see [7]) was varied. The software 
used was provided by Z. Nenadic. 
morph: A form of one-dimensional mathematical 
morphology was applied to the signal [8]. The signal 
was turned into two positive going signals, one being 
the positive-going part of d(t) - median(d(t)), and one 
being minus the  negative-going part of (d(t) - 
median(d(t)). Both of these were then “opened” 
using a simple linear structuring element whose 
length is a parameter [8]. The opened signal is then 
subtracted from the positive-going signal, and the 
resultant signal thresholded at some value 
(parameter). A related technique is used in [9]. 
conv: This is a template based technique in which a 
section of the signal found by simple thresholding 
was used as a template for a spike, and this template 
was then convolved with the signal to produce d'(t). 
The threshold for determining spiking events is the 
parameter. (see [6]) 
sum: This uses an averaging preprocessing technique 
which smooths the data from neighbouring points, 
based on [10] to produce d'(t). The threshold for 
determining spiking events is the parameter. (see [6]) 
nced: The cumulative energy in the signal is 
computed, and then differentiated to produce d'(t). 
The threshold for determining spiking events is the 
parameter. (see [6]) 
neo: This is also an energy based technique, and is 
an implementation of the technique described in 
[11]. The threshold for spike detection is the 
parameter. 
 
b) Making the comparison 

The formal description of the problem in 
section II only tells us where to look for assistance in 
determining how to process the 

! 

d
k
(t) : namely to the 

form of the 

! 

s(ei ( j)) , to how these are transformed 
into the 

! 

d
k
(t) , and to the nature of the noise in the 

! 

d
k
(t) . If we know these precisely, we can make the 

processing of the 

! 

d
k
(t)  optimal. However, we do not 

know these precisely: instead, we only know some 
information about each of them. Our knowledge is 

either based on experience of what the signals look 
like, or on some underlying biophysical model. In 
fact, we generally use our experience of the signals 
to develop and refine the models of the underlying 
biological system. It is therefore reasonable to use a 
model to generate synthetic data, particularly where 
real  data which is annotated with the ground truth is 
very difficult to acquire. 

To  compare the different techniques, we (i) 
create a dataset of spike (event) times 

! 

t(ei ( j)) , (ii)  
transform these events into the signal that would be 
detected, d(t), (iii) add variable amounts of realistic 
noise (generated from correlated and uncorrelated 
spiking events transformed into detected signals)  to 
this dataset, (iv) apply each technique while varying 
the parameters for that technique. (Where spikes 
were detected less than 1 ms apart, the later spike 
was discarded.) Each application results in a value 
for the penalty, which is set to be the number of 
missed spikes plus the number of inserted spikes. 
(Clearly, different weights could be applied to 
missing and inserted spikes.) The penalty is  
calculated as a percentage of the total number of 
events. The parameter space is searched to find those 
which result in the minimum penalty. Each synthetic 
dataset is  5 seconds long, sampled at 24 
Ksamples/second, and contains data from two 
neurons plus noise generated from 15 uncorrelated 
spiking neurons. The test is repeated 50 times for 
each technique to give a more reliable estimate of the 
penalty incurred. Different data and noise is used 
each time, always generated from the same 
distribution, and providing the same signal: noise 
level (measured peak:peak, as discussed in [7]).  
Since it may well be the case that the best values for 
these parameters will vary with the data and the 
noise level, we also recorded the parameters which 
gave rise to the best results for each test. 

 
IV RESULTS 

The overall results are shown in figure 1. 
Since we traverse the parameter space for all the 
techniques, one might have expected that they would 
all have the same best performance. This is clearly 
not the case. The plain technique is a version of the 
commonly used technique in which 
neurophysiologists adjust thresholds to provide the 
best results for each dataset. This performs well at 
high SNR, but is overtaken at lower SNR levels by 
the morph, wavelet and neo techniques. The neo 
technique does not perform as well at high SNR, but 
does perform better when the SNR is poor. The conv 
technique performs well at high SNR, but badly at 
low SNR, perhaps because it fails to find appropriate 
templates when the SNR is poor. The wavelet 
technique outperforms neo, but the morph technique 
outperforms all the other techniques both for high 
and low SNRs. 



  
 

 
Figure 1: Comparison of the different techniques across a range of noise levels. Penalty (number of missing spikes + number 

inserted) shown is (total penalty/total number of spikes) * 100. Noise levels are peak to peak signal:noise ratios.

We note that for the wavelet technique, the 
most effective wavelet to use was the biorthogonal 
spline wavelet with  order 1 for  reconstruction and 
5 for  decomposition. For morph, the best 
structuring element length was 2.5ms. 

The techniques of most interest are plain 
(because it is based on common usage), and 
wavelet and morph, since these perform best.  We 
show the 50, 75 and 95% (percentile) penalty levels 
found over the 50 runs used.  

 
Figure 2: Error levels for plain method at different noise 
levels, calculated over 50 runs. 

It is clear from figure 2-4 that the morph  
technique outperforms both other techniques at all 
SNRs tested. We note also that plain performs well 
when the SNR is good: it outperforms wavelet at 
10 and 15dB SNRs. However, when the SNR 
worsens, wavelet outperforms plain. 
 

 
Figure 3: Error levels for wavelet method at different 
noise levels, calculated over 50 runs. 

 

 
Figure 4: Error levels for morph method at different 
noise levels, calculated over 50 runs. 

 
 



V  CONCLUSIONS: HOW VALID IS THIS 
APPROACH? 

From the experiments reported here, we 
have been able to make a justified comparison 
between a number of commonly used spike 
detection techniques, and we conclude that morph 
is the most effective technique for spike detection. 
We note that experiments (both with new detection 
techniques and other sources of data) are 
continuing. 

How valid is this type of experiment for 
assessing spike detection techniques? This depends 
on the validity of the synthetic data: the more 
realistic it is (both in the sense of providing 
appropriate signals  and noise whose statistics 
correspond to the actual noise in d(t)) the more 
valid is this technique. In this case, we generated 
the data from a realistic biophysical model, and 
looked at real data to attempt to determine the 
appropriate parameters for the biophysical model. 
Of course, each actual experiment will be different, 
depending on the precise type of electrode, and on 
the types of neurons used. Nonetheless, by 
determining the best results for each technique by 
searching the parameter space, we have, we believe 
contributed to the debate on what is the best spike 
detection technique. 

Real neural systems do suffer from other 
problems not included in the biophysical model. 
For example, in vivo experiments often have 
problems with the electrode moving relative to the 
neurons over time, thus altering the nature of the 
signal received. 

Considering the problems set out in section 
I, what can we take from the specific problem 
examined here? It is likely that any model of a 
system used for data generation will only model 
some of the variables in the real situation. Thus 
care needs to be taken that those aspects of the 
problem which are modelled are those that matter 
the most for interpretation techniques. Particularly 
where no ground truth data is available, we believe 
that biophysically based realistic data (and noise) 
generation provides a good test system for 
comparing different event detection techniques. 
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