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Abstract
We present a technique for using pre-processing based on
mammalian early auditory processing to produce a segmen-
tation of sound based on onsets and offsets. The sound
signal is bandpassed and each band processed to enhance
onsets and offsets. The onset and offset signals are com-
pressed, then clustered both in time and across frequency
channels using a network of integrate-and-fire neurons. A
spike-based representation of onsets and offsets is produced,
and the timing of these spikes used to segment the sound.
By considering spikes in varying number of bands, a multi-
level segmentation tree can be built. This tree is a purely
data-driven representation of the segmental structure of the
sound.

1 Background
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Traditional techniques for speech interpretation are two
stage processes. An internal representation is formed based
on Fourier transforms and recoding of the spectrum; then a
hidden Markov model or neural network interpretation stage
is applied (Morgan and Bourlard 95). This approach has
serious limitations both in interpreting continuous speech,
and speech in the presence of noise. This has led to inter-
est in more sophisticated internal representations (Ellis and
Rosenthal 95), and in particular to front ends modelling bi-
ological auditory systems for speech interpretation systems
(Ainsworth and Meyer 92; Cosi 93; Cole et al 95).

Auditory modelling systems use similar early auditory
processing to that used in biological systems. Mammalian
auditory processing uses two ears, and the incoming signal
is filtered first by the pinna (external ear) and the auditory
canal before causing the tympanic membrane (eardrum) to
vibrate. This vibration is then passed on through the bones
of the middle ear to the oval window of the cochlea. Inside
the cochlea, the pressure wave causes a pattern of vibration
to occur on the basilar membrane. This appears to be an
active process using both the inner and outer hair cells of
the organ of Corti. The movement is detected by the inner

hair cells and turned into neural impulses by the neurons of
the spiral ganglion. These pass down the auditory nerve, and
arrive at various parts of the cochlear nucleus. From there,
nerve fibres innervate other areas: the lateral and medial
nuclei of the superior olive, and the inferior colliculus, for
example. (See (Pickles 88)).

The representation used in traditional speech interpreta-
tion systems uses a form of bandpass filtering, following the
biology at least as far as the cochlea. Generally, a Fourier
transform is used to perform a calculation of the energy in
each band over some time period, usually betwen 25 and 75
ms, producing an energy vector up to 100 times per second.
This is not at all what the cochlea does. Auditory modelling
front ends differ in the extent to which they follow animal
early auditory processing, but the term generally implies at
least that wideband filters are used initially, and generally
that the initial internal representation maintains a high tem-
poral resolution. This implies the use offiltering techniques,
rather than Fourier transforms in the bandpass stage. Such
filtering systems have been implemented by Patterson and
Holdsworth (Patterson and Holdsworth 90; Slaney 93), and
placed directly in silicon (Lazzaro and Mead 89; Lazzaro et
al 93; Liu et al 93; Fragniere and van Schaik 94).

Some auditory models have moved beyond cochlear fil-
tering, and have a number of different representational
stages. The inner hair cell has been modelled by either sim-
ple rectification (Smith 94) or has been based on the work
of (Meddis 88) for example (Patterson and Holdsworth 90;
Cosi 93; Brown 92), leading to a represenation of the activ-
ity on the auditory nerve. Lazzaro has experimented with
a silicon version of Licklider’s autocorrelation processing
(Licklider 51; Lazzaro and Mead 89). Others such as (Wu
et al 1989; Blackwood et al 1990; Ainsworth and Meyer
92; Brown 92; Berthommier 93; Smith 94) have considered
the early brainstem nuclei, and their possible contribution,
based on the neurophysiology of the different cell types
(Pickles 88; Blackburn and Sachs 1989; Kim et al 90). This
provides a representation based on the features which appear
to be detected in these nuclei.

Auditory model-based systems have yet to find their way



into mainstream speech recognition systems (Cosi 93). The
work presented here uses auditory modelling up to onset
cells in the cochlear nucleus. It adds a temporal neural net-
work to clean up the onset representation produced. This
part has been filed as a patent (Smith 95.1). Though the sys-
tem has some biological plausibility, it is primarily aimed
at producing effective data-driven segmentation. By mak-
ing the segmentation part of the internal representation, we
allow the later interpretation stage to work on the differ-
ent segments independently, so that non-speech noise (such
as a door slamming) can be identified and appropriately
processed before an interpretation of a complete noisy ut-
terance is attempted. By forming a segmentation tree, we
allow several segmentation possibilities to be considered.

2 Techniques used
The overall architecture is illustrated in figure 1. Digi-
tised sound was applied to an auditory front end which uses
a Gammatone filterbank, (Patterson and Holdsworth 90),
which bandpassed the sound into a number of channels each
with bandwidth 24 7 4 37 1 Hz, where is the centre
frequency (in KHz) of the band (Moore and Glasberg 83).
These were rectified, modelling the effect of a set of inner
hair cells. The signals produced bear some resemblance
to those in the auditory nerve: although there are far more
channels in the real system, each nerve channel carries only
spike-coded information so that the coding used models the
signal in a population of neighbouring auditory nerve fibres.

2.1 The onset/offset filter
The signal present in the auditory nerve is stronger near
the onset of a tone than later (Pickles 88). This effect is
much more pronounced in the firing patterns of certain cell
types of the cochlear nucleus: some of these fire strongly
just after the onset of a sound in the band to which they are
sensitive, and are then silent. This emphasis on onsets was
modelled by convolving the signal in each band with a filter
which computes two averages, a more recent one, and a less
recent one, and subtracts the less recent one from the more
recent one. One biologically possible justification for this
is to consider that a neuron is receiving the same driving
input twice, once excitatorily, and the other inhibitorily;
the excitatory input has a shorter time-constant than the
inhibitory input. Both exponentially weighted averages,
and averages formed using a Gaussian filter have been tried
(Smith 94), but the former place too much emphasis on
the most recent part of the signal, making the latter more
effective.

The filter output for input signal is

0
(1)

Microphone

Digitisation
Bandpass
Filtering

Rectification

Onset/Offset
Filtering

Half-wave
Rectification

Logarithmic
Compression

Neural Network
Sharpening

Offset Map Onset Map

Segmentation
Tree

Inversion

Figure 1: The overall sound segmentation system

where exp 2 . and determine the
rise and fall times of the pulses of sound that the system
is sensitive to. We used 1 2, 1000, so that the
SD of the Gaussians are 24.49ms and 22.36ms. The con-
volving filter has a positive peak at 0, crosses 0 at 22.39ms,
and is then negative. A positive onset/offset signal implies
that the bandpassed signal is increasing in intensity, and a
negative onset/offset signal implies that it is decreasing in
intensity. The convolution used is a sound analog of the
difference of Gaussians operator used to extract black/white
and white/black edges in monochrome images (Marr and
Hildreth 80). With these values, the transformed repre-
sentation is sensitive to energy rises and falls which occur
frequently in everyday sound. In (Smith 94) we performed
sound segmentation directly on this representation.

For the work reported here, the onset/offset representa-
tion was divided into two positive-going signals, an onset
signal consisting of the positive-going part, and an offset
signal consisting of the positive-going part of the inverted
onset/offset signal. Both were compressed logarithmically
(where log was taken as 0 for 0 1). This increases
the dynamical range of the system, and models compressive
biological effects. This compressed onset signal models
the output of a population of onset cells. This technique
for producing an onset signal is related to that of (Wu et
al 1989; Cosi 93), differing primarily in how the system
approximates the biology.



2.2 The integrate-and-fire neural network
To provide a clean representation of the sound using the
onset and offset data, this data needs to be integrated across
frequency bands and across time. This temporal and tono-
topic clustering was achieved using a network of integrate-
and-fire units. An integrate-and-fire unit accumulates its
weighted input over time. The activity of the unit , is
initially 0, and alters according to

(2)

where is the input to the neuron and , the dissipation,
describes the leakiness of the temporal integration. When

reaches a threshold, the unit fires (i.e. emits a pulse), and
is reset to 0. After firing, there is a period of insensitivity

to input, called the refractory period. Such neurons are dis-
cussed in detail in, e.g. (Mirolla and Strogatz 90; Gerstner
95).

One integrate-and-fire neuron was used per channel: this
neuron received input either from a single channel, or from a
set of adjacent channels, all with equal positive weightings.
The output of each neuron was fed back to a set of adjacent
neurons, again with a fixed positive weight, one time step
(here 0.5ms) later. Because of the leaky nature of the accu-
mulation of activity, excitatory input to the neuron arriving
when its activation is near threshold has a larger effect on
the next firing time than excitatory input arriving when ac-
tivation is lower. Thus, if similar (but non-identical) input
is applied to a set of neurons in adjacent channels, the effect
of the inter-neuron connections is that when the first one
fires, its neighbours fire almost immediately. This allows a
network of such neurons to cluster the onset or offset sig-
nals, producing a sharp burst of spikes across a number of
channels and so providing an unambiguous representation
of onsets or offsets.

The external and internal weights of the network were
adjusted so that onset or offset input alone allowed neurons
to fire, while internal input alone was not enough to cause
firing. The refractory period used was set to between 50 and
75ms for the onset system, and 5ms for the offset system.
For the onset system, the effect was to produce sharp onset
firing responses across adjacent channels in response to a
sudden increase in energy in some channels, thus grouping
onsets both tonotopically and temporally. This is appro-
priate for onsets, as these are generally brief and clearly
marked. The output of this stage we call the onset map.
Offsets tend to be more gradual. This is due to physical ef-
fects: for example, a percussive sound will start suddenly, as
the vibrating element starts to move, but die away slowly as
the vibration ceases (see (Gaver 93) for a discussion). Even
when the vibration does stop suddenly, the sound will die
away more slowly due to echoes from sound-reflecting sur-
faces. Thus we cannot reliably mark the offset of a sound:
instead, we reduce the refractory period of the offset neu-
rons, and produce a train of pulses marking the duration of

the offset in this channel. We call the output of this stage
the offset map.

2.3 Segmenting the sound
Both the onset and offset maps consist of nearly-vertical
lines of spikes across a number of channels (see figure 2b).
This allows the onsets to be used for segmentation. The
simplest technique is to divide up the continuous speech at
each onset; additionally, one can use the offset map to find
the end of a segment. However, one needs to ensure that
onsets which occur near to each other in time do not result in
very short segments and that the occasional onset in a single
channel does not confuse the system. To achieve this we
set the minimum segment length to 25ms, and counted the
number of onsets (or offsets) which took place inside 10ms.
We could then vary the sharpness of the segmentation by
specifying the minimum number of onset (offset) spikes
which had to occur in the 10ms window before that onset or
offset line was taken to signal a segment start (end).

3 Results
As the technique is entirely data-driven, it can be applied to
sound from any source. It has been applied to both speech
and musical sounds. Figure 2 shows the effect of applying
the techniques discussed to a short piece of speech. The
straight vertical lines in figure 2b (compared to the more
random spikes in figure 2a) show the effect of the neural
network integrating the onset timings across all the channels.

Segmenting the onset and offset map gives the results
shown in figure 3. If too many near-coincident onsets are
required in different bands, the first part of the word is lost;
otherwise, the entire word is segmented. The original word,
/na n/, has a stronger onset at the /a/ than at the /n/, as can be
seen from figure 2b. The degree of segmentation depends
on the number of bands required to contain a spike before a
segment boundary is declared: if 25 bands are required, only
one segment is produced, /a n/; if 13 bands are required, two
segments are found, /n/, /a n/; if four bands are required, the
segments are /n/, /na/, /a n/; if only two bands are required,
we get /n/, /na/, /a /, / /, / n/. The concept of the segmental
tree is described in (Cosi 93), and is also used in pyramidal
descriptions of visual scenes (Asada and Brady 86).

A similar approach has been taken with longer continuous
speech utterances, such as the author saying "Department of
Computing Science". In this case, the segmentation found
for differing numbers of bands is shown in figure 4. The seg-
mentation found if we require 25 near-coincidental spikes
was

/di/, /pa:m nt/, / vk mpjut saj ns/

and if we require 15 spikes, the segmentation was
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Figure 2: Onset and Offset maps from author saying
"Nine". a: onset map, from 28 channels, from 80Hz-6KHz.
Onset filter parameters as in text; one neuron per channel,
with no interconnection. Neuron refractory period is 75ms.
b: as a, but network has input applied to 12 adjacent chan-
nels, and internal feedback to 12 channels. c: offset map
produced similarly, with refractory period 5ms.

/di/, /pa:/, /m nt/, / v/, /k mpj/, /jut/, / /, /s/, /aj ns/

and if we require 6 spikes, the segmentation was

/di/, /pa:/, /m n/, /t/, / v/, /k m/, /p/, /ju/, /t/, / /, /s/, /aj/,
/ n/, /s/

The technique has been successfully applied to many differ-
ent utterances.

To investigate the relationship between phonemes and
these segments, the technique was applied to some of the
TIMIT database, a corpus of short (2-5 second) utterances
of continuous speech. A subset consisting of 32 utterances
was used (16 male, 16 female, two from each dialect re-
gion). Table 1 summarises the results found. It is clear that
the phonemes and the segments found are different. The seg-
mentation tends to start segments at stop consonants: even
when the number of spikes required to signal a segment
start is 12 (so that the number of segments is considerably
less than the number of phonemes), 69% of stops are at
the start of a segment. Finding phonemes and segment-
ing utterances are different tasks: the segmentation system
breaks the utterance into sections whose start is signalled by
a concurrent increase in energy in a number of channels, and
whose end is signalled by either the concurrent decrease in
energy in a number of channels, or by the start of the next
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Figure 3: Segmental tree for utterance "nine" found by
varying the number of near-coincident onset and offset sig-
nals in different bands required to signal a segment bound-
ary.

Phon N=4 N=8 N=12
type F M X F M X F M X
stop 73 24 3 72 25 3 69 29 3
affr 93 0 7 86 7 7 50 43 7
fric 32 49 19 27 61 12 17 74 9
sv, gl 44 20 35 31 44 25 21 67 12
vowel 53 20 27 45 31 24 32 49 19

Table 1: Percentage of different types of phoneme found
(F) missed (M) or incorrectly found (X) for three values
(4, 8, and 12) of number of spikes required to signal a
segment start (N). Utterances were filtered into 28 bands
from 100Hz to 6000Hz. Phonemes are counted as found
if the segment start and the phoneme start are within 15ms
of each other, as missed if the nearest segment start was
assigned to a different phoneme, and as incorrectly found if
the nearest segment boundary is more than 15ms away from
the phoneme start.

segment. Phonemes, on the other hand, are the smallest
units of speech that serve to distinguish one utterance from
another: although some do coincide with major increases in
energy in some parts of the spectrum, many do not. When
the number of spikes required to signal a segment start is
such that the number of segments is considerably less than
the number of phonemes, segment startpoints are generally
near phoneme startpoints as can be seen in table 2.

The same system has been used to segment sound from
single musical instruments. Where these have silences be-
tween notes this is straightforward: in (Smith 94) correct
(i.e. note by note) segmentation was achieved directly from
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Figure 4: Segmental tree found for utterance "Depart-
ment of Computing Science", using different numbers of
near-coincident onset and offset signals in different bands
to signal a segment boundary.

N Segments starting near phonemes
15ms 20ms 20ms

8 0 62 0 13 0 69 0 13 0 31 0 13
12 0 70 0 16 0 76 0 15 0 22 0 15

Table 2: Fraction of segment startpoints (in each utterance)
near phoneme startpoints for varying number of spikes re-
quired to signal a segment start (N) and time interval be-
tween segment and phoneme start ( ).

the onset/offset signal. This was not achieved for slurred
sounds, in which the note changes without an intervening
silence. For musical sounds, better results were obtained
when the input to the network was not spread across chan-
nels.

We present results for two different instruments: a flute
and a spanish guitar. For the flute, there is a clearly correct
result: namely, each note should be one segment. However,
one might also want the segmentation to be able to reflect
phrasing, so that some notes might be grouped together.
In addition, notes on a flute are not necessarily constant
once started, so that one might also expect some notes to

be oversegmented if the segmentation is made too sensitive.
Figure 5 shows the onset map produced from a brief snatch
of slurred flute. Using the onset and offset map, a segmental
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Figure 5: a: envelope of original flute sound. b: onset
map. Bands are from 200 to 2500 Hz. Bandpass tuning is
narrower than in text. c: offset map.

tree was produced, and is shown in figure 6. When 15-
20 near-coincindent onset or offset spikes are required to
signify a segment boundary, the sound breaks up into two
phrases: when only 4 or 6 are required, the sound is broken
up into its constituent notes. When 2 or less are required,
the some of the notes are oversegmented.

For the spanish guitar music, the appropriate segmenta-
tion is more debatable. The different notes have different
volumes, and notes do not always stop when a new note
starts. Here, the segmental tree shows up different aspects
of the sound when different numbers of near-coincident on-
set and offset spikes are used. Figure 7 shows the onset and
offset maps. The onsets are very sharp; however, offsets are
more gradual, starting almost immediately the note is pro-
duced, and continuing until the note dies away. This form of
onset and offset is also typical of percussive sounds. As can
be seen from figure 8, the segmentation produced depends
on the number of coincident onsets or offsets required to
signify a boundary. For large numbers, the phrasing is im-
portant: at smaller numbers, the main notes are segmented;
at still smaller numbers, each note shows up as a different
segment, sometimes including segments made up from the
noise of the fingers plucking the string.
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Figure 6: Segmental tree for the snatch of flute music.
Grey lines mark ends of segments.

Figure 7: Top: envelope of original guitar sound. Middle:
onset map. Bands are from 200 to 2500 Hz. Bottom: offset
map.

4 Conclusions and further work

An effective data driven segmentation technique based on
onset feature detection and using a network of integrate-and-
fire neurons has been demonstrated. Although not discussed
here, the system is also relatively immune to broadband
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Figure 8: Segmental tree for the snatch of spanish guitar
music.

noise. Segmentation is not an end in itself: the effective-
ness of any technique will depend on the eventual appli-
cation. From the experiments with the TIMIT dataset, it
is clear that this data-driven segmentation technique tends
to break the sound up at points which sometimes coincide
with phoneme boundaries (particularly stops), but which of-
ten do not. This technique is probably most useful for an
intiial breaking down of continuous speech into manageable
segments, prior to further interpretation. It is important to
note that the phoneme boundaries supplied with the TIMIT
data were produced by a mixture of top-down and bottom-
up processing, including some human intervention (Senneff
and Zue 88).

The appropriateness of a segmentation will depend on the
application, so that the capacity to produce a segmental tree
is useful as it allows the same technique to be used to process
sounds for different applications. The segmentation tree al-
lows the selection of segment boundaries to be influenced by
top-down processing. Further work is required to examine
the interaction between the parameters of the onset/offset
filter, the parameters of the integrate-and-fire network, and
the precise way in which the segmental tree is derived.

Not all the information in the onset and offset maps is be-
ing used. In particular, the information on precisely which
bands the onsets and offsets occur in is ignored. This could
be useful where segments can overlap, as in the spanish
guitar case above. We are extending this work by combin-



ing the segmentation described here with work segmenting
sound using the presence of amplitude modulation across a
number of wideband filtered bands to detect voiced sounds
(Smith 95.2). The will allow us to extract sound segments
from some subset of the bands, allowing segmentation and
a simple form of streaming to run concurrently. The author
is hoping to implement some of the techniques described
directly in silicon, in conjunction with the Department of
Electrical Engineering at the University of Edinburgh.
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