μGC4: Building Brains
Objective

Microelectronic designs and architectures that deliver very high levels of performance for this area, and thereby help test hypotheses and explore the wider space of asynchronous event-coupled dynamical systems
Neurobiologically inspired electronic systems

• Why?
 – Animal brains have capabilities which outperform current electronic systems
 • Sensory perception and sensorimotor systems
 • Planning
 • Robustness in the face of changing environments
 • Resilience to partial failures
 – Understanding neural systems by building models which display the same characteristics
 • Baseline for replicating/improving performance
 • Also of interest both to computational and clinical neurophysiologists
Impact

- Enabling much larger neural models to be simulated than is possible at present. This is likely to be a significant contribution to the higher-level GC of understanding the architecture of brain and mind, whose impact upon humanity would be dramatic.

- Breakthroughs in the robustness and power-efficiency of electronic systems.

- Understanding how to build reliable systems on unreliable platforms is both timely and vital to the future progress of the technology.
The brain is not a computer

Designed
- Logic levels (digital)
- Voltages/currents (analogue)
- 0 to 3 volts (varies)
- Transistors (+ other devices)
- Electrons

Evolved
- Spike trains
- Chemical Signalling
 - -100 to +75mV
- Concentration levels and gradients
- Ionic Channels
- Membrane morphology channel distribution
- Multiple species of ion
- Neuromodulators, Neurotransmitters

Information Coding

Signal Coding

Signal Levels

Active Elements

Conduction Elements

Neural System

Electronic Computer
Signals and operation

- **Input/Output Signal Levels**
 - 0-2,3, or 5 V: alternatively, small currents
 - Digital Analogue: 0-2,3, or 5V cts I or V

- **Internal Signal Levels**
 - Electron and electrical behaviour in doped silicon

- **Basis**
 - Spiking: 75mv spikes: also neurochemicals
 - Ionic concentrations, neuromodulator levels, local depolarisation (Voltage across membrane)
 - Behaviour of ions and neuromodulators in aqueous solution. Protein (in membrane) conformation.
Possible ways forward: levels

- Brains are multi-level systems
 - Whole brain, brain region, cortical column, neuron, membrane, ion channel
 - Which level(s) do we build at?
Level choices

- Whole brain level: complete system level.
- Brain region level: subsystem level. But which subsystem?
- Cortical column level: interacting neurons. Cortical microcircuits
- Neuron level: what sort of neuron are we working with? Asynchronous spiking? Multi-compartment?
- Membrane/ion channel level: complex interactions between ions, ion channels and neuromodulators
Foothill projects

– build architectures to facilitate the construction of real-time neural and neuromorphic systems – the building blocks for the next stage;
– sensory fusion systems for visual, auditory, etc, input;
– reconfigurable architectures and tools to support generic neural modelling experiments;
– untangling the developmental trail – neural plasticity and epigenesis;
– massively parallel digital computation for neural modelling;
– developing low-power brain-inspired analogue circuits;
– efficient simulation at multiple levels of abstraction;
– understanding the bounds of microelectronic technology.
Related projects

• Hugo De Garis: building a brain through evolving hardware.
 – StarLab (2000-2001)

• Blue Brain project
 – Detailed biologically accurate modelling
 – Literally building a brain by replicating it (parts of it) electronically
 – See http://bluebrain.epfl.ch/
Implementation technologies

• VLSI
 – Analogue, digital, mixed. Asynchronous spikes, noise based systems.
• Reconfigurable Architectures
• Others?
 – Novel architectures
 • Hybrid (electronic/neural systems) ?
 – Genetic manipulation
 • Ion channel knock-outs
 – Nanofabrication