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Abstract— Stochastic resonance (SR) is a phenomenon in Index Terms— Stochastic resonance (SR), signal-to-noise ratio
which the response of a nonlinear system to a subthreshold (SNR), Fisher information, limited resolution, leaky integrate-
information-bearing signal is optimised by the presence of noise. and-fire (LIF).

By considering a nonlinear system (network of leaky integrate-
and-fire (LIF) neurons) that captures the functional dynamics of
neuronal firing, we demonstrate that sensory neurons could, in
principle harness SR to optimise the detection and transmission
of weak stimuli. We have previously characterised this effect
by use of signal-to-noise ratio (SNR). Here in addition to SNR,
we apply an entropy-based measure (Fisher information) and
compare the two measures of quantifying SR. We also discuss the
performance of these two SR measures in a full precision floating
point model simulated in Java and in a precision limited integer
model simulated on a Field Programmable Gate Array (FPGA).
We report in this study that stochastic resonance which is mainly
associated with floating point implementations is possible in both
a single LIF neuron and a network of LIF neurons implemented
on lower resolution integer based digital hardware. We also
report that such a network can improve the SNR and Fisher

information of the output over a single LIF neuron.



I. INTRODUCTION many different circumstances, with various types of signals,

nonlinear processes, and measures of performance [12], [19],
The focus of this work is on implementing neuronal SR on

[25], [9], [8], [35], [32]. Most of the literature on SR involves a
reduced resolution digital hardware using an integer model. By

signal which is itself too weak to elicit a strong response from
implementing neuronal SR on a precision-constrained digital

the nonlinear system. For larger (suprathreshold) signals, SR
platform of the Field Programmable Gate Array (FPGA) type

induced by a single nonlinearity disappears [7], [30]. However
we aim to bring neuronal modelling closer to its application in

it has recently been shown that suprathreshold SR can occur
prosthetic devices like hearing aids. Floating point realisation

in an array of parallel nonlinear units with independent noise
would require either expensive Application Specific Integrated

injection where their outputs are summed [21], [45], [46].
Circuits (ASICs) or huge FPGAs.

Like subthreshold SR, there is an optimal nonzero noise level.
Stochastic resonance is said to occur when a bistable

The increase in output entropy improves the independence in
nonlinear system is driven by a weak periodic signal, and

information transmitted by individual units, giving rise to a
provision of additional noise improves the system’s detection

net increase in transmitted information, under optimal noise
of the periodic signal (see [18] for a review). Here “weak”

conditions. However, suprathreshold SR cannot be measured
means that the input signal is so small that when applied

using SNR [47].

alone it is undetected [39]. The resonance effect arises through

the conjunction of two competing mechanisms: the noise-While we recognise the importance of suprathreshold SR,
induced linearisation (dithering) of the model’s firing rate anthis study will only focus on subthreshold SR in neuronal

the increase in the variability of the number of spikes in theystems for the following reasons. Firstly, we are interested
output. Experimentally, SR was first demonstrated with a noige SR in both single input layer LIF neurons and output layer

driven circuit known as a Schmitt trigger [17]. It took severallF neuron (see figure 1). Secondly we also want to quantify
years before the interest of physicists (who have done mostSR using SNR which we cannot do for suprathreshold SR
the theoretical analysis) ignited, sparked by the demonstratigs already discussed. Specifically we study SR in a parallel
of SR in a bistable ring-laser experiment [49]. Now SR hagray of LIF neurons receiving a common subthreshold signal
crossed disciplinary boundaries: its role in sensory biologyith an alpha synapse [42] at the output. Similar studies
has been explored in experiments on single crayfish neurdrg/e been done by among others [34], [23] who looked at
[16], cat visual cortex [1], cricket cercal sensory system [30¢nhanced information transmission in an array of comparators.
human memory retrieval [48], human visual perception [36}43] looked at a parallel array of LIF neurons which just sums

[51] and human hearing [54], [26], [24]. the output while [53] looked at a similar architecture with a

Since its introduction, SR has been shown to occur unddgpressing synapse at the output LIF neuron.



Simulation of SR in “continuous” systems using floatingpits using the SNR measure but not with the Fisher information
point based models is well established [5], [49] and [44]. Sucheasure. The Fisher information measure requires more than
models are fairly accurate but do not always result in real-tinfeinput neurons to register an improvement over the input at
performance. This work aims to show that SR still occurs witthe output.

lower resolution integer based representations which allow

. . . - Ah Measuring stochastic resonance
real-time performance on inexpensive digital hardware suc

as FPGAs. FPGAs are reconfigurable programmable logicStochastic resonance can be demonstrated using almost any

devices [6]. method of detecting or reconstructing a subthreshold signal

from information contained in the crossings of the threshold

We investigate the effect of varying the resolution of the ) ] )
0 of a detector by the signal plus noise. SR metrics are

numbers inside the simulation of SR in a feed forward neural . ) )
chosen according to the nature of the input signals and of

network (see figure 1): we do this by examining SR in a 32 bit o ] ) ) o
the transmission system itself. If the signal is periodic and

floating point model of this system implemented in Java, and in _ o o
observed over a relatively long time interval, then it is common

an integer model where the integer length is varied downwards ] ) o
to do a Fourier analysis of the crossing times and to measure

from 16 bits implemented on the FPGA. The SR effect is ) ) _ _
the information thus gained about the signal as the ratio of

assessed by applying a subthreshold periodic signal plus noise . ]
the power spectral density (PSD) at the signal frequency to

to the system, and examining its output in terms of SNR and _ _ .
that generated by noise at the nearby frequencies (the signal-

Fisher information. For both models we calculate the SNR and ) )
to-noise ratio see equation 1) [49].

the Fisher information at different input noise amplitudes. For S
PSDy,
. , . . SNR = ———=%
the integer model, besides varying the noise, we also calculate PSDy¢, e

1)

the SNR and Fisher information values at different resolutionshere f;, is the signal frequency anfl:ne, is the frequency
This work extends our previous work in [38], [37] relatecbands outside the signal frequency. Another way to quantify
to digital implementation of real-time neural sensory systentise SR effect, related to the way neural activity is analysed,
for signal detection in noisy inputs. The input layer neuroris to investigate the (empirical) residence-time probability dis-
(see figure 1) depict SR in a single neuron receiving noisgibution, or interspike interval histogram [31]. If an aperiodic
continuous stimulation while the output neuron, stimulated tsignal is observed over a relatively long time interval, then
spikes from the input neurons, depicts SR in a network. Ogoodness of signal reconstruction or the coherence between
results show that integer lengths of at least 10 bits produtte signal and the output has been measured by a correlation

usable results, and that the network produces a performaneeasure [11] and entropy based methods [18].

improvement for 6 input neurons at integer length of at least 11SR is characterised by improving the measure of depen-



dence of the output on the input by means of an increase in the Fisher information [44]:

level of noise. The standard measure of SR has been the SNR 1 (5MN)2 @)

Jep(p) = 55—~ —F5 -
L . o?n(n) \ Op
of the power spectrum [49]. All spectral quantities, including

whereoy andp are the standard deviation and mean of the
the SNR, are based on averages over long times. A feature

spike count probability distribution, respectively.
present on average, however, is not necessarily present in a

Since the spike cou over a fixed window of time is
limited sample, such as the record of a single neuron’s spike P M

an estimate of the firing rat we can rewrite the lower
train over the first few hundred milliseconds of its response. g raté(n),

bo nd of the Fisher information from (3) as [44
Thus the SNR does not in any way address whether the system ] ! ! : (3) [44]:

can reliably perform signal detection based on the spike output Jrp(p) = 21 [ai(f(u»} ? (4)
% f(u) M

of a single neuron over a short duration. More appropriate
where(.) denotes averaging. Recent work on the use of infor-

measures that explicitly depend on the sampling time are ones _ _ _
mation theoretic measures to characterise stochastic resonance

based on information theory [22], [44]. In this paper we will
in a neural arrays can be found in the works of [47], [34], [23],

examine the existence of stochastic resonance in SNR (see
[40].

equation 1) and in an information theoretic measure using the

leaky integrate-and-fire neuron model. I[I. THE MODEL
The information theoretic measure that we use is the Fisher ' n%y r‘ ‘%Mer
information, J () normally defined as [14]: V
@\ < spl kes
J(p) = /M(ip(N;u))QdN @ @nal O® 1=
o

M
Spl kés/
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where p(N; ) is the probability of observing N spikes,

—
T

given an inputu. The Fisher information is closely related

to the entropy, or inherent uncertainty, in the dIStrIbUtIoEig. 1. Network model. Layer I identical, input LIF neurons receive the

p(N;M)- The Fisher information can also be interpreted &§me 20Hz subthreshold sinusoidal input plus independent uncorrelated noise

(N1, N2, N3, ..., Nm). Output: Similar LIF neuron model receives spiking
the amount of information in the output about the input signal

input viam Alpha synapses.
[41]. Maximising the entropy subject to a fixed parameter is
equivalent to minimising the Fisher information about that Each LIF neuron in figure 1 is modelled by the LIF neuron
parameter. If the input noise amplitude is fixed, thers the model equation (5) which idealises the point neuron membrane

only free parameter of the spike count distribution. Using thess a capacito”, in parallel with a resistor of resistande.

facts, it is possible to write down a simple lower bound fofhe effective currenf (¢) may hyperpolarise or depolarise the



membrane. case. The synaptic weight was changed until the SNR value

av

CE =1I(t) — —= (5) for the output neuron equalled the maximum value for the

single neuron case. The resulting synaptic weight(which
For the input neurons](t) is composed of a periodic sub-

equalises the SNR at the output WiV R,,.,) was then
threshold sinusoidal part and a stochastic component. This

divided by the number of coincident spikes needed to make
component is the additive noisg(¢) [4], different for each

the output neuron fire a single spike with a weight of 1. That
input neuron. It was generated by bandpassing Gaussian white

is, the synaptic weight. for all the synapses is given by:
noise (see below). For the output neuron
a = % The rationale behind this synaptic weight was to

I(t) = azlk(t) 6) ensure that the coupling between the input neurons and the

where a is the synaptic weight (determined by looking aPutput neuron is weak, that is, a single spike from an input

weights which maximise SNR as explained later) which feuron in a multiple neuron network does not cause a spike on

the same for all the neurons and the output neuron. Coupling is said to be strong if each spike
m from the input neurons causes a spike on the output neuron.

Ii(t) =) ot —tr) (7)
i=1 According to the results reported by [53] stochastic resonance

where the indexs = 1,..., N denotes the input neurons an%as stronger for weaker coupling between input neurons and

. . S : .
the indexi denotes thé'" input from a particular input neuron the output neuron than for stronger coupling.

k, whose time of arrival igg, (0 < tg, < tg, < ... < tg,,)

An alpha synapse was used in preference to a step function

and m is the number of active spikes from input neurbn
for both biological and engineering plausibility. The rise time

The alpha function is given by [28]:
of the alpha synapse was 10 ms. A network model similar to

1

a(t) = ;e_i for t>0, and 0 for ¢<0. (8) ours using a depressing synapse with 4 input layer neurons

where 7, is the synaptic time constant for synapsén the was studied in [53]. They report that a depressing synapse

millisecond range. improves the SNR at the output. Similar results were also

The synaptic weightz was determined as follows. Thereported in [13] using a rate coding based FitzHugh-Nagumo

network was run with one neuron and the maximum SNEgodel network with a similar topology. Both these networks

value, SN R,,,..x was determined from the SNR versus noisléSed floating point numbers.

plot. The noise strength,, ., which resulted inSN R, was The network was simulated using lams time step. For
also noted. The network was then run with one input aride input neurons, the nois€;(t) was generated from a
one output neuron keeping the noise value g, the value discrete noise signal in which the value at each time step

that gave us the maximum SNR value for the single neurevas a sample from N(0,1), the Gaussian distribution with



mean 0 and variance 1 by bandapassing it between 5 andltiplying the input signals bg"™ (wheren is the resolution
100 Hz. This¢,(t) varies relatively little between adjacent.e. integer length). The floating point model was implemented
samples. The value of, in the alpha function (equation 8)in Java and the integer model in Handel-C [2]. The output
is also such that the inputs to the output neuron also vespike trains for several runs with different noise streams each
relatively little between adjacent samples. It is therefore valtine were collected for the floating point model and different
to use a simple Euler approximation otherwise techniques foteger lengths (10, 11, 12 and 16 bits) for the integer model
numerically solving stochastic differential equations like then the FPGA. The main output of interest are the spike trains
one described by [33], [27] would have to be used. from both the “input” and “output” neurons (see figure 1) from
The floating point model uses the Euler approximation afhich the two SR metrics were computed using Matlab.

equation (5) given by equation (9) .
A. SNR

At
V(4 At) =V(E)(1——)+ AtI(?) 9)
T The power spectra were computed using the method of Gab-

whereAdt is the time step, and = C'R is the membrane time p;ani and Koch in chapter 9 of [29]. The SNR is then computed

constant. from the power spectra using the method of Chapeau-Blondeau

Equation (9) is implemented on an FPGA platform by (i}, [10]:

making all values integers and (i) making division only by SNR = S@) (11)

N(w)

powers of 2.% is expressed a8 * (we call k the leakage
where S(w) is the power spectrum of the spike train at the

factor) and At is expressed a& ™. This is because full
signal frequency andV(w) is the power spectrum of the

integer division is expensive to implement (both in number of
background noise around the signal frequency. Each SNR

gates and speed) whereas bit-shifting is very fast. The alpha
value is an average from 10 different spike trains each 4 096

function was implemented using a look-up table. In integer
samples long.

form equation (9) becomes

_ _ _ _ B. Fisher information
Vi+1)=V(E)—V(Et)>>k+1(t) >>m (10)

Standard practice in neurophysiology consists of quanti-
where>> denotes bit-shifting to the right which is basically

fying the neuronal response by summing up the number of
division in powers of 2.
spikes fired by a neuron over a fixed time period. The spike
lll. METHODOLOGY count constitutes an estimate of the firing rate of the neuron.
The floating point model can take inputs directly fronDnce a threshold of a neuron is fixed and set to a detection

1(t). However the integer model requires integer inputs whiddriterion, it can act as a detector of the spike signal from a

means the input signals must be quantised. This is achieveddogsynaptic sensory neuron. Consequently, the spike count is



the natural measure for a signal detection system made out of
neuronal building blocks [44]. Because we are dealing with

a sinusoidal signal we imagine that the periodic component

of the LIF unit’s spike train is determined by the average

—— Input
—# Floating point

251

number of spikes fired during the “up” phase of the sinusoid

—7— 16-bit FPGA

20F

after subtracting the number of spikes fired during the “down”
phase. The length of the window for determining the firing rate

is equivalent to half the period of the sinusoidal input signal.

The Fisher information (lower bound) is computed as fol-

0 5 10 15 20 25 30
Noise amplitude

lows: from equation 4 we approximate the partial derivative:

0
@U(N» (12)
by
(fp1)) = (f(p2))
| 3 . .
<M1> - <,U2> Fig. 2. Input layer neuron SNR for Java (floating point) and FPGA (integer

where (f(111)) is the mean firing rate for the first half of the's°lutions 10,1112 and 16).

input signal period andf (u2)) is the mean firing rate for the
« membrane time constamt= 20ms;

second half of the input signal periodu,) is the mean of
o thresholdd = 20mV;

the first half of the input signal an¢.) is the mean of the
« signal frequencyvy = 20Hz;

second half of the input signal.
« absolute refractory period = 10ms;

Therefore the Fisher information (lower bound) is given by:
« Synaptic time constant = 10ms;

Ju(p) = — « Bandpassed noisg(t), of variable amplitude;

1 <f(,u1)> - <f(M2)> 2
) a4

« spike trains were 4 096 samples long.

The choice of parameters was motivated by the applicability
IV. RESULTS of the network topology to auditory signal processing and the
The FPGA used here is a Xilinx Virtex XCV1000 [52].frequency regimes in which stochastic resonance has been well
A 7-neuron network implementation on this FPGA occupiestudied according to literature. Stochastic resonance is well
147 625 gates and a single neuron implementation occupistablished in the low frequency regime according to [18] and

10 718 gates [38]. The results presented here are for {B8]. Hence the choice of the 20Hz frequency. LIF neurons

following network and signal parameters: model real neurons which operate on continuous time-varying



signals and the choice of time constants must match those of
the signals. The membrane time constanas motivated by
measurements from real neurons and the choice of frequency
and also its possible role for sound segregation in auditory
scene analysis [20]. The absolute refractory petigd was
chosen based on values reported in the literature on neuronal
modelling [15].t..f Sets the limit for the firing frequency of

the neuron, the neuron can not fire beyqﬁrg Hz.

A. SNR

The results are summarised in figures 2 to 13. They show
that there is stochastic resonance in the input neurons and the

output neuron in both models using both the SNR and the

SNR
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Fig. 4. Java 5-, 7- and 10-neuron network input layer neuron and output

layer neuron SNR

Figure 2 shows that at the input layer, Java SNR values are
better than all the FPGA resolutions considered. It also shows
that SNR values for the integer model improve for resolutions
up to 12 bits after which they stay constant as evidenced by
the similarity between SNR values for 12 bits and 16 bits
resolutions.

The SNR at the output also increases with increase in
resolution (see figures 5 and 6) just like it does at the input
layer. In both figures the SNR values for the integer model
resolutions of 12 and 16 bits slightly overtake the Java SNR
between noise amplitudes of 10 and 15. This is interesting

because at the input layer SNR values for the Java model are

FPGA (resolutions 10,11,12 and 16) input layer neuron and output

always better than at all the FPGA resolutions considered (see

figure 2).



Figure 3 shows that the SNR at the output neuron is
influenced by both the resolution and number of input neurons.

The SNR value at the output increases with an increase in the

number of input neurons. The 10-bit resolution SNR result » ‘ ‘ ‘ T

—&- 11-bit FPGA
—— 12-bit FPGa

—— 16-bit FPGA
o Floating point

shows that the input layer SNR is always better than the output

neuron result for both 5- and 7-neuron networks. For 11 hits,

SNR

12 bits and 16 bits, only the output for the 5-neuron network

10F

is less than the input layer neuron SNR, the output neuron

SNR for the 7-neuron network is always above the input layer

. . .
0 5 10 15 20 25 30
Noise amplitude

for all the noise values considered. This suggests there is an
interaction between the output neuron SNR, the number of
input neurons and the resolution of the integer model.

Figure 4 shows that as the network increases in size so does
the SNR of the output neuron. This result was only proven @fy. 5. 5-neuron network output layer neuron SNR for both Java and FPGA
a limited scale on the FPGA (see figure 3) because we wéfgelutions 10, 11,12 and 16).
unable to produce a network with more than 7 neurons due to

the graphs being clearly separated while at the high noise end

computing equipment limitations.
the graphs are lumped together because noise is the dominant

B. Fisher information feature at this end.

The floating point and integer single input neuron spike At the output neuron the curves are much more separated
train Fisher information exhibit the familiar shape of stochastits seen in figure 9. 10 bits integer is well below all the other
resonance (see figure 7). The general shape of the Fistesolutions. The graphs can still be separated on resolutions
information curves for both the floating point model and all ththough. 12 and 16 bits actually out-perform the 32 bits floating
resolutions on the integer model portray stochastic resonangeint model for most of the noise amplitudes considered.
(see figure 8). At the low noise end, the graphs are quiteAs the network size increases we see that the higher resolu-
separated and it is clear that the Fisher information valugens dominate (16 bits integer and 32 bits floating point), see
increase with resolution with the 10 bits integer being lowefigure 10. This suggests that there is an interaction between
and 32 bits floating point being highest. The 12 and 16 bitetwork size and the resolution.
graphs are almost indistinguishable throughout. The effect ofin the integer model, for the network sizes considered (5

quantisation is stronger at the lower noise end as shown &yd 7-neuron network) the output neuron Fisher information
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Fig. 6. 7-neuron network output layer neuron SNR for both Java and FPGAg. 7. Input layer neuron Fisher information for both floating point and

(resolutions 10,11,12 and 16). integer models.

never exceeds the input neuron Fisher information for all the
can be seen in figure 11.

resolutions considered (10, 11, 12 and 16 bits), see figure 11.

) _ _ _ The input neuron does not appear to be affected much by
However, the gap between the input Fisher information and

) ) ] ~resolution because it peaks around a Fisher information value
output Fisher information decreases as the network size is

) ) of 2.6 for all the resolutions considered (figures 11 and 12).
increased. The narrowing of the gap between the output neuron

Fisher information and the input neuron Fisher information is BOth SR measures have shown that they can portray stochas-

resolution dependent. The gap between the input neuron Fistigfesonance in both the integer and floating point models both
information and 7-neuron network out Fisher information &t Single and network level.

biggest at 10 bits and smallest at 16 bits. The differenceDue to computational limitations we were not able to get a

between the 5-neuron and 7-neuron output is also resolutioetwork of size bigger than 7 neurons on the FPGA but we

dependent. In the 10 bits case, 7-neuron network outputwere able to do that with the floating point model in Java.

less than 5-neuron network output for the lower noise valuexreasing the number of neurons to 10 and beyond showed
where as for 16 bits the 7-neuron network output is above ttteat the Fisher information of the output neuron actually

5-neuron network for all the noise amplitudes considered asceeds that of the input neuron as shown in figure 12.
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Fig. 8. Effect of resolution on a single input layer neuron Fisher informatiofrig. 9.  5-neuron network output layer Fisher information for both floating

point and integer models.
V. DISCUSSION

. ._IncreasingAt is not normally an option, as we neéd < 7.
The results presented above are influenced by precision % y P

Lo o . |gor the chosen values of = 0.02s and At = 0.001s, the
limitation (quantisation), network size and the type of S

. resolution needs to be at least 10 bits.
metric used.

A. Quantisation B. Stochastic resonance

Quantisation affects the evolution of activation and its effect Armed with the expressions for signal and noise spectra,
is that the changes il (t) over At implemented by equation we can write SNR = S(w)/N(w). The increase in the
(10) are forced into integer values and that the integer activagnal power due to stochastic linearisation is counteracted
tion value ceases to decrease whéf(t) >> k + I(t) >> by the increase in the noise power. The LIF system takes the
m) < 1 resulting in the LIF neuron not decaying to zero fronincoherent energy from the noise and feeds it into coherent
a high start value with no input, see figure 13. This leakagmergy at the frequency of the periodic signal leading to an
problem in the integer model is also coupled to the size ofcrease in the SNR at the output. The uncorrelated noise
the time stepAt. Decreasing the time step makes the probleincreases only by a factor of/N on average across the

worse as the decremeﬁﬁw, is proportional toAt. Yet population of the neurons, while the coherent input signal is
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Fig. 10. 7-neuron network output layer Fisher information for both floatingig. 11. Interaction between network size and resolution for the integer
point and integer models. model (10, 11, 12 and 16 bits). This figure compares the output layer neuron
Fisher information for different network sizes and resolutions with that of a

strengthened by a factor d¥. This yields an increased SNRS"9!® NPut layer neuron.

and a more sensitive neural network.

Figures 2, 4, 3, 5 and 6 show that the differences in gNigaches the same level as that of the floating point model for
values for the resolutions considered in the low noise regiffVer noise levels.
are much higher than the differences at the high noise endFor the integrate-and-fire model, SR in the Fisher infor-
This applies to both input and output neurons. The differenceation J(u) arises through the conjunction of two effects:
in SNR in the lower noise levels at the input layer (see figustochastic linearisation - the increase in the slope of the firing
2) are as much as 3dB and the same differences for ttage curve - and the noise-induced increase in the spike count
output layer are as much 6dB (see figure 6). The decreasgiance. Adding noise to the input comes with a price: the
in the differences in SNR (as noise strength is increasemise in the output increases as well. Thus an increase in
may suggest that quantisation effects are more pronoundkd separation in mean firing does not imply an increase
at lower signal plus noise levels. This could be attributed io the discriminability or the Fisher information. Looking at
loss of changes in the activation. The maximum input layequation 4, we note that the numerator is affected by stochastic

improvement in SNR due to SR on the FPGA platform nevdinearisation, whereas the denominator measures the “noise”
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Fig. 12. Floating point model Fisher information for different network sizedzig. 13. Membrane decay due to leakage from a high start value in the
The figure compares the output layer neuron Fisher information for differembsence of input.

sizes with that of a single input layer neuron. It shows that the output layer
neuron Fisher information for network sizes greater than 7 exceeds thatc(ﬁ

anges in resolution in that the lowest resolution (10 bits) has

the input layer neurons.
the lowest metric value and the highest resolution (32 bits) has

in the output. For the LIF neuron model, both numeratéF|e highest metric value (see figures 2 (SNR) and 8 (Fisher

and denominator always increase as a function of the inF;mormation)). 12 and 16 bits resolution are indistinguishable

noise; eventually, though, the denominator will dominate. Afgr both SNR and Fisher information at the input neuron. Both

a consequence, the Fisher information will first rise and thgheasures are affected in a similar way by quantisation in that

fall as a function of the input noise variance; this is the origiWe graphs for both metrics are separated at low naise values

of the SR peak. but lumped together at high noise values for the input neuron.
At network level the main similarity is that the curves for both
C. Comparison between the two metrics metrics are more separated at the high noise end than at the
The results presented in the previous section have shoimput neuron for the same noise values, see figures 5, 6 (SNR)
that the SR effect can be measured using SNR and Fishad 9, 10 (Fisher information).

information metrics. Both SR measures are sensitive to reso-The main difference between the two measures is at network

lution. At the input neuron both metrics respond similarly teevel. When we compare the input neurons and the output
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neuron for different network sizes we see that the outpfrom information theory as we have shown here, all depending
SNR of the 7-neuron network exceeds the input neuron SNR the purpose and prospect involved.

for resolutions above 10 bits. On the contrary the 7-neuron . : .
Stochastic resonance remains an emerging effect. From a

network output Fisher information never exceeds that of the : . . .
conceptual standpoint, stochastic resonance is an important

Input neuron Fisher information. However, as the r"m]b(pa)'lgenomenon as it modifies the status of noise by establishing

of neurons is increased to 10 neurons the output Fist}ﬁr : . L . .
at in nonlinear systems noise is not necessarily a nuisance

information does exceed that of the input neuron but thE)Sut may sometimes be turned into a benefit. From a practical

result was only proven for the floating point model. We thInI§tandpoint, stochastic resonance may have useful applications

the explanation for this lies in the way the two metrics arg, signal processing by nonlinear systems, especially when

computed. The Fisher information has the tefﬁ}(“) In its no full control is available over nonlinearities. Both aspects of

denominator which is a noise measure for the entire spik? . .
stochastic resonance call for further exploration.

train which scales withy/N. This means as the number of
We have shown that a network of low-precision LIF neurons

neurons increases we are dividing by a smaller number each

can take advantage of stochastic resonance to accurately
time. On the other hand the SNR is computed by dividing by

encode and transmit an input. The collective properties of these
noise power in the vicinity of the signal frequency.

systems exceed the limitations of a single element. Careful

Collins showed, in a summing network of identical

tuning of properties of the elements, such as thresholds,
Fitzhugh-Nagumo model neurons, that an emergent property

may yield further improvements in the performance of the
of SR in multicomponent systems is that the enhancement of

system. This is important because such systems can permit
the response becomes independent of the exact value of the

digital electronic implementation with real-time performance,
noise variance. This allows networks of elements with finite

for example through FPGA implementations. The amount of
precision to take advantage of SR for diverse inputs.

SR may not be as high as in high resolution implementations.

VI. CONCLUSION It has also been shown that in integer systems SNR saturates as
The conditions we have presented, of various forms wfe increase the bit length at which activation is computed. For
noise-enhanced transmission with information-theoretic chaine parameters chosen in this simulation, SNR was not found
acterisations, are merely illustrative. The effect is preservea improve with an increase in the resolution beyond 12 bits
over a broad range of signals and nonlinear systems, adoitinput neurons. The output neuron saturates at a resolution
was verified to be the case in studies on other forms bigher than 12 bits. The improvement in output SNR when the
stochastic resonance [3]. Also different measures can be usetput of a parallel array of neurons converge on one neuron

to quantify a stochastic resonance effect, especially measuresld justify the existence of such networks in the central
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nervous system confirming the findings of [13].

In terms of application, this work could be used in the
design of digital front-end systems for implantable visual and
cochlear prostheses [47] or for detecting regularities in noisy
inputs in highly sensitive input devices. This work could be
extended to suprathreshold signals and investigate the effect
of precision limitation on this type of SR using an information

theoretic measure.
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