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Abstract— Stochastic resonance (SR) is a phenomenon in

which the response of a nonlinear system to a subthreshold

information-bearing signal is optimised by the presence of noise.

By considering a nonlinear system (network of leaky integrate-

and-fire (LIF) neurons) that captures the functional dynamics of

neuronal firing, we demonstrate that sensory neurons could, in

principle harness SR to optimise the detection and transmission

of weak stimuli. We have previously characterised this effect

by use of signal-to-noise ratio (SNR). Here in addition to SNR,

we apply an entropy-based measure (Fisher information) and

compare the two measures of quantifying SR. We also discuss the

performance of these two SR measures in a full precision floating

point model simulated in Java and in a precision limited integer

model simulated on a Field Programmable Gate Array (FPGA).

We report in this study that stochastic resonance which is mainly

associated with floating point implementations is possible in both

a single LIF neuron and a network of LIF neurons implemented

on lower resolution integer based digital hardware. We also

report that such a network can improve the SNR and Fisher

information of the output over a single LIF neuron.

Index Terms— Stochastic resonance (SR), signal-to-noise ratio

(SNR), Fisher information, limited resolution, leaky integrate-

and-fire (LIF).
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I. I NTRODUCTION

The focus of this work is on implementing neuronal SR on

reduced resolution digital hardware using an integer model. By

implementing neuronal SR on a precision-constrained digital

platform of the Field Programmable Gate Array (FPGA) type

we aim to bring neuronal modelling closer to its application in

prosthetic devices like hearing aids. Floating point realisation

would require either expensive Application Specific Integrated

Circuits (ASICs) or huge FPGAs.

Stochastic resonance is said to occur when a bistable

nonlinear system is driven by a weak periodic signal, and

provision of additional noise improves the system’s detection

of the periodic signal (see [18] for a review). Here “weak”

means that the input signal is so small that when applied

alone it is undetected [39]. The resonance effect arises through

the conjunction of two competing mechanisms: the noise-

induced linearisation (dithering) of the model’s firing rate and

the increase in the variability of the number of spikes in the

output. Experimentally, SR was first demonstrated with a noise

driven circuit known as a Schmitt trigger [17]. It took several

years before the interest of physicists (who have done most of

the theoretical analysis) ignited, sparked by the demonstration

of SR in a bistable ring-laser experiment [49]. Now SR has

crossed disciplinary boundaries: its role in sensory biology

has been explored in experiments on single crayfish neurons

[16], cat visual cortex [1], cricket cercal sensory system [30],

human memory retrieval [48], human visual perception [36],

[51] and human hearing [54], [26], [24].

Since its introduction, SR has been shown to occur under

many different circumstances, with various types of signals,

nonlinear processes, and measures of performance [12], [19],

[25], [9], [8], [35], [32]. Most of the literature on SR involves a

signal which is itself too weak to elicit a strong response from

the nonlinear system. For larger (suprathreshold) signals, SR

induced by a single nonlinearity disappears [7], [30]. However

it has recently been shown that suprathreshold SR can occur

in an array of parallel nonlinear units with independent noise

injection where their outputs are summed [21], [45], [46].

Like subthreshold SR, there is an optimal nonzero noise level.

The increase in output entropy improves the independence in

information transmitted by individual units, giving rise to a

net increase in transmitted information, under optimal noise

conditions. However, suprathreshold SR cannot be measured

using SNR [47].

While we recognise the importance of suprathreshold SR,

this study will only focus on subthreshold SR in neuronal

systems for the following reasons. Firstly, we are interested

in SR in both single input layer LIF neurons and output layer

LIF neuron (see figure 1). Secondly we also want to quantify

SR using SNR which we cannot do for suprathreshold SR

as already discussed. Specifically we study SR in a parallel

array of LIF neurons receiving a common subthreshold signal

with an alpha synapse [42] at the output. Similar studies

have been done by among others [34], [23] who looked at

enhanced information transmission in an array of comparators.

[43] looked at a parallel array of LIF neurons which just sums

the output while [53] looked at a similar architecture with a

depressing synapse at the output LIF neuron.
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Simulation of SR in “continuous” systems using floating

point based models is well established [5], [49] and [44]. Such

models are fairly accurate but do not always result in real-time

performance. This work aims to show that SR still occurs with

lower resolution integer based representations which allow

real-time performance on inexpensive digital hardware such

as FPGAs. FPGAs are reconfigurable programmable logic

devices [6].

We investigate the effect of varying the resolution of the

numbers inside the simulation of SR in a feed forward neural

network (see figure 1): we do this by examining SR in a 32 bit

floating point model of this system implemented in Java, and in

an integer model where the integer length is varied downwards

from 16 bits implemented on the FPGA. The SR effect is

assessed by applying a subthreshold periodic signal plus noise

to the system, and examining its output in terms of SNR and

Fisher information. For both models we calculate the SNR and

the Fisher information at different input noise amplitudes. For

the integer model, besides varying the noise, we also calculate

the SNR and Fisher information values at different resolutions.

This work extends our previous work in [38], [37] related

to digital implementation of real-time neural sensory systems

for signal detection in noisy inputs. The input layer neurons

(see figure 1) depict SR in a single neuron receiving noisy

continuous stimulation while the output neuron, stimulated by

spikes from the input neurons, depicts SR in a network. Our

results show that integer lengths of at least 10 bits produce

usable results, and that the network produces a performance

improvement for 6 input neurons at integer length of at least 11

bits using the SNR measure but not with the Fisher information

measure. The Fisher information measure requires more than

6 input neurons to register an improvement over the input at

the output.

A. Measuring stochastic resonance

Stochastic resonance can be demonstrated using almost any

method of detecting or reconstructing a subthreshold signal

from information contained in the crossings of the threshold

θ of a detector by the signal plus noise. SR metrics are

chosen according to the nature of the input signals and of

the transmission system itself. If the signal is periodic and

observed over a relatively long time interval, then it is common

to do a Fourier analysis of the crossing times and to measure

the information thus gained about the signal as the ratio of

the power spectral density (PSD) at the signal frequency to

that generated by noise at the nearby frequencies (the signal-

to-noise ratio see equation 1) [49].

SNR =
PSDfsig

PSDfother

(1)

wherefsig is the signal frequency andfother is the frequency

bands outside the signal frequency. Another way to quantify

the SR effect, related to the way neural activity is analysed,

is to investigate the (empirical) residence-time probability dis-

tribution, or interspike interval histogram [31]. If an aperiodic

signal is observed over a relatively long time interval, then

goodness of signal reconstruction or the coherence between

the signal and the output has been measured by a correlation

measure [11] and entropy based methods [18].

SR is characterised by improving the measure of depen-
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dence of the output on the input by means of an increase in the

level of noise. The standard measure of SR has been the SNR

of the power spectrum [49]. All spectral quantities, including

the SNR, are based on averages over long times. A feature

present on average, however, is not necessarily present in a

limited sample, such as the record of a single neuron’s spike

train over the first few hundred milliseconds of its response.

Thus the SNR does not in any way address whether the system

can reliably perform signal detection based on the spike output

of a single neuron over a short duration. More appropriate

measures that explicitly depend on the sampling time are ones

based on information theory [22], [44]. In this paper we will

examine the existence of stochastic resonance in SNR (see

equation 1) and in an information theoretic measure using the

leaky integrate-and-fire neuron model.

The information theoretic measure that we use is the Fisher

information,J(µ) normally defined as [14]:

J(µ) =
∫

1
p(N ;µ)

( ∂

∂µ
p(N ;µ)

)2
dN (2)

where p(N ;µ) is the probability of observing N spikes,

given an inputµ. The Fisher information is closely related

to the entropy, or inherent uncertainty, in the distribution

p(N ;µ). The Fisher information can also be interpreted as

the amount of information in the output about the input signal

[41]. Maximising the entropy subject to a fixed parameter is

equivalent to minimising the Fisher information about that

parameter. If the input noise amplitude is fixed, thenµ is the

only free parameter of the spike count distribution. Using these

facts, it is possible to write down a simple lower bound for

the Fisher information [44]:

JLB(µ) =
1

σ2
N (µ)

(∂µN

∂µ

)2

(3)

whereσN andµN are the standard deviation and mean of the

spike count probability distribution, respectively.

Since the spike countµN over a fixed window of time is

an estimate of the firing ratef(µ), we can rewrite the lower

bound of the Fisher information from (3) as [44]:

JLB(µ) =
1

σ2
f(µ)

[ ∂

∂µ
〈f(µ)〉

]2

(4)

where〈.〉 denotes averaging. Recent work on the use of infor-

mation theoretic measures to characterise stochastic resonance

in a neural arrays can be found in the works of [47], [34], [23],

[40].

II. T HE MODEL

+

+

+

+

N1

N2

N3

Nm

Input layer

LIF Alpha synapse

spikes

spikes

signal

Output layer

Fig. 1. Network model. Layer 1:m identical, input LIF neurons receive the

same 20Hz subthreshold sinusoidal input plus independent uncorrelated noise

(N1, N2, N3, ..., Nm). Output: Similar LIF neuron model receives spiking

input via m Alpha synapses.

Each LIF neuron in figure 1 is modelled by the LIF neuron

model equation (5) which idealises the point neuron membrane

as a capacitorC, in parallel with a resistor of resistanceR.

The effective currentI(t) may hyperpolarise or depolarise the
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membrane.

C
dV

dt
= I(t)− V (t)

R
(5)

For the input neurons,I(t) is composed of a periodic sub-

threshold sinusoidal part and a stochastic component. This

component is the additive noiseξi(t) [4], different for each

input neuron. It was generated by bandpassing Gaussian white

noise (see below). For the output neuron

I(t) = a
N∑

k=1

Ik(t) (6)

where a is the synaptic weight (determined by looking at

weights which maximise SNR as explained later) which is

the same for all the neurons and

Ik(t) =
m∑

i=1

α(t− tki) (7)

where the indexk = 1, ..., N denotes the input neurons and

the indexi denotes theith input from a particular input neuron

k, whose time of arrival istki
(0 < tk1 < tk2 < ... < tkm

)

and m is the number of active spikes from input neuronk.

The alpha function is given by [28]:

α(t) =
1
τs

e−
t

τs for t ≥ 0, and 0 for t < 0. (8)

where τs is the synaptic time constant for synapsek in the

millisecond range.

The synaptic weighta was determined as follows. The

network was run with one neuron and the maximum SNR

value,SNRmax was determined from the SNR versus noise

plot. The noise strengthσmax which resulted inSNRmax was

also noted. The network was then run with one input and

one output neuron keeping the noise value atσmax, the value

that gave us the maximum SNR value for the single neuron

case. The synaptic weight was changed until the SNR value

for the output neuron equalled the maximum value for the

single neuron case. The resulting synaptic weightW (which

equalises the SNR at the output withSNRmax) was then

divided by the number of coincident spikes needed to make

the output neuron fire a single spike with a weight of 1. That

is, the synaptic weighta for all the synapses is given by:

a = W
n . The rationale behind this synaptic weight was to

ensure that the coupling between the input neurons and the

output neuron is weak, that is, a single spike from an input

neuron in a multiple neuron network does not cause a spike on

the output neuron. Coupling is said to be strong if each spike

from the input neurons causes a spike on the output neuron.

According to the results reported by [53] stochastic resonance

was stronger for weaker coupling between input neurons and

the output neuron than for stronger coupling.

An alpha synapse was used in preference to a step function

for both biological and engineering plausibility. The rise time

of the alpha synapse was 10 ms. A network model similar to

ours using a depressing synapse with 4 input layer neurons

was studied in [53]. They report that a depressing synapse

improves the SNR at the output. Similar results were also

reported in [13] using a rate coding based FitzHugh-Nagumo

model network with a similar topology. Both these networks

used floating point numbers.

The network was simulated using a1 ms time step. For

the input neurons, the noise,ξi(t) was generated from a

discrete noise signal in which the value at each time step

was a sample from N(0,1), the Gaussian distribution with
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mean 0 and variance 1 by bandapassing it between 5 and

100 Hz. This ξi(t) varies relatively little between adjacent

samples. The value ofτs in the alpha function (equation 8)

is also such that the inputs to the output neuron also vary

relatively little between adjacent samples. It is therefore valid

to use a simple Euler approximation otherwise techniques for

numerically solving stochastic differential equations like the

one described by [33], [27] would have to be used.

The floating point model uses the Euler approximation of

equation (5) given by equation (9) .

V (t + ∆t) = V (t)(1− ∆t

τ
) + ∆tI(t) (9)

where∆t is the time step, andτ = CR is the membrane time

constant.

Equation (9) is implemented on an FPGA platform by (i)

making all values integers and (ii) making division only by

powers of 2.∆t
τ is expressed as2−k (we call k the leakage

factor) and∆t is expressed as2−m. This is because full

integer division is expensive to implement (both in number of

gates and speed) whereas bit-shifting is very fast. The alpha

function was implemented using a look-up table. In integer

form equation (9) becomes

V̄ (t + 1) ≈ V̄ (t)− V̄ (t) >> k + Ī(t) >> m (10)

where>> denotes bit-shifting to the right which is basically

division in powers of 2.

III. M ETHODOLOGY

The floating point model can take inputs directly from

I(t). However the integer model requires integer inputs which

means the input signals must be quantised. This is achieved by

multiplying the input signals by2n (wheren is the resolution

i.e. integer length). The floating point model was implemented

in Java and the integer model in Handel-C [2]. The output

spike trains for several runs with different noise streams each

time were collected for the floating point model and different

integer lengths (10, 11, 12 and 16 bits) for the integer model

on the FPGA. The main output of interest are the spike trains

from both the “input” and “output” neurons (see figure 1) from

which the two SR metrics were computed using Matlab.

A. SNR

The power spectra were computed using the method of Gab-

biani and Koch in chapter 9 of [29]. The SNR is then computed

from the power spectra using the method of Chapeau-Blondeau

in [10]:

SNR =
S(ω)
N(ω)

(11)

whereS(ω) is the power spectrum of the spike train at the

signal frequency andN(ω) is the power spectrum of the

background noise around the signal frequency. Each SNR

value is an average from 10 different spike trains each 4 096

samples long.

B. Fisher information

Standard practice in neurophysiology consists of quanti-

fying the neuronal response by summing up the number of

spikes fired by a neuron over a fixed time period. The spike

count constitutes an estimate of the firing rate of the neuron.

Once a threshold of a neuron is fixed and set to a detection

criterion, it can act as a detector of the spike signal from a

presynaptic sensory neuron. Consequently, the spike count is
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the natural measure for a signal detection system made out of

neuronal building blocks [44]. Because we are dealing with

a sinusoidal signal we imagine that the periodic component

of the LIF unit’s spike train is determined by the average

number of spikes fired during the “up” phase of the sinusoid

after subtracting the number of spikes fired during the “down”

phase. The length of the window for determining the firing rate

is equivalent to half the period of the sinusoidal input signal.

The Fisher information (lower bound) is computed as fol-

lows: from equation 4 we approximate the partial derivative:

∂

∂µ
〈f(µ)〉 (12)

by [ 〈f(µ1)〉 − 〈f(µ2)〉
〈µ1〉 − 〈µ2〉

]
(13)

where〈f(µ1)〉 is the mean firing rate for the first half of the

input signal period and〈f(µ2)〉 is the mean firing rate for the

second half of the input signal period.〈µ1〉 is the mean of

the first half of the input signal and〈µ2〉 is the mean of the

second half of the input signal.

Therefore the Fisher information (lower bound) is given by:

JLB(µ) =
1

σ2
f(µ)

[ 〈f(µ1)〉 − 〈f(µ2)〉
〈µ1〉 − 〈µ2〉

]2

(14)

IV. RESULTS

The FPGA used here is a Xilinx Virtex XCV1000 [52].

A 7-neuron network implementation on this FPGA occupied

147 625 gates and a single neuron implementation occupied

10 718 gates [38]. The results presented here are for the

following network and signal parameters:

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Noise amplitude

S
N

R

Input
Floating point
10−bit FPGA
11−bit FPGA
12−bit FPGA
16−bit FPGA

Fig. 2. Input layer neuron SNR for Java (floating point) and FPGA (integer

resolutions 10,11,12 and 16).

• membrane time constantτ = 20ms;

• thresholdθ = 20mV;

• signal frequencyω = 20Hz;

• absolute refractory period = 10ms;

• synaptic time constant = 10ms;

• Bandpassed noiseξi(t), of variable amplitude;

• spike trains were 4 096 samples long.

The choice of parameters was motivated by the applicability

of the network topology to auditory signal processing and the

frequency regimes in which stochastic resonance has been well

studied according to literature. Stochastic resonance is well

established in the low frequency regime according to [18] and

[50]. Hence the choice of the 20Hz frequency. LIF neurons

model real neurons which operate on continuous time-varying
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signals and the choice of time constants must match those of

the signals. The membrane time constantτ was motivated by

measurements from real neurons and the choice of frequency

and also its possible role for sound segregation in auditory

scene analysis [20]. The absolute refractory periodtref was

chosen based on values reported in the literature on neuronal

modelling [15]. tref sets the limit for the firing frequency of

the neuron, the neuron can not fire beyond1tref
Hz.

A. SNR

The results are summarised in figures 2 to 13. They show

that there is stochastic resonance in the input neurons and the

output neuron in both models using both the SNR and the

Fisher information metrics.
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Fig. 3. FPGA (resolutions 10,11,12 and 16) input layer neuron and output

layer neuron SNRs for the 5- and 7-neuron network.
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Fig. 4. Java 5-, 7- and 10-neuron network input layer neuron and output

layer neuron SNR

Figure 2 shows that at the input layer, Java SNR values are

better than all the FPGA resolutions considered. It also shows

that SNR values for the integer model improve for resolutions

up to 12 bits after which they stay constant as evidenced by

the similarity between SNR values for 12 bits and 16 bits

resolutions.

The SNR at the output also increases with increase in

resolution (see figures 5 and 6) just like it does at the input

layer. In both figures the SNR values for the integer model

resolutions of 12 and 16 bits slightly overtake the Java SNR

between noise amplitudes of 10 and 15. This is interesting

because at the input layer SNR values for the Java model are

always better than at all the FPGA resolutions considered (see

figure 2).
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Figure 3 shows that the SNR at the output neuron is

influenced by both the resolution and number of input neurons.

The SNR value at the output increases with an increase in the

number of input neurons. The 10-bit resolution SNR result

shows that the input layer SNR is always better than the output

neuron result for both 5- and 7-neuron networks. For 11 bits,

12 bits and 16 bits, only the output for the 5-neuron network

is less than the input layer neuron SNR, the output neuron

SNR for the 7-neuron network is always above the input layer

for all the noise values considered. This suggests there is an

interaction between the output neuron SNR, the number of

input neurons and the resolution of the integer model.

Figure 4 shows that as the network increases in size so does

the SNR of the output neuron. This result was only proven on

a limited scale on the FPGA (see figure 3) because we were

unable to produce a network with more than 7 neurons due to

computing equipment limitations.

B. Fisher information

The floating point and integer single input neuron spike

train Fisher information exhibit the familiar shape of stochastic

resonance (see figure 7). The general shape of the Fisher

information curves for both the floating point model and all the

resolutions on the integer model portray stochastic resonance,

(see figure 8). At the low noise end, the graphs are quite

separated and it is clear that the Fisher information values

increase with resolution with the 10 bits integer being lowest

and 32 bits floating point being highest. The 12 and 16 bits

graphs are almost indistinguishable throughout. The effect of

quantisation is stronger at the lower noise end as shown by

0 5 10 15 20 25 30
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25
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R

Noise amplitude

10−bit FPGa
11−bit FPGA
12−bit FPGa
16−bit FPGA
Floating point
Input

Fig. 5. 5-neuron network output layer neuron SNR for both Java and FPGA

(resolutions 10, 11, 12 and 16).

the graphs being clearly separated while at the high noise end

the graphs are lumped together because noise is the dominant

feature at this end.

At the output neuron the curves are much more separated

as seen in figure 9. 10 bits integer is well below all the other

resolutions. The graphs can still be separated on resolutions

though. 12 and 16 bits actually out-perform the 32 bits floating

point model for most of the noise amplitudes considered.

As the network size increases we see that the higher resolu-

tions dominate (16 bits integer and 32 bits floating point), see

figure 10. This suggests that there is an interaction between

network size and the resolution.

In the integer model, for the network sizes considered (5

and 7-neuron network) the output neuron Fisher information



10

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Noise amplitude

S
N

R

10−bit FPGA
11−bit FPGA
12−bit FPGA
16−bit FPGA
Floating point
Input

Fig. 6. 7-neuron network output layer neuron SNR for both Java and FPGA

(resolutions 10,11,12 and 16).

never exceeds the input neuron Fisher information for all the

resolutions considered (10, 11, 12 and 16 bits), see figure 11.

However, the gap between the input Fisher information and

output Fisher information decreases as the network size is

increased. The narrowing of the gap between the output neuron

Fisher information and the input neuron Fisher information is

resolution dependent. The gap between the input neuron Fisher

information and 7-neuron network out Fisher information is

biggest at 10 bits and smallest at 16 bits. The difference

between the 5-neuron and 7-neuron output is also resolution

dependent. In the 10 bits case, 7-neuron network output is

less than 5-neuron network output for the lower noise values

where as for 16 bits the 7-neuron network output is above the

5-neuron network for all the noise amplitudes considered as
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Fig. 7. Input layer neuron Fisher information for both floating point and

integer models.

can be seen in figure 11.

The input neuron does not appear to be affected much by

resolution because it peaks around a Fisher information value

of 2.6 for all the resolutions considered (figures 11 and 12).

Both SR measures have shown that they can portray stochas-

tic resonance in both the integer and floating point models both

at single and network level.

Due to computational limitations we were not able to get a

network of size bigger than 7 neurons on the FPGA but we

were able to do that with the floating point model in Java.

Increasing the number of neurons to 10 and beyond showed

that the Fisher information of the output neuron actually

exceeds that of the input neuron as shown in figure 12.
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Fig. 8. Effect of resolution on a single input layer neuron Fisher information.

V. D ISCUSSION

The results presented above are influenced by precision

limitation (quantisation), network size and the type of SR

metric used.

A. Quantisation

Quantisation affects the evolution of activation and its effect

is that the changes inV (t) over ∆t implemented by equation

(10) are forced into integer values and that the integer activa-

tion value ceases to decrease when(V (t) >> k + I(t) >>

m) < 1 resulting in the LIF neuron not decaying to zero from

a high start value with no input, see figure 13. This leakage

problem in the integer model is also coupled to the size of

the time step∆t. Decreasing the time step makes the problem

worse as the decrementV (t)×∆t
τ , is proportional to∆t. Yet
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Fig. 9. 5-neuron network output layer Fisher information for both floating

point and integer models.

increasing∆t is not normally an option, as we need∆t � T .

For the chosen values ofτ = 0.02s and ∆t = 0.001s, the

resolution needs to be at least 10 bits.

B. Stochastic resonance

Armed with the expressions for signal and noise spectra,

we can write SNR = S(ω)/N(ω). The increase in the

signal power due to stochastic linearisation is counteracted

by the increase in the noise power. The LIF system takes the

incoherent energy from the noise and feeds it into coherent

energy at the frequency of the periodic signal leading to an

increase in the SNR at the output. The uncorrelated noise

increases only by a factor of
√

N on average across the

population of the neurons, while the coherent input signal is
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Fig. 10. 7-neuron network output layer Fisher information for both floating

point and integer models.

strengthened by a factor ofN . This yields an increased SNR

and a more sensitive neural network.

Figures 2, 4, 3, 5 and 6 show that the differences in SNR

values for the resolutions considered in the low noise regime

are much higher than the differences at the high noise end.

This applies to both input and output neurons. The difference

in SNR in the lower noise levels at the input layer (see figure

2) are as much as 3dB and the same differences for the

output layer are as much 6dB (see figure 6). The decrease

in the differences in SNR (as noise strength is increased)

may suggest that quantisation effects are more pronounced

at lower signal plus noise levels. This could be attributed to

loss of changes in the activation. The maximum input layer

improvement in SNR due to SR on the FPGA platform never
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Fig. 11. Interaction between network size and resolution for the integer

model (10, 11, 12 and 16 bits). This figure compares the output layer neuron

Fisher information for different network sizes and resolutions with that of a

single input layer neuron.

reaches the same level as that of the floating point model for

lower noise levels.

For the integrate-and-fire model, SR in the Fisher infor-

mation J(µ) arises through the conjunction of two effects:

stochastic linearisation - the increase in the slope of the firing

rate curve - and the noise-induced increase in the spike count

variance. Adding noise to the input comes with a price: the

noise in the output increases as well. Thus an increase in

the separation in mean firing does not imply an increase

in the discriminability or the Fisher information. Looking at

equation 4, we note that the numerator is affected by stochastic

linearisation, whereas the denominator measures the “noise”



13

0 5 10 15
1.8

2

2.2

2.4

2.6

2.8

3

3.2

Noise amplitude

F
is

h
er

 in
fo

rm
at

io
n

input
5 neurons
7 neurons
10 neurons
15 neurons

Fig. 12. Floating point model Fisher information for different network sizes.

The figure compares the output layer neuron Fisher information for different

sizes with that of a single input layer neuron. It shows that the output layer

neuron Fisher information for network sizes greater than 7 exceeds that of

the input layer neurons.

in the output. For the LIF neuron model, both numerator

and denominator always increase as a function of the input

noise; eventually, though, the denominator will dominate. As

a consequence, the Fisher information will first rise and then

fall as a function of the input noise variance; this is the origin

of the SR peak.

C. Comparison between the two metrics

The results presented in the previous section have shown

that the SR effect can be measured using SNR and Fisher

information metrics. Both SR measures are sensitive to reso-

lution. At the input neuron both metrics respond similarly to
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Fig. 13. Membrane decay due to leakage from a high start value in the

absence of input.

changes in resolution in that the lowest resolution (10 bits) has

the lowest metric value and the highest resolution (32 bits) has

the highest metric value (see figures 2 (SNR) and 8 (Fisher

information)). 12 and 16 bits resolution are indistinguishable

for both SNR and Fisher information at the input neuron. Both

measures are affected in a similar way by quantisation in that

the graphs for both metrics are separated at low noise values

but lumped together at high noise values for the input neuron.

At network level the main similarity is that the curves for both

metrics are more separated at the high noise end than at the

input neuron for the same noise values, see figures 5, 6 (SNR)

and 9, 10 (Fisher information).

The main difference between the two measures is at network

level. When we compare the input neurons and the output
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neuron for different network sizes we see that the output

SNR of the 7-neuron network exceeds the input neuron SNR

for resolutions above 10 bits. On the contrary the 7-neuron

network output Fisher information never exceeds that of the

input neuron Fisher information. However, as the number

of neurons is increased to 10 neurons the output Fisher

information does exceed that of the input neuron but this

result was only proven for the floating point model. We think

the explanation for this lies in the way the two metrics are

computed. The Fisher information has the termσ2
f(µ) in its

denominator which is a noise measure for the entire spike

train which scales with
√

N . This means as the number of

neurons increases we are dividing by a smaller number each

time. On the other hand the SNR is computed by dividing by

noise power in the vicinity of the signal frequency.

Collins showed, in a summing network of identical

Fitzhugh-Nagumo model neurons, that an emergent property

of SR in multicomponent systems is that the enhancement of

the response becomes independent of the exact value of the

noise variance. This allows networks of elements with finite

precision to take advantage of SR for diverse inputs.

VI. CONCLUSION

The conditions we have presented, of various forms of

noise-enhanced transmission with information-theoretic char-

acterisations, are merely illustrative. The effect is preserved

over a broad range of signals and nonlinear systems, as it

was verified to be the case in studies on other forms of

stochastic resonance [3]. Also different measures can be used

to quantify a stochastic resonance effect, especially measures

from information theory as we have shown here, all depending

on the purpose and prospect involved.

Stochastic resonance remains an emerging effect. From a

conceptual standpoint, stochastic resonance is an important

phenomenon as it modifies the status of noise by establishing

that in nonlinear systems noise is not necessarily a nuisance

but may sometimes be turned into a benefit. From a practical

standpoint, stochastic resonance may have useful applications

for signal processing by nonlinear systems, especially when

no full control is available over nonlinearities. Both aspects of

stochastic resonance call for further exploration.

We have shown that a network of low-precision LIF neurons

can take advantage of stochastic resonance to accurately

encode and transmit an input. The collective properties of these

systems exceed the limitations of a single element. Careful

tuning of properties of the elements, such as thresholds,

may yield further improvements in the performance of the

system. This is important because such systems can permit

digital electronic implementation with real-time performance,

for example through FPGA implementations. The amount of

SR may not be as high as in high resolution implementations.

It has also been shown that in integer systems SNR saturates as

we increase the bit length at which activation is computed. For

the parameters chosen in this simulation, SNR was not found

to improve with an increase in the resolution beyond 12 bits

for input neurons. The output neuron saturates at a resolution

higher than 12 bits. The improvement in output SNR when the

output of a parallel array of neurons converge on one neuron

could justify the existence of such networks in the central
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nervous system confirming the findings of [13].

In terms of application, this work could be used in the

design of digital front-end systems for implantable visual and

cochlear prostheses [47] or for detecting regularities in noisy

inputs in highly sensitive input devices. This work could be

extended to suprathreshold signals and investigate the effect

of precision limitation on this type of SR using an information

theoretic measure.
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