
Testing spike detection and sorting algorithms using synthesized noisy spike trains
Leslie Smith, Dept of Computing Science and Maths, University of Stirling, Stirling FK9 4LA, Scotland
email lss@cs.stir.ac.uk

Abstract: Spike detection and spike sorting techniques are often difficult to assess because of the
lack of ground truth data (i.e. spike timings for each neuron). This is particularly important for in vitro
recordings where the signal to noise ratio is poor (as is the case for multi-electrode arrays at the
bottom of a cell culture dish). We present an analysis of the transmission of intracellular signals from
neurons to an extracellular electrode, and a set of MATLAB functions based on this analysis. These
produce realistic signals from neighboring neurons as well as interference from more distant neurons,
and Gaussian noise. They thus generate realistic but controllable synthetic signals (for which the
ground truth is known) for assessing spike detection and spike sorting techniques. They can also be
used to generate realistic (non Gaussian) background noise. We use signals generated in this way to
compare two automated spike sorting techniques. The software is available freely on the web at
http://www.cs.stir.ac.uk/~lss/noisyspikes.

Aims:
1. To develop a model for the transfer of charge from spiking neurons to electrodes
2. To develop a tool based on this model, to provide realistic data with realistic interference for

which the ground truth is known to be used to assess spike detection and sorting techniques
3. To use this tool to assess some spike sorting techniques.

The model

Figure 1 shows equivalent circuit description for transfer of charge from a point on a neuron to an
electrode for an extracellular and a dish based electrode. The extracellular electrode is assumed
to be near the neuron, but the dish electrode is may have a layer of glia between it and the neural
culture. There are a number of simplifications in this circuit: distributed resistances and
capacitances have been lumped together, for example.
This circuit is used to develop an expression for the voltage at the extracellular electrode resulting
from the intracellular spike voltage in some neighbourhood of a small area of the membrane. This
expression is in terms of the intracellular voltage and its time derivative, as well as the lumped
components in the circuit above.

What is the effect of the integrating this over the extent of the neuron?
1. Because the time taken for spike movement from the spike initiation point on the soma through
the axon is comparable to or larger than the spike duration, this integration will have a major effect
on the shape of the voltage recorded at the electrode.
2. Because the different parts of the spiking neural surface will be at differing distances, the shape
of the voltage at the electrode corresponding to a spike will depend on the precise geometry of the
electrode and neuron.
We have lumped these together. We use

where is the voltage detected at the electrode from neuron Nj at time nδt,
is the intracellular voltage inside Neuron j (assumed constant over its extent)

The b’s are constants reflecting (1) the strength of the intracellular signal (at the different parts of
the spiking surface of the neuron) and (2) the response function (coupling) between those parts
of the neuron and the electrode. For an electrode on an MEA, there is likely to be an additional
complexity: these are often (partially) covered in insulating glial cells. This adds on another term,
this time in the second derivative of V(t).
A much more detailed derivation is included in the paper on the website (available from the
author)[1].

Assessing Wave_clus and KlustaKwik
Wave_clus[3] and KlustaKwik[4] are spike sorting software packages. Wave_clus detects spikes
using a threshold based technique, and can generate either three PCA components or 10 wavelet
components from the 64 samples surrounding each spike it detects (64 samples at 24
Ksamples/second = 2.67 ms).

Test 1: Dissimilar spike shapes.Test 1: Dissimilar spike shapes.

The software
The software (available from http://www.cs.stir.ac.uk/~lss/noisyspikes) is a set of MATLAB m-files. It
needs the statistics and signal processing toolboxes. As well as the m-files, the website also
contains a reasonably comprehensive user manual, and an extended paper[1].

The software allows
• user selectable (and user definable) intracellular spike shapes[2]
• a user-selectable number of target neurons (including 0, allowing pure interference generation)
• a user selectable number of interference neurons, whose spike times are correlated with one of
the target neurons
• a user-selectable number of uncorrelated interference neurons

Neural spikes may have Gaussian or Poisson distributions. Spike times may be re-used so that the
same experiment may be run with different amounts of interference.
Virtually all the parameters in the simulation can be set (and are detailed in the user manual).
Unfortunately, there’s no GUI. So using the software means typing command lines like

[signal info rinfo] = generatenoisysamples('N_Jitter', 5, 'N_Uncorr',
50, …
'ShowSNR', 1, 'Duration', 30, 'SameTargetSizes', 1, 'ReuseTargets',
old_info) ;

which creates 30 seconds of simulated data (into the 1 dimensional array signal), keeping lots of
information about this run in info, with two target neurons (default), 5 correlated (jittered) neurons
and 50 uncorrelated neurons, reusing target times from a structure old_info.

Generating 30 seconds of data as above (at 24 Ksamples/second) takes 94 seconds on a 2 GHz
Macintosh G5, with 4Gbytes, 82 seconds on a 2.8 GHz Windows XP PC with 1GB and about 5
minutes on an 867 MHz G4 laptop (with 640Mbytes).

Figure 1.

Figure 2.

Spikes with very different spike shapes
were generated (see figure 2). These
were then input to four different spike
sorting systems.

The preprocessed input was either The preprocessed input was either
three PCA components, or 10 three PCA components, or 10
Wavelet coefficients,Wavelet coefficients,

andand
thethe spike sorting technique was either spike sorting technique was either
KlustaKwik (which uses CEM[5]), or KlustaKwik (which uses CEM[5]), or
Wave_clus (which uses SPC[3]). Wave_clus (which uses SPC[3]).

Zero noise results.

There are 482 T1 spikes, and
608 T2 spikes. SPC applied to
wavelets fails to classify 85 of
them, but outperforms the other
techniques. The other
techniques all discover more
than the (correct) two clusters.

In this case, preprocessing
using Wavelets followed by
clustering using SPC is best.

Figure of Merit
We introduce a figure of merit in an attempt to summarise the effectiveness of spike sorting
where the ground truth is known:
The figure of merit is calculated as below:

where n is the number of target neurons, and Tj(i) is the number of spikes from target neuron j
found in cluster i. It measures the degree to which different clusters detected follow the spikes
from different target neurons: its maximum value is 1. It can cope with the number of clusters
found being different from the actual number of classes.

Correlated and Uncorrelated Noise results:

Table rows show the figure of
merit, the number misclassified,
and the number not classified. P is
preprocessing type, FoM is figure
of merit, MC is misclassified (i.e.
target 1 spikes classed as target 2
or vice versa, UC is unclassified
spikes (either in the catch-all
group, or in some other cluster
apart from the one selected in the
figure of merit), M is spikes
missed, and I is spikes inserted.
Using KlustaKwik on wavelet data
has some wrinkles: if the maximum
number of clusters permitted is not
set, far too many are produced.
Setting a limit (of 5) sometimes
results in only one cluster being
produced (line 2). Best results are
obtained using PCA: SPC and KK
applied to PCA perform equally.
Test2: Using similar spike shapes.Test2: Using similar spike shapes.

The spike shapes used in dataset 1 are shown in figure 3. For the other datasets, the T1 spike
shape was made more and more like the T2 spike shape in nine steps using simple linear
interpolation. In dataset 10 the T1 and T2 spike shapes are identical.

Figure 3

Even for dataset 1, PCA preprocessed
data failed. The table thus shows only
wavelet preprocessing. KK is better at
separating the two clusters particularly
when they are very similar.

Conclusions
The synthetic data enables informed experimentation with spike sorting techniques. For very similar
spike recording shapes, it is clear that wavelet preprocessing followed by KlustaKwik is the best
technique. For other data, no clear winner emerges from these experiments. Perhaps this is not
unexpected: the best method of separating the different clusters depends on the actual shapes of
the clusters. The synthetic data emphasizes the importance of trying out different techniques, and
different parameters to these techniques.

References: [1] Smith L.S., Mtetwa N.,
http://www.cs.stir.ac.uk/~lss/noisyspikes/webV1_1/spikegen_paper_revised1.pdf (submitted to J.
Neur. Methods), [2] Uses Naundorf et al, Nature, 440 (7087), 1060-3, 2006, or Touretzky et al,
HHsim, http://www.cs.smu.edu/~dst/Hhsim, [3] Quiroga R., Neural Computation 16, 1661-87, 2004,
[4] Harris, K. KlustaKwik, http://klustakwik.sourceforge.net, [5] Celeux G., Govaert G, Comp. Stats
and Data Analysis 14 (3), 315-22, 1992.

Fifteenth Annual Computational Neuroscience Meeting CNS*2006, July 16-30, Edinburgh

