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Abstract

Spike detection and spike sorting techniques are often difficult to assess because of
the lack of ground truth data (i.e. spike timings for each neuron). This is particularly
important for in vitro recordings where the signal to noise ratio is poor (as is the
case for multi-electrode arrays at the bottom of a cell culture dish). We present an
analysis of the transmission of intracellular signals from neurons to an extracellular
electrode, and a set of MATLAB functions based on this analysis. These produce
realistic signals from neighboring neurons as well as interference from more distant
neurons, and Gaussian noise. They thus generate realistic but controllable synthetic
signals (for which the ground truth is known) for assessing spike detection and
spike sorting techniques. They can also be used to generate realistic (non Gaussian)
background noise. We use signals generated in this way to compare two automated
spike sorting techniques. The software is available freely on the web.
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1 Introduction

The primary aim of this tool is to synthesize signals which simulate those that
electrodes in extracellular multi-electrode arrays (MEAs) record in culture.
The motivation for this tool is to provide “ground truth” data (that is, data
for which the actual spiking situation is known, named “ground truth” because
of the similar problem in remote sensing) for the testing of algorithms for spike
detection and spike sorting. For data acquired using MEAs, this information
could be provided through voltage sensitive dye-based imaging or concurrent
intracellular recording of the neurons of interest. Providing the time resolution
required using dye based imaging is difficult since it implies very high frame
rates. Concurrent intracellular recording is difficult for MEAs, although it
has been done for a single neuron and a tetrode electrode array by Harris
et al. (2000). The difficulty we are attempting to overcome is that without
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ground truth data, it is not possible to compare different spike detection and
spike sorting techniques (many techniques are reviewed in Lewicki (1998)).
This is a difficult problem: Wood et al. (2004) report over 20% errors using
semiautomated spike sorting. Many authors have generated ground truth data
by taking recordings which contain spikes, and mixing them and adding noise
(e.g. Atiya, 1992; Chandra and Optican, 1997; Quiroga et al., 2004; Zhang
et al., 2004), or re-generating data with similar statistics (Wood et al., 2004).
This presumes that suitable data already exists, and that the form that noise
should take is known. A different approach has been taken by Menne et al.
(2002, 2005); Mamlouk et al. (2005): they used GENESIS (Bower and Beeman,
1998) to create a multi compartment simulation of relevant neural circuitry
(in hippocampus), and then summed the contribution from each compartment
assuming homogenous resistivity and no capacitance.

We are interested in generating signals that are useful for testing spike detec-
tion and sorting techniques for in vitro recordings, where the underlying neural
structure is unknown. In general, all that is known is the approximate density
of the neurons. Further, inspection of extracellularly recorded spike shapes
shows that these differ from intracellular spike shapes (see, for example, Har-
ris et al. (2000)). We have therefore taken a different approach, and attempted
to analyse the signal transfer between the intracellular spike throughout the
spiking part of the neuron and the extracellular electrode in order to generate
realistic test data for which the underlying spike patterns are known. We use
this to synthesize both the signal from those neurons closest to the electrode,
and interference from more distant neurons.

A related approach was taken by Nakatani et al. (2001) in the context of cuff
electrodes. For in vitro multi-electrode array (MEA) based recording, the cul-
ture is grown in dishes on which the electrodes are already present. Generally,
the culture contains a mixture of neurons and glial cells, and there may be
glial cells between the electrode and the neurons. Further, each electrode is
usually near enough to a number of neurons to pick up signals from them,
and the electrodes may not be moved to improve signal strength. Unlike the
situation in Menne’s work, the electrodes are generally too far apart to pick
up signals from the same neurons. Thus, ICA is not a usable option. MEA
recording necessitates automated techniques, simply because of the volume of
data.

The signal received at an electrode from a neuron is transformed by both the
neuron’s geometry relative to the electrode and the effect of the path from
spiking neuron to electrode. The details of the transformation are discussed in
section 2. We have developed a set of MATLAB routines which allow the user
to emulate this transformation for a number of neurons. Our technique allows
both precise noise control and precise control of the spike shapes collected at
the electrode.
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This paper is organised as follows: section 2 contains a theoretical discussion
of the nature of the signal picked up by an electrode. Section 3 discusses how
to use this theory for generating signals which are like those from extracellular
electrodes, and section 4 assesses some spike sorting techniques using signals
generated using this software. The software, and a user manual for it, are
available (Smith and Mtetwa, 2006).

2 An analysis of extracellular cell recording

2.1 Effect of transmembrane current

We attempt to characterise the signal received at an extracellular electrode.
Consider a current IdA(t) passing through a patch of membrane (from outside
the neuron to inside the neuron), dA at location ~xi = ~xi(dA), where ~xi is the
vector from electrode i to the patch dA (see figure 1).

dA

Surface 
of neuron j

(part shown)

Electrode i

xi

Figure 1. Electrode i and patch of membrane.

This will have an effect at electrode i, leading to a voltage vi(dA, t) being
generated. Let us assume that the effect is linear in IdA(t). If we characterise
this effect by a response function r(~xi) then the resultant potential at electrode
i, will be

vi(dA, t) = −IdA(t)r(~xi(dA)) (1)

where the negative sign arises because the current flows into the neuron. We
are assuming that the extracellular fluid is ohmic (see figure 2). Using linearity,
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we can consider the effect of the currents from a whole neuron j, with surface
Nj,

vi(Nj, t) = −
∫

dA∈Nj

IdA(t)r(~xi(dA))dA (2)

noting that IdA(t) will vary both in timing and size across Nj. The total effect
for all contributing neurons (indexed by j) is then

vi(t) =
∑
j

vi(Nj, t) = −
∑
j

∫
dA∈Nj

IdA(t)r(~xi(dA))dA (3)

Note that vi(t) is the voltage arriving at the electrode i from the neurons:
what actually gets recorded may differ. Some of the currents IdA(t) come from
spikes (primarily those from the axon hillock and axons), and some come from
non-spiking parts of the neuron surface.

Writing Nsj for the spiking and Nnsj for the non-spiking part of neuron Nj

we have

vspike
i (Nj, t) = −

∫
dA∈Nsj

IdA(t)r(~xi(dA))dA (4)

and

vnonspike
i (Nj, t) = −

∫
dA∈Nnsj

IdA(t)r(~xi(dA))dA (5)

2.2 Action potentials

We can now attempt to characterise vspike
i (Nj, t) due to a single spike starting

at time T in neuron Nj. Given that “at time T” means that T is the time of the
initiation of the spike at the axon hillock (i.e. the start of the self-reinforcing
Na+ inflow), the spike will have no effect on vspike

i (Nj, t) for t < T . The spike
will be transmitted from the soma down the branching axon: we assume that
there is an upper bound, τmax, on the duration of the effect of the spike. At
each point y on the spiking membrane, the upswing of the spike is generated
by runaway inflow of Na+ ions, from the rapidly inactivating INa,t channels,
and the downswing by the outflow of K+ ions from the IK channels (Koch,
1999): these are the IdA(t) in equations 1 to 5. These charge and discharge
the intracellular (conducting) fluid of the neuron (which is largely insulated
from the extracellular fluid by the insulating bilipid membrane). Thus, writing
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Figure 2. Equivalent circuit description for transfer of charge from a point on a neu-
ron to an electrode for an extracellular and a dish based electrode. The extracellular
electrode is assumed to be near the neuron, but the dish electrode is assumed to
have a layer of glia between it and the neural culture. There are a number of simpli-
fications in this circuit: distributed resistances and capacitances have been lumped
together, for example.

Vspike(y, t) for the intracellular spike at location y (with respect to an external
ground), and ignoring ohmic conduction within the neuron

Vspike(y, t) =
∫

dt
∫

dA∈nbhd(y)

IdA(t)dA/Cy (6)

=
∫

dt
∫

dA∈nbhd(y)

(INa
dA(t) + IK

dA(t))dA/Cy

where nbhd(y) is the membrane near y and Cy is the membrane capacitance
of nbhd(y), so that

V ′
spike(y, t) = (INa(y, t) + IK(y, t))/Cy (7)

where INa(y, t) and IK(y, t) are the ionic currents integrated over nbhd(y).

These ionic currents alter the extracellular potential, as described in equation
4. Thus

vspike
i (Nj, t, ion) = −

∫
dA∈Nsj

(INa(dA, t) + IK(dA, t))r(~xi(dA))dA (8)
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Equations 7 and 8 show that the voltage at the electrode due to ionic currents
from spikes in some small neighbourhood on the spiking surface of a neuron is
essentially minus the derivative of the intracellular spike weighted by the re-
sponse function r(~xi). Clearly, the ionic currents will differ in differing parts of
the cell. Further, for an extracellular electrode near the cell surface, r(~xi(dA))
will tend to be large when ~xi(dA) is small, leading to considerable variation
depending on electrode location, as discussed in (Holt and Koch, 1999; Mof-
fitt and McIntyre, 2005), where the extracellular signal is strongest nearest
the spike initiation point.

In addition, there is also the electrical resistance and the capacitance of the
membrane to take into account. The resistance of the membrane and the
resistance between the extracellular fluid and the ground form a potential
divider: in addition, the capacitance of the membrane and the resistance be-
tween the extracellular fluid and the ground act as a differentiator (see figure
2). Writing vspike

i (y, t, mem) for the extracellular voltage from this source from
a neighbourhood of y, we have

vspike
i (y, t, mem) =

Rexc

Rexc + Rmedium + Rmem

Vspike(y, t) (9)

+
Rexc

Rexc + Rmedium

CmemV ′
mem(y, t)(Rexc + Rmedium)

where V ′
mem(y, t) is the derivative of the voltage across the membrane at y,

Rexc is the resistance from extracellular electrode to ground, Rmedium is the
resistance of the medium between the extracellular electrode and y, and Rmem

is the resistance across the membrane at y. Since Rmem � Rexc +Rmedium, the
contribution from the original spike will be small. Given that the electrode is
near the membrane, the potential divider described by the fraction at the start
of the second term will be near to unity. The overall effect at the extracellular
electrode i from the spike on neuron Nj is therefore

vspike
i (Nj, t) = vspike

i (Nj, t, ion) +
∫

nbhd(y)∈Nsj

vspike
i (y, t, mem)dy (10)

and these two terms will have opposite signs.

For a patch clamp electrode, for a small patch of membrane only, Rexc is
replaced by a capacitor, so that equation 8 no longer holds, but instead
vspike

i (Nj, t, ion) is proportional to (but of opposite polarity from) Vspike(y, t)
(and the rest of the neuron has no effect). In addition, Vmem and V ′

mem are nor-
mally held at 0, and the currents involved in Rexc

Rexc+Rmem
Vspike(t) are relatively

small, so that the ionic currents dominate.
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For an electrode at the bottom of a culture dish, there is a further complication:
glial cells are likely to form a (possibly incomplete) layer between the electrode
and the neural culture. This layer may have a high resistance (Rglial), and will
also act as a capacitor (Cglial) (see figure 2). However, in this case, we do not
have ionic channels contributing to the potential at the electrode, so that only
equation 9 is relevant. Writing vspike

k (Nj, t) for the voltage on electrode k at
the bottom of the dish, the effect of the voltage at electrode i is

vspike
k (Nj, t) =

Relectrode

Relectrode + Rfluid + Rglial

vspike
i (Nj, t) (11)

+ CglialRelectrodev
′spike
i (Nj, t)

Of course, we do not have both electrodes i and k. In reality, vspike
k (Nj, t) results

from the integration of vspike
i (Nj, t) over a small volume of the intracellular

fluid. The primary effect of this is a further small amount of low-pass filtering.

What we actually receive at electrode k (whether extracellular or MEA based)
is sk(t) which consists of vspike

k (Nj, t) from many different neurons Nj plus an
additional noise signal, n(t) from the receiving apparatus itself. Focussing on
the signal from one neuron, Nj we can write this as

sk(t) = vk(t) + n(t)

= vk(Nj, t) +
∑
p6=j

vk(Np, t) + n(t)

= vspike
k (Nj, t) +

∑
p

vnonspike
i (Np, t) +

∑
p6=j

vspike
k (Np, t) + n(t) (12)

The first term is the “signal”, the next two are interference (in the sense that
they do not originate from the spike at neuron j), and the last is noise. Both
the signal and the interference term in equation 12 depend on the nature of the
connection between the neurons and the electrode k, as described in equations
6 to 11. Part will be resistive, mediated by the ionic conduction of the medium,
part will be capacitative (and differentiating) due to the insulating membrane
and the ion channels.

2.3 Modelling the effect of the extended spiking neural surface

What is the effect of the integration over the extent of the neuron? Because
the time taken for spike movement from the spike initiation point on the soma
through the axon is comparable to or larger than the spike duration, this
integration will have a major effect on the shape of the voltage recorded at
the electrode.
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The spiking neural surface is a three-dimensional surface whose orientation
and distance from the electrode varies. The signal contribution in equation
12, vspike

k (Nj, t) which comes from equations 8 and 9, can be written

vspike
k (Nj, t) = vspike

k (Nj, t, ion) + vspike
k (Nj, t, mem) (13)

= −
∫

dA∈Nj

IdA(t)r(~xi)(dA) +
∫

dA∈Nj

a1Vspike(dA, t)dA

+
∫

dA∈Nj

a2V
′
spike(dA, t)dA

=
∫

dA∈Nj

V ′
spike(dA, t)(a2 − r(~xi))(dA) +

∫
dA∈Nj

a1Vspike(dA, t)dA

since V ′
spike(dA, t) = IdA(t), and a1 and a2 (which are functions of dA) replace

the fractions in equation 9. Noting that integration and differentiation are
linear operations, we can reverse their order, and group the terms:

vspike
k (Nj, t) =

d

dt

∫
dA∈Nj

V ′
spike(dA, t)(a2 − r(~xi))(dA)

+
∫

dA∈Nj

a1Vspike(dA, t)dA (14)

We can approximate these integrals discretely. Further, we note that be-
cause of the mechanism of spike generation, Vspike(dA, t) (and also therefore
V ′

spike(dA, t)) always has the same shape to a first approximation. We therefore
write

Vspike(dA, t) = Vspike(dA0, t−∆(dA)) (15)

where dA0 is the spike initiation point (axon hillock) and ∆(dA) is the time
the spike takes to reach dA from the axon hillock. As a result, equation 14
becomes

vspike
k (Nj, t) =

d

dt

∑
dA

V ′
spike(dA0, t−∆(dA))(a2 − r(~xi))

+
∑
dA

Vspike(dA0, t−∆(dA))a1 (16)

In order to evaluate this, we can consider summing over time rather than area:
each time interval δt may contain signals from a number of areas of the spiking
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surface.

vspike
k (Nj, nδt) =

∑
i=1...k

V ′
spike(t− iδt)b2(i) +

∑
i=1...k

Vspike(t− iδt)b1(i) (17)

where b1 and b2 are appropriate sums of the a1’s, and a2’s and r( ~xi), and
k = [τmax/δt]. We note that the time intervals over which we sum need to be
quite small, particularly since the spiking signal changes very rapidly. In fact
we should choose the time intervals to be smaller than half the duration of the
most rapidly changing component of interest in the signal. (This time interval
is theoretically determined by the highest frequency component of the V ′

spike(t).
Real neural signals contain energy content up to relatively high frequencies
for example, the sharp knee in figure 1a of Naundorf et al. (2006). However,
in general the fastest component of interest is the spike rise time, which is
usually upwards of 200 µseconds (Naundorf et al. (2006); Zhang (2004).)

In equation 8, r(~xi(dA)) (which contributes negatively to b2) decreases expo-
nentially with distance due to diffusion, and in equation 9, Rmedium (which
contributes inversely but positively to both b1 and b2) increases linearly with
distance. Where the neuron is far from the electrode, it is likely that the b2

and b1 change relatively slowly. The effect of the integration over the surface of
the neuron will be to low-pass filter the signal (Struijk and Yoshida, 2004), be-
cause the distance of all the spiking parts of the neuron will be nearly the same
so that the transfer characteristics will vary little across the spiking surface of
the neuron. However, where the neuron is close to the electrode, some of the
spiking surface may be much closer to the electrode than other parts, so that
there may be rapid variation in b2 and b1. Further, the precise nature of the
variation depends on the relative geometry of the neuron and the electrode,
and will depend strongly on the presence and density of active ion channels
near the electrode. Thus, the shape of the signal received will depend on this
geometry, and in particular, if part of the spiking surface is very close to the
electrode this may have a major effect on the shape of the spike recorded. This
agrees with the theory in (Holt and Koch, 1999; Moffitt and McIntyre, 2005),
and the measurements in (Harris et al., 2000). One effect of this is that the
detected spike shape is likely to differ for different neurons, particularly those
closest to the electrode, even if the intracellular spike shapes are identical,
thus assisting spike sorting.

2.4 Dish based MEA electrodes

For MEA type electrodes at the bottom of a culture dish, transmission of
signals is likely to be complicated further by insulating glial cells between the
neuron and the electrode causing a further mixture of resistive and capacitative
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(differentiating) coupling. Further, the potential will also depend on the nature
of the transferrence of ionic current in the medium to electrical current in the
electrode (not modelled here: (see Standen et al., 1987)).

The final result is that an MEA electrode detects a mixture of the intracellular
spike, its first and second derivatives, arriving from the different parts of the
spiking surface of the neuron. (We note that if there are other glial cells in
the signal path, there may be further differentiation occurring as well.) If
the neuron is relatively far away, the neuron spatial extent will smooth the
signal: if it is nearer, then the precise shape of the signal will depend on the
relative geometry of the neuron and the electrode. For situations in which
the electrode itself may be maneuvered, the value of ~xi (in equation 4) can
be reduced, improving the overall conductance between dA and the electrode
(thus improving SNR), and causing the signal to come primarily from one
section of the spiking area, thus reducing the degree of smoothing. One might
also attempt to place the electrode where the capacitative effects of glial cells
are minimised (for example by shaping points on the electrodes, or by lowering
the electrodes on to the culture (Sandison et al., 2002)).

The interference terms in equation 12 identify two components. The first (and
probably smallest of these) arises from nonspiking events from the neurons
whose spikes we are attempting to detect. IdA(t) in these events is generally
quite small, so that the contribution at the electrode is large only if r(~xi(dA))
is large, which is likely to be the case only if dA is very close to the electrode
(or if a patch is made to a nonspiking part of the electrode). Assuming that
we are not using patch clamping, then this interference arises from synaptic
events and non-axonic spikes (e.g. Ca++ spikes). The second interference term
is likely to be the dominant term: this arises from spikes in other neurons,
relatively further away. In many situations, neurons are closely packed, so
that if it has not been possible to place the electrode very close to the neuron
of interest, interference from other neurons will be dominant. The modes of
transmission are as discussed earlier (and may differ in relative strength for dif-
ferent neurons). The final noise term arises from extraneous electro-magnetic
interference, and from the amplifiers used, and can be minimised by shielding
and appropriate experimental design.

The distribution of the interference and noise terms is likely to be quite dif-
ferent for each of the three: for the first interference source, it is likely that
these will be synaptic activity before and during spiking. For the second in-
terference source, it is likely that some neighboring neurons receive similar
input to the neuron of interest, so that they fire at similar times. Thus both
of these interference sources will be correlated to the signal of interest. The
spike times from other (and further away) neurons are likely to be relatively
independent of the neurons of interest. Only the noise source is likely to be
entirely uncorrelated.
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3 Generating data for analysis

The primary aim of this work is to enable the comparison of a number of
different spike detection and sorting techniques. We have produced a set of
MATLAB functions to generate realistic data, using the analysis in section
2 to guide data generation. The functions have a large number of variable
parameters, enabling generation of a large variety of datasets. Synthetic data
with realistic signals from the target neurons and which has a large quantity
of realistic interference (that is, realistic data from other neurons) can be gen-
erated. The spiking of some of the interfering neurons can be correlated with
target neurons, while other interfering neurons can be spiking independently.
The parameters for each neuron can be set independently.

The data generation system has a number of phases: firstly, the spike times
for the neurons of interest (target neurons) are generated, within some time
interval. Spikes may be generated using either a Poisson or a Gaussian distri-
bution. The mean inter-spike interval, and the degree of randomness of these
spikes are adjustable parameters. Minimum inter-spike intervals can be en-
forced. Once these spike times have been determined, we can generate spike
times for other neurons (correlated neurons) each of whose spike trains are
correlated with one of the target neurons. The spike times for these corre-
lated neurons are determined by allowing a (selectable) degree of jitter on
the spike times of the (selected) target neuron. The jittered spike times may
be distributed either normally around the original spike time (with selectable
standard deviation), or uniformly, with a selectable maximum difference in
time. The software allows generation of other sequences of spike times uncor-
related with the target spike times (independent neurons), again permitting
Poisson or a Gaussian distributions. We thus have one set of sequences of
spike times, from the target neurons, plus two other sets of spike times, one
correlated with the originals, and one not.

We use realistic intracellular spike shapes, (currently taken from (Naundorf
et al., 2006) or from the Hodgkin Huxley simulator HHSim (Touretzky et al.,
2004), but able to be taken from elsewhere) to generate the intracellular poten-
tial for each of these spike trains. The effect of the spatial extent of the neuron
is then recreated using equation 17: weighted delayed spikes are summed, with
the actual weights set by the user. The delay default is set to 30 µseconds (it is
user-selectable and should be a multiple of the sample period), allowing con-
tributions up to about 16KHz. Logically, we should compute the signal for the
whole time interval at the axon hillock, then perform this delay and sum: how-
ever, computing the signal spike by spike is much more efficient (particularly
for long intervals with relatively few spikes). Where the inter-spike interval is
less than the length of the (delayed-and-summed) spike shape, we join them
smoothly, and in such a way that both reach their maximum potential.
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We then generate first and second differentials for all of these signals, and set
all these signals and differentials linearly to a normalised amplitude. For each
neural signal source (target neurons, correlated and uncorrelated neurons), we
form a signal by linearly mixing the weighted, summed intracellular signals and
first and second differentials: the mixing parameters are set by the user (and
may be different for each neuron). These linearly mixed signals (characteristic
of each spiking neuron) can then themselves be linearly mixed. This allows any
required target signal to correlated or uncorrelated interference ratio. Gaussian
random noise (of selectable size) can be added at the end. The final signal can
then be scaled to an appropriate range. In this way, we can generate a noisy
signal similar to that which would be picked up by a real electrode, but for
which the actual timing of the spikes is known, and the precise form and extent
of the noise can be adjusted.

The software can also be used to generate “spiky” background noise. To do
this, the number of target neurons and correlated neurons are set to zero. Such
noise could be used to test spike detection and sorting algorithms on a mixture
of real data and appropriate noise. For example, using 15 uncorrelated neurons,
with a mixture of Gaussian and Poisson distributions, where each neuron has
a mean inter-spike interval of between 25 and 40 milliseconds, and using a
completely flat set of weightings, we can generate spiky data which is made
up of many overlapping spikes, and has a kurtosis of 4.08. This can be tailored
to the user’s needs, for example by using fewer or more neurons, or altering
the inter-spike interval, or altering the delay weightings.

Further details of the noisy spike generation system, including a detailed dis-
cussion of the parameters (and MATLAB code) may be found in (Smith and
Mtetwa, 2006).

4 Assessing two spike sorting techniques

We have generated sets of data both without and with interference to compare
the capabilities of two existing spike sorting techniques. We used Wave clus
Quiroga et al. (2004) to compute the spike times: this uses a simple threshold
technique, setting the threshold based on the median value of the signal. This
is then used to extract a 64 element sample vector (with 20 samples before
and 44 samples after the threshold event). At the sampling rate used (24
Ksamples/second) this represents a window of 2.67 ms. We used Wave clus’s
capability to generate both the first three PCA component coefficients, and a
ten element wavelet based representation of these 64 element vectors.

The PCA and wavelet based vectors were used as input to both KlustaKwik
version 1.7 (Harris, 2003) (which uses the CEM algorithm (Celeux and Gov-
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aert, 1992) ) and Wave clus’s spike sorting facility (which uses a suprapara-
magnetic clustering technique, described in Quiroga et al. (2004)) to cluster
and then sort the spike trains. The way we used these reflects out interest in
automated spike sorting. Supraparamagnetic clustering (SPC) is a stochastic
technique, so that different runs can produce different results. We simply used
the first result, since an experimenter may not be able to automate assess-
ment of what is an appropriate result (that is, they may not know the correct
number of spike trains). (We do note, however, that, in general, there is lit-
tle difference between the first and subsequent SPC runs.) We did not take
advantage of Wave-clus’s capability for forcing reclassification.

Using this software, we can create waveforms for target neurons which differ
in a controlled way, and we can add specific amounts of correlated and un-
correlated interference to produce realistic extracellular signals. We used two
target neurons. One (T1) has a Poisson distribution, and the other (T2) has a
Gaussian distribution. Both have identical intracellular spikes (from Naundorf
et al. (2006)). The spike shapes at the recording electrode differ because dif-
ferent transfer characteristics and/or spatial extents have been modeled. Two
experiments are described below. In the first, the spike shapes received at the
electrode from the two target neurons are quite different (both in terms of
transfer characteristic and spatial extent), and a number of levels of interfer-
ence are added. In the second, the spike shapes are different only in transfer
characteristic, and one of the spike shapes is gradually made more like the
other so that the difference in spike shapes decreases between measurements.

4.1 Using dissimilar spike shapes

The software was used to generate two target spike shapes (which are quite
different from each other: see figure 3), with varying amounts of additional
correlated and uncorrelated interference. The aim was to determine how well
the different spike sorting techniques could cope with different levels of realistic
interference. The sections of electrode signal generated were 30 seconds long,
and contained 482 spikes from T1, and 608 spikes from T2. The results from
spike sorting the signal with no added noise are shown in table 1. In this
experiment and the following ones, spikes are marked as missing if no spike
was detected within 1 ms of a target spike, and spikes are marked as inserted if
no target spike was present within 1 ms of the time of spike detection. We note
that missing and inserted spikes are the result of the spike detection, rather
than the spike sorting stage. Class 0 is a catch-all (i.e. not clustered) for both
SPC and KlustaKwik (KlustaKwik class numbers have been renumbered: class
0 is not used, and class numbers have all been reduced by 1).

In order to make spike sorting work on noiseless signals in Wave clus, spike
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Figure 3. Shapes of the two dissimilar target neuron spikes (T1 and T2) as received
at the putative electrode. X axis is in samples at 24 Ksamples/second. Y axis is
arbitrary voltage-like units.

detection had to be set to use the signal mean (rather than median) because
so much of the signal had the value exactly 0. This is, of course, not charac-
teristic of real signals. For the wavelet results for KlustaKwik, only the first
five coefficients were used as input: using all 10 results in KlustaKwik almost
always failing to separate out two clusters (everything is placed in one cluster).
We permitted any number of clusters to be generated internally during pro-
cessing. However, doing this for PCA gave poor results (38 clusters detected!).
We therefore set the maximum possible number of clusters to 5 in this case. In
later work, we found that this did not have any effect except to avoid multiple
spurious clusters. The only exception to this was processing the zero noise
wavelet data.

Only the SPC technique applied to the wavelet preprocessed signals detects
exactly two clusters. The others all produce more than two.

Keeping the same spike times, different types and amounts of interference were
added. Wave clus was set to use the median in spike detection (which is the
default). The results from using only uncorrelated interference are shown in
table 2. Again the maximum number of clusters used by KlustaKwik was lim-
ited to 5. (Class 5 was never assigned, but decreasing the maximum number
of possible clusters to four results in much poorer classification: not specifying
the maximum number of clusters results in large numbers of spurious classes).
Using all ten wavelet coefficients, KlustaKwik again failed to differentiate be-
tween clusters. The results shown use only the first five wavelet coefficients.

We have calculated SNR using the ratio of the peak levels of the signal to the

14



Table 1
Spike sorting using Wavelets and PCA (1st three components) for both Superpara-
magnetic Clustering (SPC) and KlustaKwik spike sorting techniques for signals with
no interference. The table rows show the number of spikes from each target class
found in each cluster, and the figure of merit (FoM): see text for description. Two
spikes were inserted (due to collisions between spike trains).

Wavelets

Target SPC KlustaKwik

Class 0 1 2 FoM 0 1 2 3 FoM

T1 50 0 432 0.92 482 0 0 0 0.74

T2 35 573 0 51 99 360 98

PCA

Target SPC KlustaKwik

Class 0 1 2 3 4 FoM 0 1 2 3 4 FoM

T1 66 0 253 86 77 0.68 212 0 220 0 50 0.54

T2 106 502 0 0 0 161 373 0 74 0

peak level of the interference, rather than the ratio of signal to interference
power. We have done this since neither signal nor interference is Gaussian, and
because the target neuron signals are nearly constant (and thus have almost
zero energy) most of the time, whereas the interfering signal (being the sum
of fifty spike trains) has power much more of the time. As a result, even when
the target neurons spikes are much larger than the noise, the ratio of signal
to interference power would be less than one. Even worse, the ratio of signal
to interference power would depend on the target neuron spiking rate. Using
peak level ratios for SNR calculation overcomes both these problems. The
interference level was increased by

√
2, equivalent to an increase of about 3dB

between tests. We used this in preference to target peak: interference standard
deviation (used in Quiroga et al. (2004)) primarily because the latter will also
depend on the number of correlated and uncorrelated spike trains, rather than
on their spike magnitude.

As the SNR decreases, the number of spikes missed increases. The T2 signal
has a larger peak, and so withstands more interference, so that the number
of T1 spikes missed increases first. We note that a relatively modest increase
in noise level makes a large difference to the number of spikes missed: this is
also visible in table 3.

Most of the time more than two clusters are detected, and spikes from the
same target class are often assigned to different numbered clusters. This, and
the default class 0 make it difficult to use table 2 directly to compare the
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Table 2
Spike sorting with uncorrelated interference only. Table rows show clusters found
for each target class. Four different SNRs were used (see text for how the SNR was
measured). The column labeled C is the type of clustering (K = KlustaKwik, S =
SPC), and the column labeled N is the target neuron. The column labeled M is
the number missing (i.e. spikes form this target neuron not found), and the column
labeled I is the number inserted (i.e. spikes detected which do not correspond to
spikes in the original dataset).

SNR C N Wavelet PCA

Class 0 1 2 3 4 0 1 2 3 4 M I

4.6 S T1 48 0 336 0 93 44 0 433 0 0 5 7

T2 41 400 0 167 0 36 572 0 0 0 0

K T1 25 333 101 18 0 36 0 441 0 0 5

T2 217 0 0 0 391 33 575 0 0 0 0

3.2 S T1 83 0 290 97 0 36 0 434 0 0 12 1

T2 74 533 0 0 0 53 551 3 0 0 1

K T1 27 57 386 0 0 15 438 2 15 0 12

T2 43 0 0 564 0 12 2 560 33 0 1

2.3 S T1 22 0 233 1 0 16 0 234 6 0 226 1

T2 30 512 0 60 0 43 498 0 61 0 6

K T1 15 188 1 51 1 12 8 1 235 0 226

T2 14 0 68 0 520 14 73 515 0 0 6

1.6 S T1 10 2 31 0 0 3 2 38 0 0 439 9

T2 13 257 41 0 0 5 257 49 0 0 297

K T1 4 1 1 26 11 3 38 2 0 0 439

T2 4 258 39 0 10 7 49 255 0 0 297

techniques. To overcome this, we introduce a figure of merit for spike sorting
where the ground truth is known. The formula we use is

M =
1

n

n∑
j=1

((max
i

(Tj(i)−
n∑

k=1k 6=j

Tk(i))/Nj) (18)

where Nj is the number of spikes from target neuron j, n is the number of
target neurons (here, 2), and Tj(i) is the number of spikes from target neu-
ron j found in cluster i. M is measure of the degree to which the different
clusters detected follow the different target neurons: it reaches its maximum
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value of 1 when each target neuron’s spikes are present in exactly one clus-
ter, but is insensitive to the ordering of the clusters. It is intended to be a
measure which reflects what a user might wish to do with the classification:
that is, concentrate on those clusters which are maximally different for differ-
ent spiking target neurons. Although M is sensitive to non-classification (i.e.
assignment to cluster 0) and to misclassifications, we will normally quote the
number of non-classifications and misclassifications as well. The top half of
table 3 shows the figure of merit for the clusters in table 2. The bottom half of
table 2 shows spike sorting with both correlated and uncorrelated noise: note
that the interference level for the two different types of interference was set to
be the same, so that there is actually more noise in this case, even although
the peak-level based SNR recorded does not show this.

Table 3
Spike sorting with correlated and both uncorrelated and correlated interference,
showing figure of merit. Table rows show the figure of merit, the number misclassi-
fied, and the number not classified. P is preprocessing type, FoM is figure of merit,
MC is misclassified (i.e. target 1 spikes classed as target 2 or vice versa, UC is un-
classified spikes (either in the catch-all group, or in some other cluster apart from
the one selected in the figure of merit), M is spikes missed, and I is spikes inserted.

SPC KK

Data SNR P FoM MC UC FoM MC UC M I

UC 4.6 PCA 0.92 0 80 0.93 0 69 5 7

UC 4.6 WAV 0.67 0 358 0.11 477 0 5 7

UC 3.2 PCA 0.90 5 85 0.91 4 75 13 1

UC 3.2 WAV 0.74 0 250 0.86 0 127 13 1

UC 2.3 PCA 0.65 1 125 0.67 1 107 232 1

UC 2.3 WAV 0.67 1 107 0.62 1 149 232 1

UC 1.6 PCA 0.21 51 8 0.21 51 10 737 9

UC 1.6 WAV 0.21 46 21 0.24 1 69 737 9

C,UC 4.6 PCA 0.91 2 87 0.91 3 79 10 46

C,UC 4.6 WAV 0.70 1 294 0.68 0 353 10 46

C,UC 3.2 PCA 0.83 41 56 0.86 8 94 39 38

C,UC 3.2 WAV 0.86 1 111 0.83 0 138 39 38

C,UC 2.3 PCA 0.52 91 20 0.56 5 163 284 27

C,UC 2.3 WAV 0.58 5 136 0.43 3 317 284 27

C,UC 1.6 PCA 0.19 59 7 0.19 59 3 741 35

C,UC 1.6 WAV 0.19 51 16 0.21 12 83 741 35
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In general, the wavelet based preprocessing followed by SPC seems to result in
larger numbers of unclassified spikes. This tails off at poor SNR, but by then
very large numbers of spikes are simply missed. From the experiment reported
here, and from others, we find that at better signal to noise ratios (better than
3:1), wavelet preprocessing tends to leave more spikes unclassified. At poorer
SNRs, the results from SPC with either PCA or wavelet preprocessing are very
similar, and PCA based techniques seem to result in more misclassification,
but fewer unclassified spikes. We also note that PCA followed by KlustaKwik
sometimes fails, as is the case in table 3 line two. There, much better results
were obtained when a maximum number of six clusters was allowed (figure
of merit = 0.67, with no misclassification and 361 unclassified): in other ex-
periments we find that such failures occur about 10% of the time. Using a
maximum of six clusters for the rest of the table results in general in rather
poorer figures of merit, and rather more unclassified spikes. In general permit-
ting a larger maximal number of clusters does overcome this problem, but at
the cost of a poorer figure of merit (which arises because a what should be a
single cluster is split across a number of clusters).

Comparing these results with those of Quiroga et al. (2004), we find that the
difference between the different techniques is less marked that their table 2
suggests. As noted above, we computed noise differently: for the spike rates
used, the equivalent noise levels, using target peak and interference standard
deviations are 0.045, 0.64, 0.09 and 0.13 for the uncorrelated noise only, and
0.05, 0.07, 0.1 and 0.14 for correlated plus uncorrelated interference. In par-
ticular, we find that SPC applied to the PCA data performs as well as SPC
applied to wavelet data. Part of the reason for this may be that we are us-
ing SPC in an automatic way, accepting the initial classification as noted in
section 4.

4.2 Varying the difference between the spike shapes

In this test, two spike shapes were generated, differing only in their trans-
fer characteristics, and then sets of data in which one of the spike shapes was
made more and more like the other were generated. The aim was to assess how
well the different spike sorting techniques could differentiate between similar
spike shapes. In performing this experiment, care had to be taken that the
spike shapes remained appropriate: for example, the spike shapes should not
have two positive peaks with a period of zero value in the middle. In addition,
we arranged that the peak-peak size of all the spike shapes used was the same
so that spike detection would be equally likely for all spike shapes. The initial
spike shapes chosen (see figure 4) were relatively similar. The other datasets
(Datasets 2 to 10, in table 4) were generated by making the T1 spike shape
more and more like the T2 spike shape in nine steps using simple linear in-
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Figure 4. Shapes of the two similar target neuron spikes (T1 and T2) as received at
the putative electrode. X axis is in samples at 24 Ksamples/second.

terpolation. In dataset 10 the T1 and T2 spike shapes are identical. Even for
dataset 1, we found that neither supraparamagnetic clustering nor KlustaK-
wik applied to PCA data differentiated between them. We therefore report
only the wavelet based techniques: see table 4. Again, KlustaKwik uses only
the first five wavelet coefficients. A fixed level of interference was used: the Sig-
nal: interference ratio was 2.5:1:1 (Signal:correlated interference:uncorrelated
interference), equivalent to a noise level of 0.1 in Quiroga et al. (2004).

In this case, it is clear that the wavelet based preprocessing is critically im-
portant. However, the KlustaKwik algorithm outperforms supraparamagnetic
clustering: it maintains a high figure of merit with a gradually increasing num-
ber of unclassified spikes as the spike shapes become more and more similar.
SPC has more unclassified spikes from the start, and fails entirely after dataset
4. KlustaKwik misclassifies hardly any spikes, right up to dataset 9, whereas
SPC makes a larger number of misclassifications even in dataset 3. The per-
formance of the KlustaKwik algorithm is surprisingly good, since by dataset 9
the spike shapes look virtually identical. In other similar experiments, similar
results were obtained: if the original spikes are a little more different, then
PCA does separate them, but the figure of merit is below that produced by
wavelet based preprocessing. In general SPC misclassifies more, and generally
has a larger number of unclassified spikes as well, although the difference is not
always as marked as in table 4. However, our experience is that KwikKlusters
manages to separate the different spikes even when they are very similar, and
always outperforms SPC in this respect.
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Table 4
The ten datasets have spike type 1 linearly morphed from the original to spike type
2 shape: in dataset 10 they are identical. Columns are the same as for table 3.

SPC KK

Dataset FoM MC UC FoM MC UC M I

1 0.58 1 401 0.79 3 174 61 72

2 0.64 1 354 0.62 0 357 49 53

3 0.55 16 410 0.70 0 275 64 62

4 0.47 14 500 0.72 1 251 57 55

5 0.20 43 822 0.68 0 297 55 47

6 0.05 454 88 0.69 1 282 63 34

7 0.05 444 109 0.71 0 259 58 28

8 0.036 445 122 0.69 0 272 70 45

9 0.06 445 93 0.69 0 284 64 48

10 0.08 447 63 0.056 414 154 66 34

5 Conclusions and further work

We have presented a biophysical model for the transfer of electrical signals
from neural spikes to an extracellular electrode. In this model, we have consid-
ered the electrode to be a voltage sensor: that is a very high input impedance
device. From the analysis in section 2, we have produced a piece of software
in MATLAB which can generate realistic signals and interference taking into
account both the transfer characteristics between neuron and electrode, and
the spatial configuration of the neuron and the electrode. We have shown that
this software can generate synthetic signals which can be of use in assessing
the effectiveness of algorithms for spike detection and sorting: the many pa-
rameters allow for a very considerable range of configurations. The software
may be used directly to generate test signals, or as a mechanism for generat-
ing realistic non-Gaussian background noise. Further, because both the signals
and the noise are synthesized, precise control can be maintained over both:
this is not possible using techniques which generate ground truth data by tak-
ing recordings which contain spikes, and mixing them and adding noise. This
capability enables the types of comparisons described in section 4.

To illustrate the usefulness of this software, we have tested two different spike
sorting techniques with two different forms of preprocessed synthetic signal
data. From these experiments (which were carried out with fixed parameter
sets in the spike sorting software, as would be the case for automatic spike
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sorting), the results seem to depend partly at least on signal: noise ratio.
At high SNR, PCA based preprocessing seems to work better, and SPC and
KwikKlusters both perform at the same level. At lower SNR, both Wavelet
and PCA based preprocessing seem to perform at about the same level. SPC
spike sorting tends to fail to assign more spikes to either of the two targets,
and KwikKlusters tends misclassify more spikes. Where the spike shapes are
very similar, the wavelet based preprocessing works much better than PCA
based preprocessing. KwikKlusters seems to be more capable of detecting
differences where these differences are vary small. There are parameter sen-
sitivities as well: KwikKlusters tends not to work well at all when applied
to all ten wavelet coefficients. As we noted in section 4.1, varying certain
parameters in KwikKlusters changes the performance. Further, if the user is
allowed to interact with the system while generating clusters (as is the case
with Wave clus), better results can be obtained, particularly when the user
has some pre-knowledge of the likely spike shapes, and of the number of differ-
ent neurons being recorded. However, this is beyond the scope of this paper,
since we are interested in automatic classification of spikes.

The software could be extended to generate more than one electrode signal.
Where the electrodes are so far apart that they are independent (which is nor-
mally the case in current MEAs), no extension is necessary (the software can
simply be run more than once). However, if, for example, the electrodes were
closely spaced tetrodes, we could use their precise positioning, and determine
the precise parameters for the neurons for each electrode, and thus produce a
set of synthetic spike trains, one for each electrode. Another possible extension
would be to allow the modelling of bursting neurons: given the intracellular
characteristics, we can produce the summed weighted delayed signal.
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