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Abstract

In the brain, different levels of neuro-active substances modulate the behaviour of neurons that have
receptors for them, such as sensitivity-to-input, Koch (1999). An artificial neural network is described
that learns which actions have the immediate effect of minimising cost and maximising reward for an
agent. Two versions of the network are compared, one that uses neuromodulation and one that does
not. It is shown that although neuromodulation can decrease performance it agitates the agent and
stops it from over-fitting the environment.

1 Introduction
Fellous (1999) proposes that emotion can be seen
as continuous patterns of neuromodulation of certain
brain structures. It is argued that theories considering
emotions to emanate from certain brain structures and
from non-localised diffuse chemical processes should
be integrated. Three brain structures are considered in
this way; the hypothalamus, amygdala and prefrontal
cortex.

Fellous (2004) further suggests that the focus of
study should be on the function of emotions rather
than on what they are. Seen in this way, animals can
be seen functionally as having emotions, whether or
not we empathise with them. Given this, robots can
functionally have emotions as well. One function of
emotions mentioned that has a robotic counterpart is
to achieve a multi-level communication of simplified
but high impact information.

One way of studying the functionality of emotions,
is to identify the extra functionality provided by neu-
romodulation compared to a non-modulating solu-
tion. Modulation is used here to signal agent needs
in a neural network that is used for the purpose of
action selection. The structures of both solutions are
inherently the same but the modulating version has
the added interaction between neuromodulation and
neural network.

Although neuromodulators and hormones have
been emulated for the purpose of action selection be-

fore, Avila-Garcia and Canamero (2004) Shen and
Chuong (2002), they have not been applied to a
purely neural network solution and have not been
compared to non-modulating versions. Husbands
(1998) evolves controllers inspired by the modulatory
effects of diffusing NO. This speeds up evolutionary
production of successful controllers.

The difficulty is that what can be done with a
modulating network, can also be done with a non-
modulating network if it has been evolved for that
purpose. Therefore the comparison needs to be made
in an environment that the agent has not been evolved
for.

2 Application of the model
An adaptive agent needs a reason to adapt in order
to do so. A common reason is to maximise and retain
resources. In this context a resource is a single contin-
uous scalar value that correlates with a characteristic
of the state of the agent or environment. A resource
can correlate with a single quantifiable level such as
a battery charge level for a physical robot, or be an
estimation of a virtual non-measurable level such as
utility or safety. An adaptive agent is faced with two
tasks when maximising these resources, that of learn-
ing to perform actions which result in an increase in
a resource level, and that of learning not to perform
actions which result in a decrease of resource.



Here, the Artificial Life animat concept is ab-
stracted to provide the simplest possible context for
testing the effect of neuromodulation applied to an
artificial neural network. The agents have no external
senses to adapt to and can only sense their internal
state. The choice of output directly and immediately
alters the internal state of the agent, which therefore
alters the strength of the input signal to the network.

The agent has a body that requires two resources,
energy and water. It keeps track of the largest increase
and decrease of each. The current change in resource
level is then scaled to these maxima to be within the
range [0,1] before being passed to the network.

The agent is given a set of actions that increase or
decrease by one or two resource points1, or are neu-
tral to, either the energy or water level in the body.
There is one action for each permutation making 10
in total.

3 Implementation

3.1 Topology
The network consists of three layers of adaptive leaky
integrate and fire neurons learning via spike timing-
dependent plasticity, G. Q. Bi (2002). The model
learns which outputs should be most frequently and
strongly fired to minimise the level of input signal.
There is one output neuron per action. The ac-
tion has an effect on the internal state of the agent,
which determines the strength of the input signal to
the network. For the modulating network, the in-
put layer neurons increase modulator strengths when
fired, while the middle layer neurons have receptors
for those modulators.

There are situations in which an effective be-
haviour for an agent may decrease a need but not
satisfy it. For example, if it is in an environment
which is temporarily bereft of resources then waiting
and conserving its current levels may be the optimal
behaviour. Alternatively there may be situations in
which an agent needs to store more resources than it
normally does. In this case the need for the resource
will be signalled despite that need being signalled as
satisfied. An example would be an agent expecting to
find itself in an environment bereft of resources.

For each resource the input layer has two neurons
that output to the middle layer. One neuron signals
the need for the resource and the other neuron signals
the satisfaction of that need. If a previous action per-
formed by the agent results in a decrease in hunger or

1Points are used as it is an arbitrary level that has no correlation
with any real physical quantity.

an increase in resource satiation, then the correspond-
ing input signal is momentarily decreased.

The model uses a feed forward network that can
be iterated over a number of times within a single
turn, after which the winning output neuron is cho-
sen. Which neuron wins is determined by summing
up the total charge of each neuron over all the itera-
tions and choosing the neuron with the greatest sum.
This stops a neuron with strong inputs from losing
because it just has spiked and thus has low activity or
is in a refractory period.

3.2 Modulators
Two variants of the network were created; modulating
and non-modulating. They were the same except that
the modulating network had in addition two modula-
tors, one used to signify hunger and the other thirst.

As used here, a modulator is a global signal that
can influence the behaviour of a neuron if that neu-
ron has receptors for it. The signal decays over time,
specified by the re-uptake rate, and can be increased
by firing neurons that have secretors for it.

Neurons within the middle layer are given a ran-
dom number of receptors. These can be modulated by
neurons in the input layer that have secretors. These
neurons were given a random number of secretors.
The receptors modulate either the neuron’s sensitivity
to input or probability of firing. The extent of this is
determined by the level of the associated modulator
and whether the receptor is inhibitory or excitatory.
The secretors increase an associated modulator. The
modulation rate of the receptors and the increment
rate of the secretors is determined by evolution.

4 Parameter Optimisation
The network has a number of parameters which must
be set correctly for it to adapt successfully. These
are parameters that have no obvious value, such as
the number of neurons in the middle layer, secretion,
modulation rates etc. Automated parameter optimi-
sation was performed for the modulating and non-
modulating agents. Afterwards the parameter sets
were hard-coded and tests were performed upon a
population of agents using them.

The fitness of an agent was determined by

Energy +Water +Age− |Energy −Water|

The difference between the energy and water resource
was subtracted from the fitness as both resources
were essential for the agent to stay alive.



5 Results
After optimisation, a modulating and a non-
modulating agent were picked for further testing. The
fitness of the genotypes were equivalent and both
were typical of the solutions that were evolved. Be-
cause there was a stochastic mapping from genotype
to phenotype and to provide multiple evaluations, the
agents were hard-coded so that they could be tested
as a population.

Parameter optimisation converged upon a fully
hebbian network for the non-modulating network and
a hybrid anti-hebbian / hebbian network for the mod-
ulating network.

5.1 Initial tests
When viewed over the course of the agent lifetime it
can be seen that a typical agent learns which actions
provide minimal disturbance to its inputs. It initially
chooses a neutral action before settling on the most
rewarding water action. The agent then alternates be-
tween this and the most rewarding energy action; see
figure 1. Figure 2 shows the initial learning process
before one output neuron wins over all the others.
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Figure 1: Actions chosen over lifetime of a single
modulating agent.

The performance of the non-modulating and the
modulating agents were similar although on average
the non-modulating network would reach higher lev-
els of fitness and would be optimised by the parame-
ter search more quickly.

5.2 Extended tests
During parameter optimisation, each genotype was
tested for 1,000 turns before being evaluated. The
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Figure 2: The first 40 cycles of the run in figure 1
showing the initial learning process.
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Figure 3: Non-Modulating agent run over an ex-
tended period of time (10,000 turns).

evaluation was cut short if the agent died prematurely
because a resource had decreased to nothing.

After parameter optimisation, when testing a pop-
ulation of hard-coded non-modulating agents for
longer than 1,000 turns, the activity in the network
ceased over time. The charge of the output neurons
would slowly decay over time with the winning ac-
tion remaining the same each time; see figure 3.

The limited use of artificial evolution for parameter
optimisation had settled upon a brittle strategy which
depended on how long each agent was evaluated for.

A population of hard-coded modulating agents
were then tested for the same extended period of time.
They were shown to continue transitioning between
the same two winning output neurons that caused a
maximum increase in energy and water, with other
neurons very occasionally being chosen; see figure
4. Modulation had prevented the artificial evolution
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Figure 4: Modulating agent run over same extended
period of time.

used for the parameter optimisation from over-fitting
the test environment.

6 Discussion

It was discovered that the network performed most
effectively when the actions it chose could minimise
input activity. Wörgötter and Porr (2004) provide
an overview of the field of temporal sequence learn-
ing. They discuss how the learning paradigm of dis-
turbance minimisation, as opposed to reward max-
imisation, removes the problem of credit structuring
and assignment. The two paradigms are not equiv-
alent. Whereas maximal return is associated with a
few points on a decision surface, minimal disturbance
uses all of the points. Every input into the system
drives the learning and when there are no inputs then
the system is in a desirable, stable state.

Modulation agitates the network, stopping it from
settling into a stable state for too long or letting ac-
tivity decline to a point whereby the network stops
alternating between actions. When tested using an
extended run, the modulating network, unlike the
non-modulating version, continues to alternate be-
tween the actions causing the least input disturbance
throughout its lifetime. Figure 4 shows that other ac-
tions always have a chance of being selected.

When comparing the modulating and non-
modulating agents in environments that they were not
evolved for, in this case evaluated for an extended
length of time, then it is shown that modulation makes
the agent more robust. This robustness carries with it
a performance cost.

This suggests that one functional use of emotions
is to provide agitation to the agent in order to not let it

settle into a stable state. Even though the environment
may allow for it or make this the optimal behaviour.
An explanation for this could be that natural agents
have not evolved for such environments because they
rarely exist and cannot be relied upon to last.
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