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Abstract

This paper presents a cascadable aVLSI integrate-
and-fire neural network chip (SPTKE T) capable of
realistic biological time constants incorporated into
a real time software based sound segmentation sys-
tem with results. The sound segmentation sys-
tem is based on an engineering abstraction of the
functionality of the cochlea and auditory nerve.
A comparison of the software simulation and soft-
ware/hardware combination results indicates that
clustering does occur. Furthermore the patterns
of onsets and offsets generated are broadly sim-
ilar. Analysis of the results indicates area’s for im-
provement. These have been included in a second
integrate-and-fire neural network chip (SPIKE 1I)
presently being fabricated.

1 Introduction

This paper provides an overview of the sound
segmentation system, the integrate-and-fire neural
model used and the architecture of the neural net-
work implemented. A comparison using software and
hardware implementations with real time data 1s per-
formed. This suggests clustering of onsets and off-
sets does occur within the network. Improvements
to the system architecture to produce a more gen-
eral purpose integrate-and-fire neural network chip
with increased flexibility are discussed.

Sound segmentation software developed by one
of the authors [2, 3] is based on a model of early
mammalian audition. The model is an engineering
approximation of some of the biological processes
within the cochlea, auditory nerve and cochlear nuc-

leus. Functions rather than the biological processes
are modelled. The cochlea function is implemented
by a multi-channel filter bank (the Gammatone filter
bank [5]), followed by simple rectification, ( model-
ling the inner hair cells of the organ of Corti), onset
enhancement, (modelling the transfer characteristics
of the auditory nerve), and compression (to allow the
system to cope with a large dynamic range).

This preprocessing produces an onset signal in
each channel (the channel onset signal), which is in-
put to an integrate and fire neuron. Neuron outputs
are connected as fixed excitatory inputs to ten adja-
cent neurons (five on either side) and the resultant
network performs clustering of sound onsets across
time and channels. For the purposes of this paper
a “cluster” is defined as those neurons in the net-
work which fire within a “small” time interval of each
other.

The integrate-and-fire neural network is being im-
plemented in aVLSI because it can exploit the par-
allelism of the sound segmentation process itself i.e.
the 32 bandpass filtered channels and post pro-
cessing. Implementation in aVLSI will enable space
efficient design as storage and multiplication are not
required.

2 Integrate-And-Fire Neuron

Model

Recent studies have indicated that the integrate-and-
fire neuron is computationally more powerful than
previous neuron models as they allow the use of time



as a resource [6][7].

Between spikes an integrate-and-fire neuron’s
activity (see Figure 1) is governed by the following
equation, where Vi, , is the activation voltage and
I(t) is the post synaptic input:
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The input I(¢) has two components, the primary
component being the channel onset signal and the
secondary component caused by adjacent neuron
activity. The leaky integrator integrates the result-
ant current until the threshold, 8, of the comparator
is reached whereupon the neuron fires. The output of
the comparator goes high, causing Vi,,, to be zeroed
and held low for the refractory period. With V¢,
zeroed, the comparator output goes low completing
the neuron spike.

3 Integrate-And-Fire Neural

Network

It was decided to implement the integrate-and-fire
neural network in aVLSI, leading to the development
of SPIKE I. A block diagram of the implemented
neuron is shown in Figure 2, a more detailed de-
scription of the functional blocks is provided in [1].
A 4-bit digital number representing the preprocessed
output of earlier sound segmentation stages is loaded
onto the neuron via the data bus. To the network
this incoming signal appears to be time varying, as
the load cycle requires nanoseconds and the network
operates in the milliseconds.

For clustering to occur across frequency channels,
inter-neuron communication is required. On SPIKE
I, each neuron output is connected to the adjacent 5
higher and b lower frequency channels. Each voltage
pulse causes a pulse of current to be applied to the
integrating capacitor of adjacent neurons, equivalent
to 0.3V or one tenth of the upper threshold value.

Each chip contains 8 neurons with local weighted
interconnect and is cascadable. Inter-neuron and
inter-chip communication uses the robust pulse out-
puts of the individual neurons, which are relatively
immune to noise, simple to implement and digital in
nature.

Thoughtout the design process the ability to test
the chip (SPTKE T) was considered and maximised.
However compromises had to be made because of

cost/pin limits. The basic integrate-and-fire neuron
design [1] used in the SPTKE T chip proved that the
basic principles of the design worked, and resulted in
RC' <= 20ms and refractory period <= 100ms time
constants.

4 Results

Results gained from a four chip network of 32 neur-
ons with real-time data applied indicate that the net-
work successfully clusters sound onsets, see Figure 3.
This shows a comparison of the output from a sound
segmentation software integrate-and-fire neural net-
work without/with interconnect and the output from
a4 chip SPIKE I network when fed with identical real
time data. The top three traces show a complete sim-
ulation, which on initial investigation the results look
very good. The bottom three traces show a small sec-
tion of the overall simulation expanded, highlighting
discrepancies between simulation and hardware. A
cluster in Figure 3 can be described as a “vertical”
line consisting of a number of spikes.

Experiments have shown that there is perform-
ance variation both across chip and between chips.
To process spatio-temporally encoded data this vari-
ation should be minimised.

Individual neuron’s performances are well matched
for charging time and refractory period (see Figure 4
and Figure 5), although there is some variation [1].
A fixed input pattern fed to three adjacent neurons
and scanned across the system highlighted variations
in firing pattern. The problem has been identified
as coming primarily from variation in the weighted
interconnect.

Comparison of software and hardware data has
shown that the input to each hardware neuron has
to be scaled by between 0.25 and 0.5 to produce a
good match [4]. There are three possible explana-
tions for this, the first being charge injection from
switches dumping charge into Ci,, this will increase
the voltage level. Secondly imperfect current sources
may result in larger currents than calculated being
applied to Ciy. Finally the switching transients
of pulsed current sources may also result in excess
charge being injected on to Ciyy.

5 Discussion

The SPIKE I chip was designed as ASIC, specifically
to interface with the sound segmentation software
with the minimum of support circuit. However this



limits its flexibility /usefulness in a wider sense. A
more general purpose integrate-and-fire neural net-
work would offer greater insights into system beha-
viour. Drawing on the results gained from SPIKE I,
areas for improvement were highlighted:

e The interconnect in SPIKE I implements a fixed
excitatory weight which has the effect of advan-
cing neighbouring neuron’s potential firing times
when triggered. Recent work has shown the im-
portance of variable interconnections between
neurons [8]. A programmable 4-bit inhibit-
ory/excitatory interconnect is suggested, so that
the relationship between clustering and inter-
connect can be explored, allowing both advan-
cing and retarding of firing times.

e The interconnection between neurons is fixed
in strength and radius at +/-5 neurons. A
wider and more flexible interconnection neigh-
bourhood would improve the flexibility of the
system.

e The comparator with hysteresis used in the ori-
ginal design is a circuit which relies on the size
relationship between its transistors, so any vari-
ation will adversely affect performance. A more
appropriately designed comparator should be
used within the design to enhance performance.

e Stray capacitances within the design and vari-
ation in capacitance adversely effect perform-
ance, care must be taken to minimise these ef-
fects.

e Partitioning of analogue and digital power sup-
plies would act to limit any interference.

e With any clocked or switched system charge in-
jection noise can be a problem. If this is injected
on to a capacitor it could result in a premature
fire of a neuron or ending of a refractory period.
Care must be taken to limit its effects.

The above have been taken into account when
designing SPTIKE TII, which is presently being fabric-
ated. The design is cascadable, and each chip con-
sists of 4 neurons with 32 programmable synapses
per neuron. The synapse design is based on dynamic
current mirror techniques [9][10]. This will pulse cur-
rent on to capacitors. As with SPIKE I, all inter-chip
and inter-neuron communication will be of a robust
pulsed voltage nature. For a comparison of SPTKE 1
and SPIKE IT see Table 1. SPIKE II has 4 neurons
compared with SPIKE T which contained 8 neurons.
However SPIKE II has 3 times the number of syn-
apses per neuron compared with SPTKE T and each

synapse’s weight is programmable allowing investig-
ation into the effects of interconnect strength and
greater system flexibility. The design of SPIKE 11
also takes in account the flaws in present in SPTKE

I.

6 Conclusions

A cascadable integrate-and-fire neural chip has been
successfully implemented using aVLSI techniques.
Comparison of simulation and hardware results has
shown that it successfully clusters sound onsets and
offsets. Areas for improvement have been identified,
and these improvements are included in a second
chip, SPIKE II, results from which should be avail-
able at the time of the conference.
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Figure 1: Integrate-And-Fire Neuron. There is one neuron per channel and its input is formed from the channel
onset signal T(t) combined with pulsed current signals from neurons firing in adjacent channels.
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Figure 2: SPIKE T Integrate-And-Fire Neuron: The preprocessed input (a 4-bit value) is converted to a current
by a 4-bit DAC (TDAC) which drives the VL DCO. The VLDCO produces pulses of current which are integrated
by the leaky integrator. Fcg controls the C'R time constant by varying the value of R with frequency for all
neurons on a chip. When the integrator reaches a predetermined threshold, its output goes high. The refractory

timer then zeros the integrated voltage Vi,

causing the integrator output to go low completing the spike. Until

the refractory timer times out, the integrator is inhibited. Frequency Fier controls the refractory period for all

neurons on a chip.
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Figure 3: Spikes generated for TIMIT utterance drl/fsjk0/sal. X axis is time (milliseconds), Y axis is channel,
with low frequency (60 Hz) at bottom, and high frequency (6000Hz) at top. There are 29 channels. (a) shows
spikes generated by simulated neurons, one per channel, no interconnection. (b, ¢) show spikes generated when
each neuron excites its 10 (+/-5) adjacent neurons: b is simulation, and ¢ is the hardware neuron. To illustrate
the spatio temporal clustering which occurs, the section from 1775 to 2200 ms has been enlarged. (d) is an

enlargement of (a), (e) of (b) and (f) of (c).



Charging Times Versus Frequency
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Figure 4: Very Low Duty Cycle Oscillator (VLDCO) (see Figure 2) output and performance for varying input
level: Comparison of inter-pulse intervals for neuron 6 & 7.

Refractory Period Versus Frequency Chips A,B,C,D
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Figure 5: Refractory periods for neuron 7 on chips A,B,C and D: Fie period adjust is used to alter the refractory
period of the integrate-and-fire neurons on a chip.



