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Abstract

Spike detection and spike sorting techniques are often difficult to assess because of
the lack of ground truth data (i.e. spike timings for each neuron). We present an
analysis of the transmission of intracellular signals to an extracellular electrode, and
a set of MATLAB functions which produce realistic noisy spike trains for which the
ground truth is known. This can also be used to generate realistic (non Gaussian)
background noise. The software is available on the web.
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1 Introduction

The primary aim of this tool is the generation of noisy spike trains to simu-
late the kind of signals that electrodes in extracellular multi-electrode arrays
(MEAs) record in culture. The motivation for this tool is to provide “ground
truth” data for the testing of algorithms for spike detection and spike sorting.
For data acquired using MEAs, this information can only be available if there
is concurrent intracellular recording of the neuron of interest: generally, this is
simply impossible. The difficulty we are attempting to overcome is that with-
out ground truth data, it is not possible to compare different spike detection
and spike sorting techniques (the techniques are reviewed in Lewicki (1998)).
This is a difficult problem: Wood et al. (2004) report over 20% errors using
semiautomated spike sorting. Many authors have generated ground truth data
by taking recordings which contain spikes, and mixing them and adding noise
(e.g. Atiya, 1992; Chandra and Optican, 1997; Quiroga et al., 2004; Zhang
et al., 2004), or re-generating data with similar statistics (Wood et al., 2004).
This presumes that suitable data already exists, and that the form that noise
should take is known. A different approach has been taken by Menne et al.
(2002, 2005); Mamlouk et al. (2005): they used GENESIS (Bower and Beeman,
1998) to create a multi compartment simulation of relevant neural circuitry
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(they are working in hippocampus), and then summed the contribution from
each compartment assuming homogenous resistivity and no capacitance.

We are interested in generating signals that are useful for testing spike de-
tection and sorting techniques for in vitro recordings, where the underlying
neural structure (if any exists) is unknown. In general, all that is known is the
approximate density of the neurons. Further, inspection of spike shapes sug-
gests that there is indeed capacitance as well as resistance in the system. We
have therefore taken a different approach, and attempted to analyse the signal
transfer between the intracellular spike and the extracellular electrode in or-
der to generate realistic test data for which the underlying spike patterns are
known. A related approach was taken by Nakatani et al. (2001) in the context
of cuff electrodes. For in vitro multi-electrode array (MEA) based recording,
the culture is grown in dishes on which the electrodes are already present.
Generally, the culture contains a mixture of neurons and glial cells, and there
may be glial cells between the electrode and the neurons. Further, each elec-
trode is usually near enough to a number of neurons to pick up signals from
them. Unlike the situation in Menne’s work, the electrodes are generally too
far apart to pick up signals from the same neurons. Thus, ICA is not a usable
option. The actual signal from each neuron is transformed by the effect of the
path from spiking neuron to electrode. The details of this transformation are
discussed in section 2. We have developed a set of MATLAB routines which
allow the user to emulate this transformation for a number of neurons.

This paper is organised as follows: section 2 contains a theoretical discussion
of the nature of the signal picked up by an electrode. This is followed by a
discussion of the mechanism for generating signals which are like those from
extracellular electrodes, and section 4 provides an example of a signal gener-
ated using the software. The software, and a user manual for it, are available
(Smith and Mtetwa, 2005).

2 An analysis of cell recording

2.1 General formulation

We attempt to characterise the signal received at an extracellular electrode.
Consider a current IdA(t) passing through a patch of membrane, dA at location
~xi = ~xi(dA), where ~xi is the vector from electrode i to the patch dA (see figure
1).

This will have an effect at electrode i, leading to a voltage vi(dA, t) being
generated. Let us assume that the effect is linear in IA(t). If we characterise
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Figure 1. Electrode i and patch of membrane.

this effect by a response function r(~xi) then the resultant potential at electrode
i, will be

vi(dA, t) = IdA(t)r(~xi(dA)) (1)

We are assuming that the extracellular fluid is ohmic (see figure 2). Using
linearity, we can consider the effect of the currents from a whole neuron j,
with surface Nj,

vi(Nj, t) =
∫

dA∈Nj

IdA(t)r(~xi(dA))dA (2)

The total effect for all nearby neurons (indexed by j) is then

vi(t) =
∑
j

vi(Nj, t) =
∑
j

∫
dA∈Nj

IdA(t)r(~xi(dA))dA (3)

Note that vi(t) is the voltage arriving at the electrode i from the neurons:
what actually gets recorded may differ. Some of the currents IdA(t) come from
spikes (primarily those from the axon hillock and axons), and some come from
non-spiking parts of the neuron surface.

Writing Nsj for the spiking and Nnsj for the non-spiking part of neuron Nj

we have

vspike
i (Nj, t) =

∫
dA∈Nsj

IdA(t)r(~xi(dA))dA (4)
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Figure 2. Equivalent circuit description for extracellular and dish based electrodes.
The extracellular electrode is assumed to be near the neuron, but the dish electrode
is assumed to have a layer of glia between it and the neural culture. There are a
number of simplifications in this circuit: distributed resistances and capacitances
have been lumped together, for example.

and

vnonspike
i (Nj, t) =

∫
dA∈Nnsj

IdA(t)r(~xi(dA))dA (5)

2.2 Action potentials

We can now consider vspike
i (Nj, t) due to a single spike at time T in neuron

Nj. Assuming that “at time T” means that T is the time of the initiation of
the spike at the axon hillock (i.e. the start of the self-reinforcing Na+ inflow),
vspike

i (Nj, t) from this spike will be 0 for t < T . We also assume that there is an
upper bound on the duration of the effect of the spike at time T . The upswing
of the spike is generated by runaway inflow of Na+ ions, from the rapidly
inactivating INa,t channels, and the downswing by the outflow of K+ ions from
the IK channels (Koch, 1999): these are the IdA(t) in equations 1 to 5. These
charge and discharge the essentially capacitative intracellular (conducting)
fluid of the neuron (which is largely insulated from the extracellular fluid by
the insulating bilipid membrane). Thus, writing Vspike(y, t) for the intracellular
spike at location y (with respect to an external ground), and ignoring ohmic
conduction within the neuron

Vspike(y, t) =
∫

dt
∫

dA∈nbhd(y)

IdA(t)dA/Cy (6)
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=
∫

dt
∫

dA∈nbhd(y)

(INa
dA(t) + IK

dA(t))dA/Cy

where nbhd(y) is the membrane near y and Cy is the membrane capacitance
of nbhd(y), so that

V ′
spike(y, t) = (INa(y, t) + IK(y, t))/Cy (7)

where INa(y, t) and IK(y, t) are the ionic currents integrated over nbhd(y).

These ionic currents alter the extracellular potential, as described in equation
4. Thus

vspike
i (Nj, t, ion) =

∫
dA∈Nsj

(INa(dA, t) + IK(dA, t))r(~xi(dA)dA (8)

Although we cannot actually incorporate equations 7 and 8 directly, it is clear
that the extracellular potential at electrode i due to the ionic currents causing
the spike is essentially the derivative of the intracellular spike weighted by the
response function r(~xi).

In addition, there is also the electrical resistance and the capacitance of the
membrane to take into account. The resistance of the membrane and the
resistance between the extracellular fluid and the ground form a potential
divider: in addition, the capacitance of the membrane and the resistance be-
tween the extracellular fluid and the ground act as a differentiator. Writing
vspike

i (Nj, t, mem) for the extracellular voltage from this source, we have

vspike
i (Nj, t, mem) =

Rexc

Rexc + Rmem + Rmedium

Vspike(t) (9)

+
Rexc

Rexc + Rmedium

CmemRexcV
′
mem(t)

where V ′
mem(t) is the derivative of the voltage across the membrane. The to-

tal potential at the extracellular electrode i from the spike at neuron Nj,

vspike
i (Nj, t) = vspike

i (Nj, t, ion) + vspike
i (Nj, t, mem). This is therefore a mixture

of the original spike, the differential of the spike, and a response weighted
version of the differential of the spike. Since Rmem � Rmem + Rmedium, the
contribution from the original spike will be small.

For an electrode some distance from neuron Nj in the intracellular fluid, the
effect of the integration over the surface of the neuron will be to low-pass filter
the signal (Struijk and Yoshida, 2004) because the spike is not generated at
the same instant throughout the parts of the neuron that spike. In equation

5



8, r(~xi(dA)) will decrease exponentially with distance due to diffusion: in
equation 9 Rmedium will increase linearly with distance. The precise effect on
signal size from this is difficult to predict, but suggests that the contribution
from the differential of the spike will decrease rather faster than linearly, at
least for small distances from the spiking neuron to the electrode.

For a patch clamp electrode, for a small patch of membrane only, Rexc is
replaced by a capacitor, so that equation 8 no longer holds, but instead
vspike

i (Nj, t, ion) is proportional to (but of opposite polarity from) Vspike(t).
In addition, Vmem and V ′

mem are normally held at 0, and the currents involved
in Rexc

Rexc+Rmem
Vspike(t) are relatively small, so that the ionic currents dominate.

For an electrode at the bottom of a culture dish, there is a further compli-
cation: glial cells are likely to form a (possibly incomplete) layer between the
electrode and the neural culture. This layer may have a high resistance (Rglial),
also acts as a capacitor (Cglial). However, in this case, we do not have ionic
channels contributing to the potential at the electrode, so that only equation
9 is relevant. Writing vspike

k (Nj, t) for the voltage on electrode k at the bottom
of the dish, we have

vspike
k (Nj, t) =

Relectrode

Relectrode + Rfluid + Rglial

vspike
i (Nj, t) (10)

+ CglialRelectrodev
′spike
i (Nj, t)

Of course, we do not have both electrodes i and k. In reality, vspike
k (Nj, t) results

from the integration of vspike
i (Nj, t) over a volume of the nearby intracellular

fluid. The primary effect of this is low-pass filtering.

What we actually receive at electrode k (whether extracellular or MEA based)
is sk(t) which consists of vspike

k (Nj, t) from many different neurons Nj plus an
additional noise signal, n(t) from the receiving apparatus itself. Focussing on
the signal from one neuron, Nj we can write this as

sk(t) = vk(t) + n(t)

= vk(Nj, t) +
∑
p6=j

vk(Np, t) + n(t)

= vspike
k (Nj, t) +

∑
p

vnonspike
i (Np, t) +

∑
p6=j

vspike
k (Np, t) + n(t) (11)

The first term is the “signal”, and the other three are noise terms, in the sense
that they do not originate from the spike at neuron j. Both the signal term
and the noisy spiking term in equation 11 depend on the nature of the con-
nection between the neurons and the electrode k, as discussed in equations 6
to 10. Part will be resistive, mediated by the ionic conduction of the medium,
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part will be capacitative (and differentiating) due to the insulating membrane
and the ion channels. Further, smoothing will have occurred. For MEA type
electrodes, this will be compounded by insulating glial cells between the patch
and the electrode causing a further mixture of resistive and capacitative (dif-
ferentiating) coupling. Further, the potential will also depend on the nature
of the transferrence of ionic current in the medium to electrical current in the
electrode (not modelled here: (see Standen et al., 1987)).

The final result will be that a MEA electrode detects a mixture of Vspike(t),
V ′

spike(t) and V ′′
spike(t), each smoothed to some extent. (We note that if there

are other glial cells in the signal path, there may be further differentiation
occurring as well.) For situations in which the electrode itself may be maneu-
vered, the value of ~xi (in equation 4) can be reduced, improving the overall
conductance between dA and the electrode. Further one might also attempt to
place the electrode where the capacitative effects of glial cells are minimised
(for example by shaping points on the electrodes, or by lowering the electrodes
on to the culture). For patch clamping, the electrode is placed in electrolyte,
and the electrolyte is directly attached to a patch of the membrane of the neu-
ron of interest, so that r(~xi(dA)) is essentially 0 and the connection primarily
ionic for those dA inside the patch area.

The noise terms in equation 11 identify three components. The first (and
probably smallest of these) arises from nonspiking events from nearby neurons.
IdA(t) in these events is generally quite small, so that the contribution at the
electrode is large only if r(~xi(dA)) is large, which is likely to be the case only
if dA is very close to the electrode, or if a patch is made to a nonspiking part
of the electrode. Assuming that we are not using patch clamping, then this
interference arises from nearby synaptic events, and non-axonic spikes (e.g.
Ca++ spikes). The second noise term is likely to be the dominant term: this
arises from spikes in other nearby neurons. In many situations, neurons are
closely packed, so that if it has not been possible to place the electrode very
close to the neuron of interest, noise from other neurons will be dominant.
As with the signal term, the modes of transmission are as discussed earlier
(and are likely to differ in relative strength for different neurons): one effect
of this is that the detected spike shape is likely to differ for different nearby
neurons (even if the intra-neuron spike shapes are identical), thus permitting
spike sorting. The last noise term arises from extraneous electro-magnetic
interference, and from the amplifiers used, and can be minimised by shielding
and appropriate experimental design.

The distribution of the noise signal is likely to be quite different for each of the
three sources of noise: for the first noise source, it is likely that these will be
synaptic activity before and during spiking. For the second source, it is likely
that nearby neurons receive similar input to the neuron of interest, so that
they fire at similar times. Thus both of these noise sources will be correlated
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to the signal of interest. The spike times from further away neurons are likely
to be relatively independent of the neurons of interest. Only the last noise
source is likely to be entirely uncorrelated.

3 Generating data for analysis

The main aim of this work is to enable the comparison of a number of different
spike detection and sorting techniques. Without “ground truth” information,
detailed comparison is impossible. Thus, in order to assist in these compar-
isons, we have produced a set of MATLAB functions to generate realistic data,
using the analysis in section 2 to guide data generation. The functions have
a number of variable parameters, enabling a wide range of data generation.
In particular, we can generate data which has realistic signals from nearby
neurons (the target neurons) and which has a large quantity of realistic noise
(that is, realistic data from other neurons). It is possible to make the spiking
of some of the other neurons correlated with target neurons, so that the signal
from them is correlated with the signal from some of the target neurons. Other
neurons can be spiking independently (independent neurons).

Overall, the data generation system has a number of phases: firstly, the spike
times for the neurons of interest (target neurons) are generated, within some
time interval. Spikes may be generated using either a Poisson or a Gaussian
distribution. The mean inter-spike interval, and the degree of randomness of
these spikes are variable. Once these spike times have been determined, we
can generate spike times for other neurons (correlated neurons) each of whose
spike trains are correlated with one of the target neurons. This is achieved
by creating new spike times by allowing a (selectable) degree of jitter on the
spike times of the target neuron. The software also allows generation of other
sequences of spike times uncorrelated with the target spike times (independent
neurons). We thus have one set of sequences of spike times, from the target
neurons, plus two other sets of spike times, one correlated with the originals,
and one not.

We use realistic spike shapes, (currently taken from the Hodgkin Huxley simu-
lator HHSim (Touretzky et al., 2004), but they may be taken from elsewhere)
to generate the intracellular potential for each of these spike trains. Where
the inter-spike interval is less than the length of the spike shape, we join them
smoothly, and in such a way that both reach their maximum potential. Min-
imum inter-spike intervals can be enforced. We then generate smoothed first
and second differentials for all of these signals, and set all these signals and
differentials to a normalised size. For each neural signal source (original, cor-
related and uncorrelated), we form a signal by linearly mixing the original
intracellular signal and its smoothed differentials: the mixing parameters are
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set by the user. These linearly mixed signals (characteristic of each spiking
neuron) can then themselves be linearly mixed, allowing any required signal
to noise ratio. Gaussian random noise (of selectable size) can be added at the
end. This final signal can then be scaled to an appropriate range. In this way,
we can generate a noisy signal similar to that which would be picked up by an
electrode for which the actual timing of the spikes is known, and the precise
form and extent of the noise can be adjusted. Further details of the noisy spike
generation system (and MATLAB code) may be found in (Smith and Mtetwa,
2005).

4 An example

For this example, we choose to have four target neurons, seven correlated
neurons, and five independent neurons. Two of the target neurons have a
Poisson distribution, and the other two target neurons have a Gaussian dis-
tribution. The target neurons are closer than the others to the electrode. The
seven correlated neurons are correlated with different target neurons. The rel-
ative strengths of the original, differentiated, and twice differentiated signals
are shown in table 1. Equations 9 to 10 provide the justification for using
such linear mixtures, but do not directly provide values for the actual relative
strengths for these values. Since Rmem � Rexc, equation 9 suggests that the
coefficient for the original signal (D0) should be small. Further, since Vspike(t)
changes very rapidly, V ′

mem(t) will be relatively large, suggesting that the co-
efficient of the first derivative should be larger. The extent of the coverage of
the electrode, or of the path from the neuron to the electrode by glial cells
is unknown, and may vary from neuron to neuron. Thus, we have varied the
values for the coefficients for the first and second derivatives, D1 and D2, from
neuron to neuron.

The relative location of the neurons is also shown in table 1: in the simulation,
the overall strength of the signal from each neuron was set inversely propor-
tional to the square of the distance from the electrode (but this is set by the
experimentor, not directly in the code, so that a different relationship between
distance and strength may be chosen). Although the intracellular spike shapes
for the target neurons are identical, the different parameters for D0, D1, and
D2 result in different signals being received at the electrode (see figure 3). The
final signal received at the electrode is shown in figure 4.

The software can also be used to generate “spiky” background noise. To do
this, the number of target neurons is set to zero, as is the number of correlated
neurons. In the example in figure 5, the number of independent neurons was set
to 10, and their parameters set so that the spike distributions were Gaussian,
with mean inter-spike interval (ISI) 10ms, with a mean standard deviation
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Table 1
Coefficients chosen for original (D0), differential (D1) and 2nd differential (D2) of
signal. The location is in abstract units, relative to the electrode location of (0, 0).

No type D0 D1 D2 location

1 target 0.001 0.3 0.5 -1 -1.5

2 target 0.002 0.2 0.6 1.5 2

3 target 0.002 0.5 0.4 -1 2

4 target 0.002 0.8 0.1 -0.5 2

5 corr 0.002 0.5 0.2 2 10

6 corr 0.001 0.2 0.5 6 0

7 corr 0.002 0.4 0.6 5 -7

8 corr 0.001 0.3 0.7 -4 -7

9 corr 0.001 0.7 0.1 -7 -1

10 corr 0.003 0.25 0.45 -7 4

11 corr 0.003 0.4 0.2 -2 11

12 ind 0.003 0.3 0.7 8 5

13 ind 0.002 0.4 0.6 8 -5

14 ind 0.004 0.6 0.4 1 -10

15 ind 0.005 0.5 0.5 -5 -4

17 ind 0.002 0.75 0.3 -5 8

Figure 3. The shapes of the traces received at the electrode from a spike from each
of the four target neurons (1-4 in table 1). Each graph shows 3 milliseconds.

of 1ms and minimum ISI of 1ms, with the original signal level set randomly
between 0 and 0.003, and the contribution of the first and second derivative set
randomly between 0 and 0.5. The spiky background noise and the distribution
are shown in figure 5. For the spiky background noise produced by the spike
trains generated here, the skewness of the distribution was 0.6, and the kurtosis
was 4.16. In this case, the mean time between spikes is 0.53 ms, so that they
will generally collide. Increasing the mean ISI to 1.4 ms leads to kurtosis
of 6.41, and increasing the number of neurons to 50 (so that the mean time
between spikes is 0.1 ms, much less than the actual length of a spike) decreases
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Figure 4. Signal received at the electrode, generated from coefficients in table 1. X
axis is samples at 100,000 samples/second.

Figure 5. Spiky noise generated from 10 independent spike trains. Left shows 10,000
samples (0.1 seconds), and right shows distribution of the values.

the kurtosis to 3.19. Thus, the number of neurons and other parameters can
be chosen to provide the appropriate form of spiky background noise.

5 Conclusions and further work

We have presented a biophysical model for the transfer of electrical signals
from neural spikes to an electrode. In this model, we have considered the elec-
trode to be a charge sensor: that is a very high impedance input device. From
the analysis, we have produced a piece of software in MATLAB which can gen-
erate realistic signals for which the locations (and shapes) of the underlying
spike trains are known. We believe that this software can generate synthetic
noisy signals which can be of use in assessing the effectiveness of algorithms
for spike detection and sorting. The software may be used either directly, or
as a mechanism for generating realistic non-Gaussian background noise.
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The software could be extended to generate more than one electrode signal.
Where they are so far apart that they are independent (which is normally
the case in current MEAs), this is unnecessary (the software can simply be
run more than once). However, if, for example, the electrodes were closely
spaced tetrodes, we could use their precise positioning, and determine the
precise parameters for the neurons for each electrode, and thus produce a set
of synthetic spike trains, one for each electrode. Another possible extension
would be to allow the modelling of bursting neurons.
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