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Abstract—Echo state network (ESN) is a relatively recent type
of recurrent neural network that has proved to achieve state-
of-the-art performance in a variety of machine-learning tasks.
This robust performance that incorporates the simplicity of ESN
implementation has led to wide adoption in the machine-learning
community. ESN’s simplicity stems from the weights of the
recurrent nodes being assigned randomly, known as the reservoir,
and weights are only learnt in the output layer using a linear
read-out function. In this paper, we present a novel approach
that combines ESN with support vector machines (SVMs) for
time series classification by replacing the linear read-out function
in the output layer with SVMs with the radial basis function
kernel. The proposed model has been evaluated with an Arabic
digits speech recognition task. The well-known Spoken Arabic
Digits Dataset, which contains 8800 instances of Arabic digits 0-
9 spoken by 88 different speakers (44 males and 44 females) was
used to develop and validate the suggested approach. The result
of our system can be compared to the state-of-the-art models
introduced by Hammami et al. (2011) and P. R. Cavalin et al.
(2012) , which are the best reported results found in the literature
that used the same dataset. The result shows that ESN and
ESNSVMs can both provide superior performance at a 96.91%
and 97.45% recognition accuracy, respectively, compared with
95.99% and 94.04% for other models. The result also shows that
when using a smaller reservoir size significant differences exist in
the performance of ESN and ESNSVMs, as the latter approach
achieves higher accuracy by more than 15% in extreme cases.

I. INTRODUCTION

Computational neural network research can be traced back
to 1943 when Warren McCulloch and Walter Pitts published
their influential paper titled "A Logical Calculus of Ideas
Immanent in Nervous Activity" [13]. This paper gave birth
to the artificial neural network [12] [15]. In fact, the impact
of this paper can still be seen in the field. Here we are using
two of the most robust state-of-the-art techniques, recurrent
neural networks (RNN) and support vector machines (SVMs),
both of which can be traced back to [13]. RNNs have the
ability to model dynamic systems where the output of the
network will be determined not only by the current input but
also by the current state of the network. Given enough hidden
nodes, RNNs can represent any Turing machine. Despite these
attractive properties, the lack of an efficient learning algorithm
has prevented the RNN’s adoption in most real-world applica-
tions. More recently developed learning algorithms such as

Backpropagation Through Time (BPTT) cannot handle the
vanishing gradient problem, which limits the use of RNNs
and deep neural networks.

Over the years, several learning techniques have been intro-
duced to tackle this problem and to extend the implementation
of RNNs to real-world problems, e.g. long-/short-term memory
(LSTM), introduced by Hochreiter and Schmidhuber in 1997.
This demonstrates robust performance on real-world tasks.
LSTM has been applied in online handwriting recognition
and offline handwriting recognition where it achieved superior
performance and won multiple global competitions in several
languages, including Arabic, English and French [5] [8]. This
shows the real potential of using RNNs if we can overcome
the difficulties of the training phase. Despite the success of
LSTM, the high computational cost, the need to have a very
large sample and the tendency of such big RNNs to over-fit
are still serious barriers to its wider adoption in the research
community.

In 2001, a new type of RNN introduced by Jaeger took a
different approach in addressing issues associated with learning
the weights by not conducting learning in the recurrent nodes
[9]. The recurrent weights are simply initialised randomly and
a linear read-out function is used to learn the weights in the
output layer. This approach allows RNNs to scale to very large
numbers of hidden nodes with relatively low computational
cost, compared to previous approaches. The main property
of the echo state network (ESN) is the echo state, which
can be informally described as following the network and
eventually forgetting its initial state once fed by external input.
ESN demonstrates robust performance in tasks that require the
handling of dynamic systems such as time series forecasting
and time series classification.

On the other hand, SVMs, developed in the late 1990s,
have demonstrated superior performance on classification tasks
that involve static systems. SVMs map the input signal to a
higher dimension using the kernel trick and find the hyperplane
that provides the maximum margin, which allows SVMs
to provide better generalisation performance. The SVM has
several attractive properties which arguably lead it to be the
most adopted approach in the last decade. These properties
and the nature of SVMs will be further discussed in a later
section.



This paper presents a novel approach to combine ESN and
SVMs to obtain higher performance for time series classifi-
cation tasks. The main aim of this suggested approach is to
combine the ability of ESN to deal with time series with the
attractive properties of SVMs. This is achieved by introducing
a novel version of ESN where we replace the linear read-
out function in the output layer with an SVM classifier. The
remainder of this paper is organised as follows: Section 2
provides a brief introduction to the components involved in the
suggested approach: ESN and SVMs. The model is presented
in section 3. Section 4 describes in detail the experiment
conducted. The obtained results are stated and discussed in
section 5. Finally, conclusions are presented in section 6.

II. BACKGROUND

We present a review of the combined approaches. Both the
ESN and SVM techniques will be described emphasising the
most relevant aspects of the proposed model.

A. Echo State Network

ESN is a major type of reservoir computing (RC), which
is an emerging field that provides a new perspective in im-
plementing RNNs. In fact, ESN and liquid state machines
(LSMs) both use a very similar approach developed from
neuroscience and cognitive modeling. These were introduced
by Maass in 2002, and are considered as the starting point for
RC [11]. Since their introduction, several very closely related
approaches have been developed, such as BackPropagation
DeCorrelation (BPDC), which Steil introduced in 2004 [16].
The main concept of RC that is different from previous
approaches is random generation of a large RNN, known as
the reservoir, and use of the response, (i.e. the output), to train
a simple read-out function.

The ESN model is characterised in the following way.
First, Win, which is an m by n matrix (where m is the
size of the input vector and n is the size of the reservoir),
is initialised randomly. Second, Wres, which is an n by n

matrix, is initialised randomly as well and scaled to obtain
the desirable dynamics. Another important component of this
model is the fading memory (forgetting) parameter ↵ , which
plays a major role in controlling the memory capacity of the
reservoir. The model update equations are as follows [10]:

x̄(n) = f(Win[1;u(n)] +Wres

x(n� 1)) (1)

x(n) = (1� ↵)x(n� 1) + ↵x̄(n) (2)

where, u(n) is the input signal on time n and f is a
nonlinear transfer function, commonly logistic or tanh applied.
The response of the reservoir dynamic and the class labels of
training are used to train a simple linear read-out function
that results in learning the weight of the output layer Wout .
This is typically accomplished by applying the pseudo-inverse
equations, as follows:

Wout = (WTW)�1WTY (3)

The simplicity of ESN can be seen from the above and its
robust performance has attracted significant attention. This is

Fig. 1. The structure of the ESN and readout system. On the left, the input
signal is fed into the reservoir network through the fixed weights Win. The
reservoir network recodes these, and the output from the network is read out
using the readout network on the right.

clear from the exponentially increasing number of publications
in recent years. Another way to look into the ESN concept
would be as follows. ESN is mapping the input vector to
a higher dimension using randomly generated RNNs with
forgetting memory and using the teaching signal in learning
a simple linear classifier in the output layer. However, this
means that a very big reservoir is needed to find the desired
linear hyperplane that separates the different classes. This leads
to the need to use an extremely large reservoir size (using
reservoir of size 10000 is not uncommon in ESN) to achieve
state-of-the-art performance [19]. In addition, applying a linear
read-out function would mean that mapping to such a high
dimension would emphasise the need for a bigger data sample
size and more advanced regularisation techniques as in some
cases the size of the reservoir will be much bigger than the
number of training samples. The previous description is similar
to SVMs; however, the nature of SVMs allows them to deal
with infinite space without suffering from the same issues. The
shared similarity between ESN and SVMs will be discussed
in the next section along with an overview of the nature of
SVMs.

B. Support vector machines

The support vector machine was developed by Vapnik in
the late 1990s and since then its popularity has grown rapidly.
This is mainly because it achieves state-of-the-art performance
in many real-world applications and generalises well on unseen
data. Another important factor is that, unlike neural networks,
SVMs provide reproducible results. In addition, error bounds
can be relatively easy to compute, and these offer guidance on
the model generalisation performance.

The main concept of SVMs is mapping the input vector
to a higher dimension feature space and finding the optimal
hyperplane that separates the two classes by maximising the
margin [17]. Only a subset of the training data points are
selected, known as support vectors, hence the name. Several
support vectors are used in estimating the generalisation perfor-
mance; the number decreases as the number of support vectors
increases. Mapping from the input space to the feature space
is accomplished by using the kernel trick, which provides a
mapping to a high space dimensional without the need to
specifically visit this space. The kernel can be defined as
any function that satisfies Mercer’s theorem [7]. The radial
basis kernel and linear kernel are among the most widely
used kernels with SVMs. However, developing new kernels



that express the similarity for different applications is an
active research area and many kernels have been designed
in recent years to tackle specific applications. SVMs were
originally designed as binary classifiers so different techniques
are being used to extend SVMs to the multi-class problem. The
main approaches are ’one against all’ (OAA) and ’one against
one’(OAO) where in the first approach N SVM classifiers
will be built, one for each class, and (N�1)N

2 binary SVMs
classifiers are implemented; the majority voting among these
classifiers will be used in predicting new points citemulticlass
support vector machines [14]. The main equation of SVMs
that is used to estimate the decision function from a training
dataset [7]:is as follows:

f(x) = sign

 
lX

n=1

yn↵n.k(x, xn) + b

!
(4)

where l is the number of the support vectors, b is the
bias term, yn 2 {�1,+1} is the class sign to which the
support vector belongs and ↵ is obtained as the solution of
the following quadratic optimisation problem:

min 1
2w

T
w + C

pP
i=1

⇠i

s.t yi(wT
�(xi) + b) � 1� ⇠i

⇠i � 0, i = 1, ...p

The number of support vectors cannot be greater than the
number of the data points in the dataset; ideally, it should be
a relatively small fraction of the dataset. The major limitation
of SVMs is the lack of ability to handle dynamic systems.
This can be addressed by converting time series to fixed long
vectors before applying SVMs. However, this approach can
make the resulting vectors very long, resulting in the curse of
dimensionality severely affecting performance.

III. PROPOSED APPROACH (ESN & SVMS)

We present and motivate a detailed description of the
proposed model. However, the strengths and weaknesses of this
approach will be fully discussed in the Result & Discussion.

The main motivation behind the development of this model
is that the linear read-out function used in the output layer in
ESN has very limited classification ability. This means that
to achieve state-of-the-art performance, a huge reservoir needs
to be used in many real-world applications to find a feature
space where the different classes are linearly separable. This
may be problematic as it can lead to dealing with a regime
where the number of degrees of freedom is much bigger
than the sample size and applying the simple linear read-out
function to calculate the output weights may result in severe
over-fitting. The generalisation error bounds will also not be
valid in such regime. In addition, linear read-out is sensitive
to outliers, which means that noisy data can severely affect
the performance. Another issue that arises from applying the
simple read-out function is that it is possible to end up with a
non-invertible matrix as a response to the reservoir dynamic,
which leads to several issues in learning the final weights in
the output layer. Based on the previous argument, we suggest

Fig. 2. The proposed system Structure

replacing the simple linear read-out function with SVMs, as
described below.

First, mapping the input vector to higher dimensions using
Win, which is a p by r matrix where p is the dimension of
the input vector and r is the reservoir size, means that it can
be initialises randomly, similar to ESN. Then constructing the
reservoir randomly Wres, which is an r by r matrix, is applied
in the same manner as in ESN and collects the response of the
reservoir in Xcollected, which is a matrix m by r where m

is the number of samples. This matrix Xcollected with the
target label ~y is used to train SVMs, which is a vector of m

components where i

th element represents the class label for
the i

th sample in the training set. To predict a new data point,
it is necessary to map using Win and Wres, and feed the
output to the trained SVMs to determinate the class label of
the sample. A summary of these steps is provided below:

• Step 1: Map the input signal using Win in and pass
it to the reservoir the reservoir Wres for time 0.

• Step 2: Repeat the same procedure until the end of
the signal (different samples do not need to be the
same length) and collect the response of the reservoir
in Xcollected.

• Step 3: Use Xcollected and target label ~y to train
single SVM classifiers in the binary classification
problem or multiple SVM classifiers in the multi-
classification problem.

• Step 4: Predict a new data point by using the mapping
procedures described in steps 1 and 2 and applying
the learned SVM classifiers on the response of the
network to determine the label of the new sample.

To optimise the parameter of the reservoir and SVMs, we
suggest using a validation set to optimise the hyperparameters
of an ESN. Once this has been accomplished, the output of a
reservoir with the same parameters estimated in the previous
step is used to select SVM parameters such as the kernel
type and the cost function based on their performance on the
validation set. These steps usually help in reducing the time
needed in optimising the proposed approach, especially when
dealing with multiple label classification tasks.

IV. EXPERIMENT

To evaluate the performance of the suggested approach,
a real-world application task was selected: Automated Arabic



Speech Recognition. Automated speech recognition (ASR) is
concerned with the development of computational models that
allow computers to map from acoustic signals to a string of
words. Although this task can be performed extremely well
by humans, developing a system to perform even a relatively
simple ASR task such as recognising the digits from 0 -9,
widely known as the Digits Task, is a challenge, especially
with noisy data. Several techniques have been developed to
tackle this problem; however, by far the most widely adopted
has been the hidden Markov model (HMM). In recent years,
this has started to change, however, as attention in the field has
begun to shift towards the adaptation of the recurrent artificial
neural network (RANN) [18].

A comparison was carried out among ESN, ESNSVMs
and the state-of-the-art performance models developed by
Hammami et al. (2011) [6] and P. R. Cavalin et al. (2012)
[1].To obtain a comparable result, the same dataset used by
Hammami and P. R. Cavalin, the well-known Arabic spoken
digits, was used to develop and test the system.

A. Dataset

In this experiment, the Arabic spoken digits dataset was
used; this dataset was developed at the laboratory of automatic
and signals of the University of Badji-Mokhtar - Annaba,
Algeria [4]. This ensures a fair comparison with the state-
of-the-art methods as it was evaluated on this same dataset.
The Arabic spoken digits dataset contains the Arabic digits 0-
9, with each digit spoken 10 times by 88 native speakers, 44
males and 44 females. Thus, it contains 8800 samples which
are divided as follows: 6600 instances for training and 2200
instances for testing. The training set was divided into two
parts with one used for training, which contains almost 75%
of the training sample (5000 samples), and the other used as a
validation set (contains 1600 samples) in the model selection
phase. Here, we report the result on the test data, which was not
used in the development process of the model. The dataset was
recorded at a sampling rate of 11025 Hz 16 bits, and 13 Mel-
frequency cepstral coefficients (MFCC) were extracted using
a hamming window and filter pre-emphasized: 0.97. Matlab
code was written to implement ESN and the LIBSVM library
[2], the Matlab version, was applied to train SVM classifiers
in the output layer of ESNSVMs.

V. RESULT & DISCUSSION

In this section, the result of the conducted experiment will
be described. In addition, the selection of the systems parame-
ters will also be fully stated and the chosen parameters used in
the final model will be specified to ensure the reproducibility
of the reported result. A comparison of performance between
the developed model and two of the state-of-the-art approaches
reported in the literature will also be included. The properties
of the model will be discussed along with the regime in which
the model is most likely to achieve its full potential. Finally,
the limitation of this approach will also be discussed, which
can provide useful guidance on how to improve the suggested
model.

Parameter selection lies under the umbrella of the model
selection phase and techniques vary in their sensitivity to
changes of the hyperparameters. RNNs are known to be

English Arabic Sounds Arabic TM ESNSVMs

Zero .sifr 93.28 98.6

One wahid 99.95 97.7

Two itnan 90.19 97.7

Three talatah 92.16 98.6

Four arbaa 94.59 96.3

Five hamsah 97.62 98.6

Six sittah 95.35 95

Seven saba 89.27 93.6

Eight tamaniyyah 92.98 99

Nine tisah 95.51 99

Average 94.04 97.45

TABLE I. THE RESULT OBTAINED BY ESNSVMS FOR EACH DIGITS
COMPARED WITH TM APPROACH

Fig. 3. A comparison among ESNSVMs, LoGID and TM

sensitive to weight initialisation, which limits the ability to
reproduce the result even when using similar architecture. On
the other hand, SVMs are more robust to changes in the
initial weights and reproducibility is more likely when fixing
the kernel type and the regularisation parameter, mainly due
to convex optimisation which results in a global minimum
solution.

The hyperparameters of each model tend to affect the over-
all performance differently, which leads researchers to focus
on the most important according to their impact. The typical
method of selecting hyperparameters, which is also adopted in
this experiment, is to use a subset of the training set, which
is known as a validation set, in testing a variety of hyperpa-
rameter values. The values corresponding to the best result on



the validation set will be selected. Once the hyperparameters
are fixed, the model is tested on the test dataset and results
are reported and compared with other approaches. ESN has
several hyperparameters that need to be set empirically using
the validation set; however, their impact on the performance
varies significantly. The two major hyperparameters that need
to be determined are the reservoir size and the leakage rate
as they both have a major impact on the performance. Finding
the optimal value that maximises the performance may require
a sound background in machine learning as using a very large
reservoir may easily result in high variance, which needs to be
addressed by adopting the appropriate regularisation technique.
In determining the leakage rate, prior knowledge of the nature
of the task dynamic is useful. In this experiment, using a
leakage rate value larger than 0.4 prevents the model from
distinguishing among the Arabic digits 4,7 and 9 as they all end
with the same sound. The other hyperparameter is the scaling
constant, which is optimised to obtain the desired dynamic of
reservoir. However, the literature has reported that it does not
affect the performance severely; the same was observed in this
experiment.

ESNSVMs seems to be less sensitive to changes in the
leakage rate than ESN; however, the leakage rate is still a
dominant hyperparameter in both models. In ESNSVMs, there
is also a need to set the hyperparameters of the SVM models,
which include the kernel selection, the regularisation parameter
and the epsilon value. The values used in ESN are: reservoir
size is 900, leakage rate is 0.005 and scaling constant is 1.75.
In ESNSVMs, the same previous parameters and the RBF
kernel are applied with gamma 0.001 and the cost value is
1000, known as the regularisation parameter.

Systems Accuracy Rate

TM (Nacereddine Hammami et al, 2011) [6] 94.04%

LoGID ( Paulo R. Cavalin et al,2012) [1] 95.99%

Echo State Network 96.91%

Proposed System (ESNSVMs) 97.45 %

TABLE II. THE RESULTS OBTAINED BY THE PROPOSED SYSTEM , ESN
AND FROM THE TWO COMPARED STUDIES

The performance of both ESN and ESNSVMs is superior to
the published results of the state-of-the-art techniques found in
the literature. Our result is presented in table 2, which clearly
shows the robustness of these two approaches compared to the
other models. The comparison is also valid as all the compared
studies used the same dataset in developing their model and
reported the performance on the provided test dataset. This
means the performance of all the models, including this model,
was reported based on the same 2200 samples, representing
25% of the dataset size, which were divided by the developer
of the dataset. In addition, the test data have not been used
in training the model or in selecting its hyperparameters.
ESNSVMs maintains a higher accuracy rate than ESN and
the gap between their performance peaks when using a very
small reservoir size. The maximum difference reported is 15%
when the size of the reservoir is equal to the size of the input
signal dimension.

Based on the previous obtained result, we argue that using
ESNSVMs can improve system performance. Moreover, it is
clear from our experiment that when using a small to medium

Fig. 4. The effect of the Reservoir Size on the Performance of ESN and
ESNSVMs.

Fig. 5. Confusion matrix of best result obtained by ESNSVMs

reservoir size ESNSVMs achieves a significant improvement
in the accuracy rate. This particularly could be attractive when
dealing with time series with a very high dimension i.e. image
sequences. Also, the ESNSVMs shows robust performance
against over-fitting with easily computed error bounds of the
SVMs, which offers an estimation of the model’s general-
isation ability. Developing new kernels to tackle a specific
problem is also enabled when using ESNSVMs, which may
lead to improvements in performance on different tasks. The
suggested model has some limitations that could prevent it
from achieving the desired performance in certain regimes.
The main limitation of ESNSVMs is the added complexity
over ESN, which is represented in the need to optimise.

The suggested model has some limitations that could
prevent it from achieving the desired performance in certain
regimes. The main limitation of ESNSVMs is the added
complexity over ESN, which is represented in the need to
optimise SVMs parameters used in the output layer. This
include the choice of kernel and its associated parameters.
The learning in general will take longer time specially when
applying ESNSVMs on multiple class problems with medium
to large numbers of classes. This due to the nature of SVMs
which is a binary classifier requires constructing at least
equal to the number of problem classes , in the one against
all approach. This limits the ability of ESNSMs in dealing
with multi-class classification problem with medium to large
number of classes.

VI. CONCLUSION

We have proposed the ESNSVMs approach, which com-
bines ESN and SVMs for time series classification. To evaluate
the performance of the ESNSVMs, we conducted an experi-
ment on the well-known Arabic spoken digits. The dataset is
publicly available and contains 8800 samples for Arabic digits
0-9. The result has been compared with ESN and two other



state-of-the-art models. ESNSVMs achieves a high accuracy
rate of 97.45%, which demonstrates the potential of applying
ESNSVMs on multi-class time series classification problems
with a small number of classes. In addition, the proposed
approach achieves a higher accuracy rate than ESN, especially
when the size of the reservoir size is small.

Further work will include validating ESNSVMs on dif-
ferent classification tasks, i.e. handwritten classification and
different datasets. The model complexity of the output layer
should be reduced to give ESNSVMs the ability to handle
multi-class classification problems with large numbers of
classes. In addition, model performance should be tested on
noisy data; this task is known to be challenging for traditional
approaches, such as HMM, which generally obtains a poor
result.
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