Sound Signal Statistics

Leslie S Smith, Department of Computing Science and Maths, University of Stirling, Stirling, Scotland. lss@cs.stir.ac.uk

Introduction: How might one analyse sound?

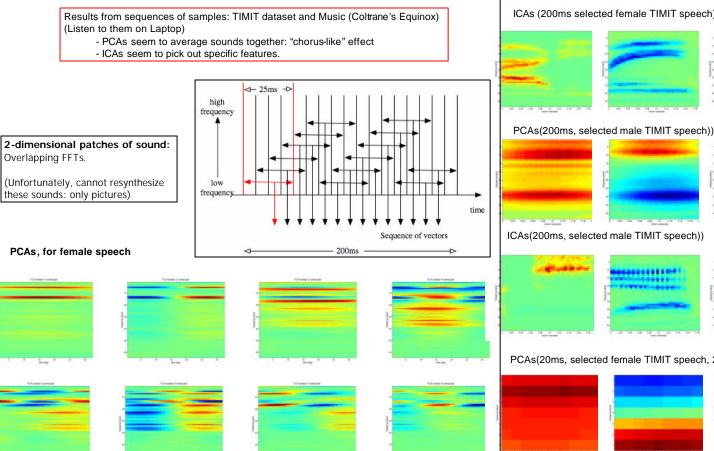
– Useful, informative, but begs the question of why the auditory pathway is like it is
Follow the ecology: Need to "instrument" behaving animals
Follow the signal: Time to try this – Particularly since many have studied this in the visual area for more than a decade! E.g. Lewicki 2002, Klein et al 2003.

Alternative introduction: Why is auditory processing like it is?

Because of sound statistics, ecological requirements, what is biologically possible sound has shaped auditory processing: over evolutionary timescale and over lifetime of animal

- We therefore become interested in the statistics of sound
- For some animals, specific sounds are all that matters
- Crickets and detecting females, Cricket parasite
- But for other animals, sound has a more general utility: What and where tasks: - auditory scene analysis.

Sound signal statistics


- Information about the world comes from statistical deviations from pure randomness. Where do we look for statistics in the sound field?
- Take the hint from image analysis:
- PCA and ICA on patches of images provide structures which seem to reflect image structures: edges, corners, etc.
- Analysis uses patches (small circular (or square) solid angles of (usually static) image)
- They also seem to provide 'receptive fields' similar to cortical neurons
- Suggests applying PCA and ICA to sound. But how? What is a 'patch of sound? Note: we deal here with monaural sound. Binaural sound can provide further material of interest, particularly in sound source localisation.

"Patches" of sound

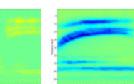
What are the candidates?

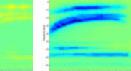
- A sequence of samples: 1-d, simple to produce, easy to work with, and results are sounds Single FFT vectors: 1-d again, results are spectral analysis of section of sound Sequence of FFT vector: 2-d: Output is spectrogram of a piece of sound Coded filterbank output: 2-di: Output is filterbank output over a period.
- Many other possibilities as well.

1-Dimensional results

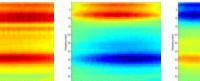
filters (only channel shown pike train outputs Log-intensity Spiking ("AN") outputs Auditory-nerve-like spike output oise150Hzrec_art Right. AN firing a-30 Right. AN firing <u>. د شم هم از هم از مش فر د مرم د میچ د.</u> 0,1 0,12 0,14 0.02 1.2 seconds speech 200 ms speech Results PCAs(200ms, selected female TIMIT speech))

ICAs (200ms selected female TIMIT speech)

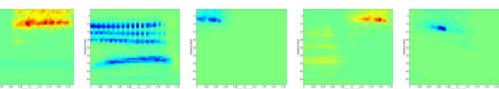

Filterbank approach

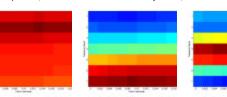

Log-scale bandpass

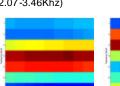
Gammatone filterbank, logarithmic

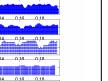

Microphone input

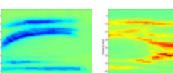
(approx) distribution of bands

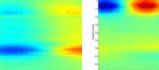


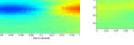


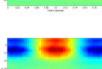


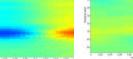

ICAs(200ms, selected male TIMIT speech))

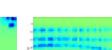

PCAs(20ms, selected female TIMIT speech, 2.07-3.46Khz)

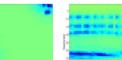


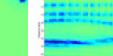


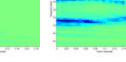

		Contraction of the local division of the loc			Contraction of		-
	Į.		E	Ţ.		E.	
	1		1			1	
	1		1	1		1	

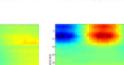



1,			1,
			-
			-
		NUMBER	-
	 14 10 pr	14 10 14	









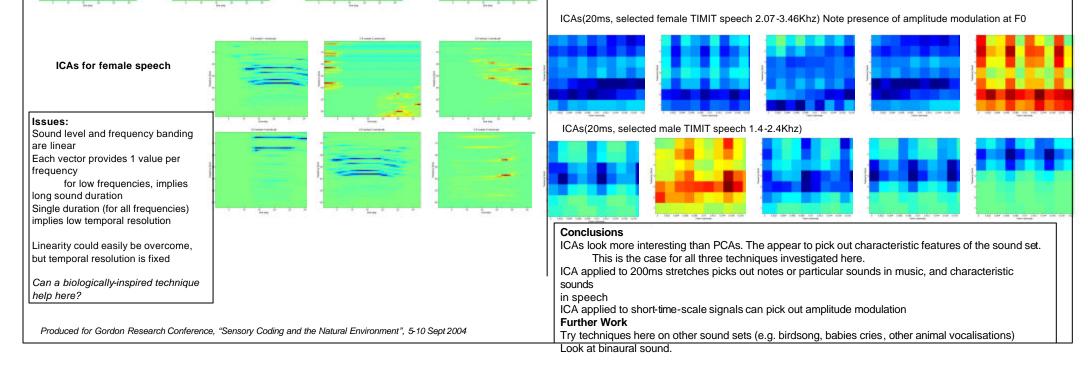
Auditory-nerve-like spike-train

of intensity levels

Bandpassed signa

based coding: Logarithmic coding

UNIVERSITY OF STIRLING


For each time segment in each band

we produce a single number from the

spike coding. We can use different

time segment lengths in different

bands

