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Overview

e Why silicon implementation

e Real neurons (a very guick introduction)
e What to implement

 Implementation Technologies

e Spiking systems

e Synapses

e Concluding thoughts
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Why implement neural models in silicon?

To gain better (and possibly brain-like) performance for some
system

To study how some neural model performs

Brain-like performance would be a real improvement in some
areas
— Sensing, motor control, higher level capabilities

Silicon implementation can allow models to run rapidly enough
to be applied to real data in real time
— Clearly important for sensing and motor control: but also for making
decisions in changing circumstances
Why not just wait for workstations to get fast enough?

— Real sensory systems are highly parallel, multiple channels of information
flow

— It might be a long wait!
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Computational Neuroscience and Silicon Implementation

e Modelling is critical element in testing hypotheses in
computational neuroscience

 What are the advantages of silicon over software?

— Speed
— Allows for testing models in computational neuroscience against real data

e Are these advantages enough to overcome the disadvantages
(e.g. difficulty in modifying systems, delays in manufacture, etc.)

e Answer: sometimes we want to be able to use these models in
conjunction with other equipment

— Then real-time operation, power consumption, and even portability can
matter
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Real Neurons

e Real neurons are very complex.
— See Kandel, Schwartz and Jessell: Principles of Neural Science

e There are many different types of neuron
— Often classified by morphology (shape), extent, location in brain, type of
animal in which they occur
« What they all share is excitability
— Operation through electric charge

— The membrane of the cell...
e its outermost boundary

— ...Is excitable
— That is, its properties change depending on the voltage across it.
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Overall neuron structure
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Cell membrane

e Bilipid part is insulator
e It forms the dielectric of a capacitor
— Between the relatively conducting extracellular and intracellular fluid

e Conductance is through transport of charged ions
— Ca++, Na+, K+
— Through ion channels
e Proteins which allow ions through selectively
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lon Channels

e |on channels come in many forms
— Gerstner refers to them as the “zoo of ion channels”

e Unbalanced movement of ions across the membrane alters the
potential difference between the inside of the neuron and the
outside of the cell

e The permeabllity of an ion channel depends on the configuration
of the protein that forms the channel

e This configuration can change because of the potential across
the ion channel

— Voltage-sensitive ion channels

e In addition, many ion channels change their configuration (and
hence permeability) over time, or as a result of passing ions
through, or because they can be blocked by particular ions.
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Reversal potential

e Most ion channels could pass ions in either direction

e Two factors influence the direction

— The potential across the membrane
— The relative concentration of the ion species at either end of the channel

e Because there are many ion species making up the potential,
these are (nearly) independent variables

e The reversal potential is the potential difference at which these
balance out (giving a net 0 current).
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Neuron at rest
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Spikes (Action potentials)

Most real neurons communicate
using action potentials

When the potential at a
particular part of the neuron
(the axon hillock) exceeds some
value Na+ channels open

These inactivate, and K+
channels open

Spikes are actively transmitted
along the axon

When they arrive at axon
terminals (where axons join on
to other neuron’s dendrites)
they affect the postsynaptic
neuron’s potential
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Synapses

e Synapses are the connections between neurons
— From a presynaptic neuron to a postsynaptic neuron

e Many form of synapse
— Often presynaptic terminal releases neurotransmitter
— Neurotransmitter in cleft...
e Area between presynaptic neuron and postsynaptic neuron
— ... results in opening of ion channels
— Which then allow ions to flow
— Altering the post-synaptic potential
— (or injecting current into post-synaptic cell)
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Example Synapse
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Plasticity and Adaptation

e Neural systems alter in response to their inputs

e This happens over many time-scales

— Very short: e.g. dynamic synapses
e Need time to replenish neurotransmitter

— Short: e.g. due to diffusable neuromodulators
— Medium: e.g. due to morphological changes
— Long: same as above

e Adaptation takes place in many different ways
— Early proliferation of synapses which then die back
— LTP and LTD at synapses
— Changes in axon myelinisation
— Others too
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What to implement?

e Real neurons are very complex
— And not amenable to direct implementation in silicon

— Multiple ion species, multiple neurotransmitters and neuromodulators,

plasticity are all very unlike what can be straightforwardly produced in
silicon

Candidates for implementation
e Simple neuron models
— But how simple is simple?
e OQOverall system models
— Which system
— Implemented at what level?

e Patches of membrane
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Implementing simple neuron models

e The simplest models are time-free
— They treat their input as a static vector
— (or as a sequence of vectors)

— An produce vector...
e Or sequence of vector

— ...outputs.

e Little current research on implementing such models
— There has been in the past:

— But:
e Little market for them: PC speed has allowed software techniques to rule

e See references 4 and 51 for lots of details of these types of chip
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Implementing (slightly less) simple models

e One popular model which permits modelling time is the leaky
integrate-and-fire model

— Models neuron as a single point (point-neuron)
— Models output spikes as events (shape is irrelevant)

Equivalent circuit:

Membrane -> capacitance
lon channels -> resistor

All synapses inject current
at the same point
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Other neuron models

e Gerstner’s spike response model
— Models shape of post-synaptic potential

— Models dynamic threshold
» Allows refractory period and relative refractory period to be included

e Other non-linear leakage models may be included
— Can allow (e.qg.) realistic spike generation

e More detailed models

— Compartmental modelling
e Model neuron morphology as a connected set of segments of neuron

e Often includes many different forms of leakage to model different ion channel
types
» Morphologically realistic modelling is possible

e (Generally software)
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Adaptation

e Almost all models which include adaptation change the synapse

e Many use a single-parameter characterisation of the synapse
— The weight

e Hebbian adaptation

— Neurons that fire together have the excitatory synapses between them
strengthened

e Spike-time dependent plasticity (STDP)
— When the presynaptic neuron fires just before the post-synaptic neuron,
strengthen the synapse

— When the presynaptic neuron fires just after the post-synaptic neuron,
weaken the synapse
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Modelling subsystems

e Subsystem usually has an identifiable function
— Some aspect of vision/audition/olfaction/overall control

— Mead'’s silicon retina, Silicon cochlea, sensorimotor systems for “artificial
insects”.

 Normally, individual neurons are either
— Not modelled
— Or modelled in a very simplistic way
— Because the subsystem contains a very large number of neurons

e Exception: some modelling of insects and invertebrate sensory
or sensorimotor systems where the neural system is mapped out
precisely
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Modelling patches of membrane

e ldea is is modelling membrane with ion channels
— Normally lumped

e Aim is (usually) understanding membrane operation
— Or aiming to develop computation based on excitable membranes

Usually based on membrane equivalent circuit
e but using a larger number of conductances
e And (often) including non-linearities in conductance operation

Copyright 2004 © Leslie BICS2004 Tutorial Slide 22



Implementation Techniques

e Discrete components
— Long history: back to 1960’s (and indeed earlier):
— models of neuron membranes and neurons (refs 42-46)
— Models of subsystems (avian retina: (49))

e VLSI implementations

— Many different possible technologies
e Analog vs Digital
e If Analog
— Subthreshold vs supra-threshold
— Different operating areas of the transistors in the circuit
e If Digital
— Custom ASIC or FPGA

e How should we compare the different technologies?
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Comparison criteria

e Degree of Implementation
— Does each entity being emulated have a corresponding piece of circuitry?
e Speed

— Silicon implementation is faster than software, but some implementation
techniques are faster than others

e Real-time system

— Does the technique lend itself to the production of real-time
implementations

e Power consumption
— For some applications, low power is important.
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Comparison of technologies

Implementation | Degree of | Speed Real-time Power

Technology Implemen consumption
tation

Subthreshold High High Yes Very low

AVLSI

Above threshold | High V. High Yes Medium

AVLSI

DVLSI Low High Possible Medium-high

FPGA Low- Medium Possible Medium-high
medium

Workstation Minimal Low Not usually High

DSP Low Med-High | Possible High
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On ASICs

e ASICs (aVLSI, sub/above threshold, DVLSI) have their own
difficulties
— Design
e Design of DVLSI is quite difficult, and skilled.
e Design of above threshold aVLSI is harder
e Design of subthreshold aVLSI is harder again.
— Fabrication
e Unless you have industrial muscle...
— (or a lot of money)
e ...you wait a long time to get fabricated chips back for test
— Testing
 Need to design for testing
— Make the design easy to test
e Need to build a rig to text the system
— And if it doesn’t work...long design cycle

— (Though focussed ion beam systems can sometimes help)
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On FPGAS

e Field-programmable gate arrays
— Digital
— Quickly reprogrammable

— Faster than workstations
e But not as fast as ASICs

— Really somewhere between hardware and software implementations.

e Field-programmable analog arrays

— An area of growing interest
— May well provide a new technology for neuron implementation

e Digital Signal Processing
— Add-on to a workstation
— Quickly reprogrammable
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Analog or Digital

e Signal coding
— Digital: discrete values, valid at specific instants
— Analog: continuous values in continuous time

e Most VLSI design and fabrication systems are designed for
digital

— Result is that analogue designer often is not using the best systems

e Digital systems use transistors only in on or off states

e Analogue systems rely on
— (above threshold) Linear part of the transistor characteristic
— (below threshold) Exponential part of transistor characteristic
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Analog systems

e |ssues are

— Bandwidth
e Maximum frequency at which system can run

— Slew rate
e maximum rate at which voltages can change

— Noise level
 thermal noise, electrical interference

— Drift
e slow signal change, due e.g. to temperature change

e Advantages are
— Simple multipliers and adders
— Simple function implementation
e For some functions (e.g.squashing functions)
e May not be entirely accurate
— Often unimportant
e Disadvantages

— Lack of accuracy, noise, drift
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Digital Systems

e |ssues are

— Sampling rate
e Maximal bandwidth is 0.5 * sampling rate

— Representation length
e Defines the accuracy to which values are held, and hence of operations

e Advantages
— High speed multipliers, adders, functions

e Disadvantages
— Multipliers, adders, functions are relatively large
— Power consumption
— Inputs and outputs need to be digitised
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Degrees of implementation

e Analogue systems

Small multipliers, adders, functions are usually fully implemented
1:1 correspondence with neural circuit elements

e Digital systems

Multipliers, functions are large
Insufficient room for full implementation

Usually functional units are shared between different parts of the neurons
being modelled: partial implementation.

If shared between P units, then functional units must run at P*speed of
signal

e Favours analogue systems
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Matching

e Analogue systems often rely on similar transistors having similar
characteristics

e But process variation across chip may cause this not to be the
case

 Digital designers usually care little about 1,,/V,, characteristic
— But it is critical in analogue designs

— Above threshold: defines gain
— Below threshold: defines function characteristic

e« Mismatch for subthreshold can be tackled by setting a bias
voltage, but this means more off-chip circuitry
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Memory

Memory is required for
— Constant values (thresholds, delays, characteristics for ion channels)
— Alterable values (synaptic weights)

Digital memory is well developed
— sRAM, dRAM, EEPROM (flash)

Analog memory can be more problematic

— Can use digital memory + Digital/analog convertor (DAC)

— Can sometime share DAC between different memories

Not a new problem: motor-driven potentiometers in perceptron, or
Widrow’s memistor

Floating gate technology
— Similar technique to EEPROM, but adapted to holding analogue values
— Use Fowler-Nordheim tunneling/hot electron injection to move up/down gradually
— Can be difficult to implement reliably

Copyright 2004 © Leslie BICS2004 Tutorial Slide 33



Spiking systems

e Signals are trains of pulses

e Pulses may be modulated in many ways
— Pulse height/width/frequency(timing) modulation

e Systems can be low power
— Usually, power is used primarily when a pulse occurs

e Pulse-based neurons have some analogue and some digital
characteristics

e Analogue:
— Synapses, accumulation of activity level

e Digital:
— Pulse is an event characterized purely by time of occurrence

e Real neural systems are pulse based
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Implementing spiking systems: aVLSI

Example: LIF neuron

Unfortunately, cannot
Implement this circuit
directly in aVLSI.

Values of C
Implementable lead to
huge values for R.

(possible in sub-
threshold aVLSI, but
difficult to repeat
precisely)
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LIF in aVLSI

e How to solve this problem:

— Switched capacitor techniques

e Can permit implementation of a large resistor using switching and a small
capacitor

e Problematic: can have noise implications ion sensitive analogue circuitry due to
switching transients

— Follower-integrator circuit (in subthreshold aVLSI)

e Can develop a delay line, and this can be useful in achieving the right order of
magnitude of time constants
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LIF in dVLSI

Essentially, need to do numerical solution of the equations
describing the system

Leads to same issues as those that arise in software simulation:
— Timestep
e Long or short, fixed or variable

— Accuracy
e How many bits to use
e Integer, or fixed point, or floating point
— Integer and fixed point circuits are much more compact
— But less accurate

This can provide the appropriate time constants for the leak.

Delays can be produced by counting cycles, and comparing
result to some predefined value.
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Synapses

e Synapses are by far the commonest element in real neural
circuitry

e S0 any implementation needs to be able to implement synapses
efficiently
— And be able to implement a lot of them

e Real synapses are very small, but can be quite complex

e Artificial synapses need to be small,
— Or shared between a large number of emulated synapses

e What's required?

— At minimum: a weight, connecting an input or presynaptic neuron to a
postsynaptic neuron or output

— Weight should be able to be altered
— May also want some time-course of the effect that the synapse has
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Synapses in aVvLSI

Part 1: Holding the value (or weight). (from Liu et al, Analog VLSI)
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Alternatives

e (Capacitative storage
— Store as voltage on a capacitor
e Leakage
— Store as ratio of voltages between two capacitors
e Better, but still leaks away

e Mix analogue and digital:
— Digital storage, the DAC to generate value

e Altering the weight
— For adaptive systems this is a requirement
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Rest of the synapses (Liu et al)

< Error signal
< Learn-enable signal

> Output = 3 Wy,X;
J

{ Error signal
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Figure 4.7

A learning-array block diagram. Each synapse multiplies its column input with its nonvolatile
analog weight, and outputs a current to the row-output wire, which sums the synapse-output
currents along that row. Column inputs that are coincident with the row learn-enable signals
cause weight increases at selected synapses. The error signal constrains the time-averaged sum
of the row-synapse weights to be a constant, bounding the row weights by forcing the synapses to
compete for weight value.
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Other areas

e There is interest in producing models of excitable membranes.
— Usually lumped ionic channels (rather than emulating them individually)
— Silicon neuron work

e There is interest in producing whole system models
— Based on Mead, Lazzaro’s work on silicon retina, silicon cochlea
— (Beyond the scope of this tutorial)

e There is interest in using very small feature sizes (deep-sub
micron)
— Noise becomes a serious difficulty in implementing dVLSI
— Can one use this form of noise in a highly parallel silicon implementation?
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Concluding thoughts

e Silicon implementation has great promise
— But so far, not really lived up to its promise

e Why?
— Workstation speed

e Where size and power are not considerations, easier to use a workstation and
software

e Yet I still think implementation in silicon will become important
— Ubiquitous use of machines

— Need for better sensing systems that really do work in real time
— Limits to growth of dVLSI
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