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Abstract 
 
The dorsal column nuclei, cuneatus and gracilis, receive somesthetic information impinging 
on projection cells and local inhibitory interneurons. The presence of these interneurons 
allows spatio-temporal progressive coding of information that can be modelled (Sánchez et 
al., 2004) using their known synaptic connections with projection cells (Mariño et al., 1999; 
Aguilar et al., 2002, 2003). Here we explore the dependency of the processing time 
required to complete the progressive coding with regard to cutaneous stimuli varying in size 
and contras. 
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1. Introduction 
 
The dorsal middle region of the dorsal column nuclei (DCN) is constituted for two classes of neurons, 
glutamatergic cells projecting into the contralateral medial lemniscus and local interneurons releasing 
GABA, glycine or both neurotransmitters (Popratiloff et al., 1996). The cat’s DCN receive cortical input 
from the primary somatosensory cortex (Chambers and Liu, 1957; Walberg, 1957; Rustioni and Hayes, 
1981; Martinez et al., 1995) and primary glutamatergic afferents topographically aligned (Berkley et al., 
1986; Conti et al., 1989; Rustioni and Weinberg, 1989;  Kharazia et al., 1996).  
Recent studies using intracellular as well as extracellular recording combined with microiontophoresis 
have revealed that: i) the cuneate neurons projecting to the medial lemniscus present a center-surround 
antagonism (Canedo and Aguilar, 2000), ii) the internal circuitry of the cutaneous sector of the cat’s 
cuneate nucleus is such that the projecting cells with matched receptive fields monosynaptically activate 
each other through recurrent collaterals re-entering the nucleus, while inhibiting other projection neurons 
with different RFs (Aguilar et al., 2002), and iii) the cortico-cuneate cells (Aguilar et al., 2003) and 
primary afferents (Soto et al., 2004) with matched RFs activate and disinhibit aligned cuneo-lemniscal 
neurons and inhibit other neighbouring projection neurons with unmatched RFs. The activation at the 
centre of the RF is produced through NMDA and non-NMDA glutamate receptors, the lateral inhibition is 
produced through GABAergic interneurons and the disinhibition is mediated by serial glycinergic-
GABAerg ic-projection cells interactions (Aguilar et al., 2002,2003; Soto et al., 2004). 
The above results are the basis to determine the influences over each projecting neuron and were used to 
develop a computational model for the cuneate nucleus (Sánchez et al., 2004). Both projection neurons 
and interneurons are represented as MacCulloch-Pits processing units. Concretely, the activity of the 
processing units representing the projection neurons is under the modulating influence of primary 
afferent, collateral recurrent and corticocuneate inputs affecting these cells as described above. The 
different weight values wji model the synaptic interactions among the distinct classes of neurons and are 
grouped into matrixes whose values allow for adjusting the contribution of each neuronal class to the 
network representing the cuneate nucleus.  
 
2. Methods  
 
In this work we explore the behaviour of the computational model proposed by Sanchez et al. (2004). The 
model consists of 40,000 units distributed over three main layers representing: (1) projection or 
cuneolemniscal (CL) neurons, (2) GABaergic recurrent interneurons, and (3) glycinergic interneurons. 
CL units show an excitatory centre - inhibitory surround afferent 3x3 RF, as well as recurrent inhibition 
mediated through GABaergic interneurons. These units have a 7x7 ring-shaped RF derived from CL cells 

BICS 2004 Aug 29 - Sept 1 2004

ICESS.2 1 of 7



that are second-order neighbours. Finally, the glycinergic interneurons present a fully excitatory 9x9 RF 
deriving from CL cells with overlapped RFs. The RF´s sizes were selected such that their combination 
gives the more stable results. In addition, the interneurons produce shunting inhibition on CL neurons 
thus achieving robust edge detection against stimulus intensity. The computational simulations initially 
update units  in layer 1 and 2, then units in layer 3, and finally those located in layer 4. Each stage in the 
update process is called iteration.  
Experiments were performed with stimuli of different forms, sizes and textures over a white background. 
Both stimulus and output intensity are represented in grey scale, thus taking values from 0 to 255. 
Stimulus textures are obtained from .bmp files produced with GIMP, a Linux image-processing 
application. Quasi-random frames with a repetitive pattern of hexagonal tiles were generated, and then 
combined to build a mosaic. The GIMP function gaussian blur has been used to modify the degree of 
stimulus contrast. Network responses were characterized based on two main features: robustness of the 
edge detection process and processing time required to reach a stationary state. 
 
3. Results 
 
In general, when a stimulus is presented to the network, three main elements in the output are clearly 
observed: (1) stimulus edge detection through the excitatory centre - inhibitory surround generated by 
primary afferents, (2) an oscillatory response reaching a stable state and determined by recurrent 
inhibition, and (3) a progressive coding starting from higher contrast regions and finishing with lower 
contrast ones and that is induced by the inhibitory action of glycinergic interneurons over GABAergic 
interneurons. This last element could be viewed as a type of fill-in effect. 
We have initially tested the model with a non-blurred stimulus composed by hexagonal tiles. Figure 1 
shows the stimulus (first image) as well as the network output corresponding to iterations 1, 3, 6 and 9. 
The edges, the oscillatory response and the fill-in progressive coding of some tiles can be observed. The 
fill-in process is fast and the stationary state is reached at iteration number 6. 

 

Figure 1. Fill-in effect for non-blurred stimulus. The stimulus (first image) is made up of hexagonal tiles of size 20. 
The rest of images show the network output for iterations 1, 3, 6 and 9.  
 
 
In order to study the relationship between stimulus contrast and processing time of the fill-in effect, we 
have repeated the previous experiments with the same input, but different degrees of gaussian blur. When 
this parameter was set to 5 (moderate blur), the stationary state is reached later, at iteration number 18. 
Figure 2 shows the stimulus (first image) and the network responses at iterations 1, 3, 6, 9, 12, 15, 18 and 
21. Due to the blur transformation, the fill-in effect affects a larger area, thus probably demanding more 
computational power, i.e processing time, to complete the effect. This trend is stressed when the gaussian 
blur parameter is set to 16 (high blur), as shown in Figure 3. The stimulus (first image) now requires 30 
iterations to reach the stationary state. The fill-in effect now covers the whole area of the stimulus and 
progressive coding is much slower than in previous cases. The last example is presented in Figure 4, 
where the stimulus is a square with uniform texture and same size as before. The first image illustrates the 
stimulus while the other ones represent the output at iterations 1, 3, 6, 9, 12, 15, 21 and 25. The stationary 
state is reached after iteration 30. Although the stimulus is far simpler than those used in previous figures,  
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Figure 2. Fill-in effect for moderate blurred stimulus (blur parameter = 5).  Stimulus (first image) and network output 
(following images) for iterations 1, 3, 6, 9, 12, 15, 18, and 21, is shown. 
 
 
 

Figure 3. Fill-in effect for high blurred stimulus (blur parameter = 16). Stimulus (first image) and network output 
(following images) for iterations 1, 3, 6, 9, 12, 15,  21 and 24, is shown. 
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Figure 4. Fill-in effect for non-blurred stimulus with uniform texture.  Stimulus (first image) and network output 
(following images) for iterations 1, 3, 6, 9, 12, 15, 21 and 25, is shown. 
 
 
the main output elements are again presented: edge detection, oscillatory response and progressive fill-in 
coding.  
A comparison between the previous experiments is shown in Figure 5. Two parameters, named “number 
of zeros” and “global output”, are introduced to characterize the progressive coding on each iteration. The 
first one represents the number of neurons that are excited by the stimulus but that do not reach threshold 
and hence do not fire. The second one is the sum of the activation function at those units receiving 
afferent excitation. Both parameters show an oscillatory pattern that decreases in amplitude over time,  
 
 

Figure 5. Parameters “number of zeros” and “global output” represented over time. In the top plot, the first trace 
describes the network response to the stimulus shown in Figure 1. The rest of  traces correspond to figures 2, 3 and 4, 
respectively. In the bottom plot, the ordering is just the inverse. In both plots, the degree of stimulus contrast 
determines the oscillatory duration, the oscillatory amplitude and the residual oscillations at the stationary state. All 
stimuli have the same size and form. 
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meaning that the stationary state is reached in all cases. The degree of stimulus contrast determines the 
evolution of the parameters over time. Lower contrast implies: (1) longer duration of the fill-in effect 
before reaching the stationary state, (2) larger amplitudes of the oscillatory patterns during the fill-in 
effect, and (3) larger amplitudes of the residual oscillations when the stationary state is reached. The 
opposite can be applied for higher contrast. In the Discussion section, we provide a possible interpretation 
of these findings. 
Additional experiments were performed with stimulus with textures made up with different tile sizes. 
Figure 6 confirms that the relationship between stimulus contrast and processing time is maintained. In all 
cases, the required processing time increases when contrast decreases (gaussian blur increases). 
To complete this section, we have analyzed the fill-in effect dependency upon stimulus size and 
processing time. Results are shown in Figure 7 with round-shaped stimulus and uniform textures. Again, 
edge detection and fill-in progressive coding is observed. The plot illustrates that the processing time 
linearly increases with the stimulus size, expressed in terms of the stimulus diameter.  
 

 

 
 
Figure 6. Relationship between processing time, degree of blur and stimulus tile size. For each tile size, the 
relationship between processing time and the degree of blur is shown. A sigmoid-like function describes the 
dependency of processing time and the degree of blur. 
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Figure 7. Relationship between stimulus size and processing time. Network output at iteration 21 after the 
presentation of a round-shaped stimulus with uniform texture (top). The relationship between processing time, until 
reaching the stationary state, and stimulus diameter follows a linear function (bottom). 
 
 
4. Discussion 
 
Based on the results, the network behaviour is robust as it performs edge detection and fill-in progressive 
coding under a variety of presented stimuli. However, the network processing varies depending on the 
stimulus contrast and size. According to the results, this processing seems highly predictable and in some 
cases can be easily quantified. The explanation of this complex behaviour lies on the network 
architecture, which was constructed based on experimental data obtained from projection neurons of the 
cat’s cuneate nucleus. The interplay between excitatory and inhibitory influences is the key to explain the 
oscillatory response and the fill-in effect.  
On the other hand, the model is consistent with the behaviour expected for a structure, like the cuneate 
nucleus, where the first processing of somatosensory information is performed. The function of tactile 
and pressure receptors in the skin is intended to get all possible information from the outside world. Such 
information is determined by the texture and size of objects around us. When the skin contacts surfaces of 
reduced size or highly-contrasted, the information is rapidly processed and compactly transmitted over 
time to higher processing areas, like the Thalamus, which also receives an “end of transmission” signal as 
the network reaches its stationary state. Furthermore, bigger or blur stimulus, i.e low-contrasted surfaces, 
induce either longer duration of the fill-in effect (longer oscillatory patterns) or residual oscillations when 
the stationary state is reached. Such coding can be understood as the need to further accomplish 
exploratory motor actions. The detection and classification of these encoded signals would require 
specific decoders, like the local oscillators proposed by Ahissar and Vaadia (1990), at higher cognitive 
structures.   
The combination of the fill-in progressive coding discussed in this paper with appropriate decoders would 
allow the nervous system to evaluate the result of an exploratory action, to choose the best perception 
strategy, and broadly speaking, to manage its computational resources in a more efficient way. 
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