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ABSTRACT 
In this paper, two new hybrid sub-band systems are proposed 
which aim to combine neural network sub-band processing 
with post-Wiener filtering for adaptive speech-enhancement 
processing of noisy signals. The proposed hybrid architectures 
comprise an early auditory-processing modelling inspired 
Multi-Microphone Sub-band Adaptive (MMSBA) system 
incorporating neural-network based non-linear sub-band filters, 
integrated with post-Wiener filtering (WF) in order to further 
reduce the residual incoherent noise components resulting from 
the application of conventional non-linear MMSBA processing 
(without WF). A human cochlear model resulting in a non-
linear distribution of the sub-band filters (as in humans) is also 
employed in the developed schemes. Preliminary comparative 
results achieved in simulation experiments using anechoic 
speech corrupted with real automobile noise show that the 
proposed structures are capable of significantly outperforming 
the conventional non-linear MMSBA and wide-band noise 
cancellation schemes. 

1.  INTRODUCTION 

Speech enhancement is motivated by the need to improve the 
performance of voice communications systems in noisy 
conditions. The goal is either to improve the perceived quality 
of the speech, or to increase its intelligibility.  

Classical speech enhancement methods based on full-band 
multi-microphone noise cancellation implementations which 
attempt to model acoustic path transfer-functions can produce 
excellent results in anechoic environments with localized sound 
radiators [1], however performance deteriorates significantly in 
reverberant environments. Typical results for hearing-aid 
applications achieve noise suppression of around 20dB in 
anechoic conditions dropping to 3dB to 6dB in reverberant 
surroundings [2]. 

Adaptive sub-band processing, which is inspired by cochlear 
mechanical filtering performed in the auditory periphery, has 
been found to overcome these limitations in general time-
varying noise fields [2-5]. However, the type of processing for 
each sub-band must take effective account of the characteristics 
of the coherence between noise signals from multiple sensors. 
Several experiments have shown that noise coherence can vary 

with frequency, in addition to the environment under test and 
the relative locations of microphones [2][4].  

The above evidence implies that processing appropriate in one 
sub-band, may not be so in another, hence supporting the idea 
of involving the use of diverse processing in frequency bands, 
with the required sub-band processing being identified from 
features of the sub-band signals from the multiple sensors [4].  

Dabis et al. [1] used closely spaced microphones in a full-band 
adaptive noise cancellation scheme involving the identification 
of a differential acoustic path transfer-function during a noise 
only period in intermittent speech. A Multi-Microphone Sub-
Band Adaptive (MMSBA) speech enhancement system 
inspired by certain features of early auditory processing 
modeling, such as cochlear mechanical filtering and binaural 
‘unmasking’, has been described which extends this method by 
applying it within a set of linearly or non-linearly spaced sub-
bands provided by a filter-bank [2][[4][5]. In pilot studies, this 
non-optimised linear MMSBA scheme incorporating linear 
Finite Impulse Response (FIR) based sub-band filters, has 
shown the potential to yield up to 20dB signal-to-noise ratio 
(SNR) improvements over conventional wide-band (linear FIR 
filtering based) methods in real-reverberant room & automobile 
environments [2][4]. Recent pilot experiments using normal 
and hearing-impaired human-listeners and real-noisy 
reverberated speech have demonstrated statistically-significant 
improvements in intelligibility & perceived-quality [5]. Also 
note that the MMSBA scheme assumes noisy speech input to 
both (or all) system sensors, in contrast to the practically 
restrictive ‘classical’ full-band speech enhancement schemes,  
where speech signal occurs only at the primary input sensor [2]. 
This makes the MMSBA solution more attractive for practical 
realization and extends the range of applications in which it can 
be employed. However an effective method for detecting noise-
only periods is assumed available within the MMSBA schemes. 

Preliminary experiments [6][7] with a similar structure but 
incorporating relatively low-complexity artificial neural 
networks (ANN) as novel non-linear sub-band processing 
elements (the overall structure termed non-linear MSSBA 
processing scheme) show significantly improved relative SNR 
performance (verified by informal listening tests) over the 
conventional linear MSSBA and wide-band schemes in a real 
reverberant automobile-environment. The superior performance 
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of the non-linear MSSBA scheme is attributed to the 
incorporated ANN based sub-band filters which are better 
capable of taking account of the non-Gaussian nature of speech 
and non-linear distortions in electro-acoustic transmission 
systems [6]. The non-linear MMSBA framework attempts to 
conceptually combine cochlear mechanical filtering (performed 
in the auditory periphery), with a form of neural-network sub-
band processing to approximate the neural-circuits in the 
auditory brainstem. 

In this paper,  the  novel  use of post-Wiener  filtering  (WF)  
within  the non-linear MMSBA  scheme  is  investigated, in  
order  to  more effectively deal with residual incoherent noise 
components that may result from application of the 
conventional non-linear MMSBA scheme (without WF). This 
preliminary work also extends that recently reported in [8] 
where a linear sub-band adaptive noise-cancellation scheme 
utilizing WF was developed for the monaural case. 
Performance of the two proposed hybrid non-linear MMSBA 
(incorporating post-WF) schemes is compared with the stand-
alone non-linear MMSBA scheme (without WF) both 
quantitatively and qualitatively using informal subjective 
listening tests, for the case of a real anechoic speech signal 
corrupted with simulated noise, and initial results appear 
promising. 

The paper is organized as follows: the proposed non-linear 
MMSBA schemes incorporating WF are described in section 2, 
including the choice of neural-network based Sub-band 
Processing (SBP), post-Weiner Filtering theory, details of the 
diverse SBP options available to the designer, and the adaptive 
correlation metric (CM) developed for selecting the appropriate 
SBP option. In section 3, preliminary simulation results are 
used to demonstrate the effectiveness of the proposed approach. 
Finally, some concluding remarks are presented in section 4. 

2. New non-linear MMSBA Schemes incorporating WF 

Two or more relatively closely spaced microphones may be 
used in an adaptive noise cancellation scheme [1] to identify a 
differential acoustic-path transfer function during a noise only 
period in intermittent speech. The extension of this work, 
termed the Multi-Microphone sub-band Adaptive (MMSBA) 
speech enhancement system, applies the method within a set of 
sub-bands provided by a filter bank. The filter bank can be 
implemented using various orthogonal transforms or by a 
parallel filter bank approach. In this work, the sub-bands are 
distributed non-linearly according to a cochlear distribution, as 
in humans, following the Greenwood [9] model, in which the 
spacing of the sub-band filters is given by:                 

( ) (10 )axF x A k= − Hz 
where x is the proportional distance from 0 to 1 along the 
cochlear membrane and F(x) are the upper and lower cut-off 
frequencies for each filter obtained by the limiting value of x. 
For the human cochlea, values of A=165.4, a=2.1 and k=0.88 
are recommended and chosen here.  

The conventional linear MMSBA approach has been shown to 
considerably improve the mean squared error (MSE) 
convergence rate of an adaptive multi-band linear FIR filter 
compared to  both  the  conventional  wideband  time-domain  

and  frequency domain FIR filters [2][4]. The use of a cochlear 
distribution of the sub-band filters as above, has also been 
shown to result in an equalized power distribution across the 
sub-bands (for the case of speech signals), resulting in further 
improved sub-band filter convergence compared to the case of 
linearly distributed sub-band filters [4][5].  

The recently developed non-linear MMSBA scheme 
incorporating neural network based non-linear FIR (NLFIR) 
sub-band filtering is depicted in Figure 1, which is a further 
extension of the linear MMSBA approach, and has been shown 
to offer further performance benefits in preliminary studies 
[6][7].  

Note that as depicted in Figure 1, we again assume in this work 
that: the speaker is close enough to the microphones so that 
room acoustic effects on the speech are insignificant, that the 
noise signal at the microphones may be modelled as a point 
source modified by two different acoustic path transfer 
functions H1, H2, and that an effective voice activity detector 
(VAD) is available (as shown in Figure 1). 

In the proposed hybrid non-linear MMSBA architecture shown 
in Figure 2, post-Weiner Filtering (WF) operation can be 
applied in two different ways: at the output of each sub-band 
processor (SBP), as shown in Figure 2a(i), or at the global 
output of the non-linear MMSBA scheme as shown in Figure 
2a(ii). In the rest of this paper, the new non-linear MMSBA 
scheme employing WF in the sub-bands is termed MMSBA-
WF, whereas the proposed non-linear MMSBA scheme 
employing wide-band (WB) WF is termed MMSBA-WBWF 
respectively. 

In both the proposed hybrid architectures, the role of post-WF 
is to further mitigate the residual noise effects on the original 
signal to be recovered, following application of conventional 
non-linear MMSBA noise-cancellation processing. 

The next sub-sections discuss: the non-linear Artificial Neural 
Network (ANN) based NLFIR filters used in SBP together with 
the new post-WF extensions, the choice of diverse SBP options 
and finally the Correlation Metric (CM) used for selecting the 
appropriate SBP option. 

2.1 Artificial Neural Network (ANN) based SBP 

A class of general adaptive non-linear FIR (NLFIR) type filters 
based on single hidden-layered linear-in-the-parameters ANNs 
is described in [6] for processing the band-limited signals in a 
multi-band speech enhancement system.  

The general structure of the NLFIR type filter is based on 
single-hidden layered, linear-in-the-parameters feedforward 
ANNs, as shown in Figure 3. It employs an input expander 
which transforms the n inputs [x1,..., xn] (representing  lagged 
values of the sub-band input signal  x  passed through a tapped 
delay line of order (n-1)) into a non-linear  intermediate 
(hidden) space of increased dimension N. The expanded input 
terms (termed the basis functions) are then weighted and 
linearly combined to form the adaptive filter output y. The 
overall mapping of the adaptive NLFIR is thus R n → RN → R . 

The  advantage  of this  particular non-linear  filter  structure  is 
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that linear adaptive filter theory can be readily applied for on-
line adaptation [6]. The non-linear expansion model is 
completely general and can employ any of the non-linear basis 
functions commonly employed in e.g. the Radial Basis 
Function (RBF) neural networks, such as the thin-plate spline 
basis functions, multi-quadratic activation functions, the 
inverse multi-quadratic functions, or indeed the widely used 
Gaussian basis functions. Alternatively, the sigmoidal basis 
functions employed in Multi-Layered Perceptron (MLP) 
networks, or the Volterra (polynomial) expansion employed in 
the hidden layer of the conventional Volterra Neural Network 
(VNN) can also be employed. Another possibility described in 
[6] includes the hybrid functional-expansion employed in a 
recently developed Functionally-Expanded Neural Network 
(FENN), which is a variant of the conventional Functional-Link 
Neural-Network. The FENN expansion model comprises a 
combination of sigmoidal-shaped, Gaussian-shaped and 
polynomial-subset activation (basis) functions, and an 
additional benefit of this approach (like the VNN’s polynomial-
expansion) is that the use of the original network inputs within 
the expansion model, also enables efficient modeling of linear 
dynamical transfer-functions.   

As discussed in [6], the choice of an appropriate non-linear 
expansion-model is, in general, problem dependent. For 
example, it has been shown that some problems such as 
functional approximation can be solved more efficiently with 
the sigmoidal-type basis functions employed in the MLP; while 
others such as classification problems are more amenable to 
localized (e.g. Gaussian-type) basis functions employed in the 
RBF. However, all the above expansion-models are known to 
be universal approximators as they can approximate any non-
linear function to an arbitrary degree of accuracy.  

Further details on the choice of an appropriate expansion model 
can be found in [6][7] where it has been argued that the relative 
performance-complexity trade-off for the non-linear models 
needs to be determined for each specific problem. However in 
practice, the simple polynomial expansion-model employed in 
the VNN is attractive since it requires relatively low-
complexity hardware for implementation. In this paper, we 
shall restrict our choice of the NLFIR filter’s expansion-model 
to be polynomial, viz: 

  f(x) = [1 , xi1 , xi1 xi2 , . . . , xi1 xi2...xik ]                                                                         

 where iγ  = 1,..., n for  γ=1,...,k  with  k representing a k-th 
order polynomial expansion of the n (sub-band) filter inputs; 
and  f(.)=[f1 . . .  fN] are the N non-linear basis functions. 

Once the full expansion-model f(x) at the single hidden-layer 
of the ANN based NLFIR filter has been specified, 
conventional stochastic-gradient or least-squares based 
adaptation algorithms (such as the LMS, RLS or their robust 
versions) can then be used to provide an efficient means for 
real-time adaptation of the filter weights W, as shown in 
Figures 2.b and 3 This will give these non-linear FIR filters a 
significant advantage over multi-layered (MLP type) neural-
network based filters in recursive applications. Further details 
on the choice of adaptation algorithms for the ANN based 
NLFIR sub-band filters can be found in [6][7]. 

For the derivation of the post-WF theory in the next section, we 
now define , ,j j jX S N�� �  as the global output, the reconstructed 

signal and the residual noise component at the j-th SBP output 
(or, equivalently, the adaptive NLFIR noise-canceller output of 
j band) respectively, as shown in Figure 2a. The following 
relationship can be assumed to hold due to noise and the 
desired signal at each band being uncorrelated: 

j j jX S N= +�� �                                             (1) 

In the original non-linear MMSBA (without WF), all jx�  sub-

band NLFIR noise canceller outputs are summed (at the 
reconstruction section) to yield the global MMSBA output y� , 
which can be expressed in the frequency domain as: 

j j
j j

Y S N S N= + = +� �� �� � �                           (2) 

2.2  Post-Wiener Filtering (WF) 

The coefficients of a Wiener filter (WF) [8] are calculated to 
minimise the average squared distance between the filter output 
and a desired signal, assuming stationarity of the involved 
signals. This can be easily achieved in the frequency domain 
yielding:  

( ) ( ) ( )( )DY YYW f P f P f=                             (3) 

where ( )D f  is the desired signal, ( ) ( ) ( )Ŝ f W f Y f=  is the 

Wiener filter output, ( )Y f the Wiener filter input and  

( ) ( ),YY DYP f P f are the power spectrum of ( )Y f and the 

cross power spectrum of ( ) ( ),Y f D f  respectively. If we 
apply such a solution to the case where the global signal is 
given by addition of noise and signal (to be recovered), and 
moving from the assumption that noise, signal are uncorrelated 
(as ,j jS N� �  are) we can derive the following from [11]: 

( ) ( ) ( ) ( )( )j jj j j j
j N NS S S SW f P f P f P f= +� � � � � �       (4) 

where ( ) ( ),
j jj j N NS SP f P f� � � �  are the signal and noise power 

spectra. Note that, in this task, the desired signal is jS� .              

It must be observed that such a formulation can be easily 
extended to the case when involved signals are not stationary, by 
simply periodically recalculating the filter coefficients for every 
block l of sN  signal samples. In this way the filter adapts itself 
to the average characteristics of the signals within the blocks 
and becomes block-adaptive.  
Moreover, the presence of a VAD (in the MMSBA) is a pre-
requisite to making the Wiener filtering operation effective: in 
noise alone period, a precise estimation of noise power 
spectrum can be performed and then used in (4), assuming that 
its properties are still the same when the signal power spectrum 
is calculated during the noisy speech period. The former 
approximation is carried out iteratively by using the power 

spectrum of Wiener filter global output ( )ˆ
jS f .  

Note that the above WF derivations are readily applicable to the 
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hybrid MMSBA-WF architecture as follows. Similar to (1) and 
(2), the following holds at the  j-th band Wiener filter output: 

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ
j j j

j j
j j

X S N

Y S N S N

= +

= + = +� �                       (5) 

where ŷ  is the new global output yielded from the 
reconstruction section. 

Finally, the same considerations can be made when the hybrid 
MMSBA-WBWF structure is dealt with, simply adapting the 
above equations to the new situation where WF occurs after the 
reconstruction section. Specifically, taking (2) into account, 
implies: 

ˆˆ ˆ
f f f fY W Y S N= = +�                               (6) 

where f indicates full-band processing, since WF operation is 
applied directly to non-linear MMSBA output y�  to form the 
new Wiener filtered output ˆ fy . 

Next, the choice of various non-linear SBP options available to 
the designer, are discussed. 

2.3 Diverse SBP options 

A significant advantage of using SBP for non-linear MMSBA 
speech enhancement is that it allows independent processing in 
each sub-band in an attempt to cancel the dominant noise 
components, coherent or non-coherent, present in each sub-
band. The SBP can be accomplished in a number of ways (as 
depicted in Figure 2b), for example: 
1. No Processing: Examine the noise power in a sub-band and 
if below (or the SNR above) some arbitrary threshold, then the 
signal in that band need not be modified.   
2. Intermittent coherent noise canceller: If the noise power is 
significant and the noise between the two channels is 
significantly correlated in a sub-band, then perform adaptive 
intermittent noise cancellation, wherein the adaptive NLFIR 
filter may be determined which models the differential 
acoustic-path transfer function between the microphones during 
the "noise-alone" period. This can then be used in a noise 
cancellation format during the speech plus noise period 
(assuming short term constancy) to process the noisy speech 
signal.  
This scheme (illustrated in Figure 1) can be described 
mathematically as follows:  
Assuming N, S, P, R represent the z-transforms of the noise 
signal, speech signal, primary signal and reference signal, 
respectively.  The primary and reference signals in each sub-
band are thus:                 
P B S H N= +( )1     ; R B S H N= +( )2                           
The transformed error signal is thus, 

E B H S H H H N= − + −[( ) ( ) ]1 3 1 3 2  
which is a frequency domain error, weighted by the band-
limiting transfer function B , and H3 represents the sub-band 
NLFIR adaptive filter. The Mean Squared Error function is: 

J j E E z dzE
z

= − −

=
�( ) . *2 1 1

1

π  

The sub-band noise cancellation problem is thus, to find an H3 
such that within the sub-band defined by B, the variance of JE is 
minimised. During a noise only period S = 0 , defining the 
noise spectral density Φnn , then 
 

J j B H H H H H H B z dzE nn
z

= − −− −

=
�( ) ( ) ( )* *2 1

1 3 2 1 3 2
1

1

π Φ  

which is minimised in the least squares sense when 
H BH BH3 1 2

1= −( )( )  
That is, H3 is (an NLFIR estimated) band-limited transfer 
function that minimises the noise power in E. Now using H3 as 
a fixed non-linear processing filter when speech and noise are 
present ideally gives:   

E B H S= −( )1 3  
where the (sub-band intermittent coherent noise-canceller) 
output E is a noise reduced, filtered version of the sub-band 
speech signal S. This approach will fail if: H H1 2= , however in 
practical situations such acoustic path balancing is difficult to 
achieve. 
3. Non-coherent noise canceller: If the noise power is 
significant but not highly correlated between the two channels 
in a sub-band, then the non-coherent noise cancellation 
approach of Ferrara and Widrow (FW) [10] may be applied 
here during the noisy speech period. Since in this case, the 
primary signal noise component BH N1  is uncorrelated with the 
reference signal noise component BH N2 , the filtered reference 
(output of NLFIR) is now an estimate of the sub-band speech 
signal S. 
In this paper, we employ the above three SBP options and 
implement the adaptive sub-band processing using neural 
network based NLFIR type filters together with post-WF as 
described earlier. In the next section, we describe a metric for 
selecting the appropriate type of SBP option. 

2.4 Correlation Metric (CM) for Selecting SBP 

The Magnitude Squared Coherence (MSC) has been used by 
Bouquin and Faucon [12] who have applied it for the reduction 
of noise in speech signals and have also employed it as a Voice 
Activity Detector (VAD) for the case of spatially uncorrelated 
noises. In this work, we employ the MSC within a Correlation 
Metric (CM), as a part of a system for selecting an appropriate 
SBP option in the non-linear MMSBA speech enhancement 
system. Assuming that the speech and noise signals are 
independent, the observations received by the two 
microphones, as shown in  Figure 2, may be written as: 
Assuming that the speech and noise signals are independent, 
the observations received by the two microphones are: 

;p p p r r rx s n primary x s n reference= + = +  

where , ,,p r p rs n  represent  the clean speech signal and the 

additive noise, respectively. For each block l  and frequency 
bin kf , the coherence function is given by: 

( , )
( , )

( , ) ( , )
p r

p p r r

kX X
k

k kX X X X

P f l
f l

P f l P f l
ρ =   
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where   ( , )
p r

kX XP f l    is    the   cross-power   spectral     density, 

( , )
p p

kX XP f l  and ( , )
r r

kX XP f l  are the auto-power spectral 

densities; which can be estimated by: 
*( , ) ( , 1) (1 ) ( , ) ( , )

p r p r
k k k kX X X X p rP f l P f l X f l X f lβ β= − + −  

where β  is a forgetting factor. During the noise alone period, 
for each overlapped and Hanning windowed block l  we 
compute the Magnitude Squared Coherence (MSC) averaged 
over all the overlapped blocks (at each frequency bin) as: 

2

1

1
( ) ( , )MSC

l

k k

i

f f i
l

ρ
=

= � �� ��         

Finally the correlation metric (CM) is estimated for each linear 
or cochlear spaced sub-band s (over the appropriate frequency 
range f p  to fq  Hz) as:   

C M s f k

k p

q

( ) ( )=
=
� M S C   

The above CM can thus be used as a means for determining the 
level of correlation between the disturbing noise sources within 
each sub-band during the "noise-alone" period in intermittent 
speech. On the basis of this CM, the subsequent form of NLFIR 
and post-Weiner filtering based processing in each respective 
frequency band can be selected as either the intermittent-
coherent noise canceller or the non-coherent FW type noise 
canceller, provided the absolute and relative sub-band noise 
powers are above an experimentally determined threshold. 

3.  SIMULATION RESULTS 

In this section the two new hybrid non-linear MMSBA-based 
WF approaches are compared to the original non-linear 
MMSBA approach (without WF) in order to investigate their 
relative effectiveness. For experimental purposes, a real 
anechoic speech signal ( )s k  is used as the desired signal, 

whilst the noise signals ( ) ( )1 2,n k n k   are chosen to be real 
stereo car noise sequences recorded in a Ferrari Mondial T 
(1991 Model), using an Audio Technica AT9450 stereo 
microphone mounted on a SONY DCR-PC3-NTSC video 
camera and a sampling frequency of 44.1 kHz. The noise 
sequences were manually added to the anechoic speech 
sentence to manufacture different SNR cases. 

The value of the initial SNR, namely iSNR , is used as a 
reference for the three SNR improvements calculated at the 
output of each of the speech enhancement structures under 
study, namely: the original non-linear MMSBA without WF 
(Figure 1), the new hybrid MMSBA-WF (Figure 2a(i)) and the 
hybrid MMSBA-WBWF (Figure 2a(ii)). Taking into account 
the non-correlation between noise and signal on the same 
channel, we can define the SNR at the output level as: 

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
f f f f f f

YY NN NN

o YY NN NN

Y Y N N N N

P f P f P f

SNR f P f P f P f

P f P f P f

�
� �−�� ��
�� �= −	� �
�
� �� −
 ��� ��

� � � � � �

       (7) 

where all involved power spectra are related to signals 
described by (2), (5), and (6). Moreover it has to be said that 

( )NNP f� �  is calculated over a sub-range of the noise alone 
period where noise cancellers are assumed to have converged, 
since this is the noise power spectrum expected to occur when 
the desired signal is present. On this basis, ( )ˆ ˆNN

P f  and 

( )ˆ ˆ
f fN N

P f  are obtained from Wiener filtered versions for the 

two new hybrid schemes addressed (MMSBA-WF and 
MMSBA-WBWF).  
In this work, the sub-bands are achieved by modifying the 
spectra of the FFT of the input signals, and the number of filters 
is therefore limited by the size of the FFT. The processing in 
each sub-band is performed using the ANN-based adaptive 
non-linear FIR-type filters.  
 
Choices for various experimental parameter values were 
selected on a trial and error basis as: speech-signal number of 
samples corresponding to a 2s long speech sentence; noise 
signal number of samples (in the manually defined noise alone 
period) corresponding to 0.2s of car noise recording; number of 
iterations of WF operation: 5; number of cochlear-spaced sub-
bands: 4; number of taps (order) of VNN-based NLFIR 
adaptive sub-band filters: 32. A truncated 2nd order polynomial 
expansion of the sub-band NLFIR filter inputs was employed 
comprising the actual sub-band filter inputs and their square 
terms which resulted in a total of 64 terms (basis functions) in 
each sub-band NLFIR filter.   
 

The following SBP options were compared for each of the three 
non-linear MMSBA schemes. 

Case (A) Intermittent only SBP: In the first experimental case 
study, the intermittent coherent noise-canceller approach is 
employed as the only SBP option in each band. Table 1 
summarizes the results obtained using the three non-linear 
MMSBA approaches: from which it can be seen that the hybrid 
MMSBA-WF and the hybrid MMSBA-WBWF both deliver an 
improved SNR performance over the original non-linear 
MMSBA approach (without WF).  

Case (B): Diverse (intermittent/FW) SBP: In this case the 
value of the adaptive CM is used to employ both intermittent 
and non-coherent (FW) SBP options, with the former option 
used in the first sub-band (with a high CM) and the latter in the 
other three bands (with a low CM). This is justified by the 
coherence characteristics of available stereo noise signal. It can 
be seen from Table 2 that the choice of sub-band WF (within 
the hybrid MMSBA-WF scheme) gives the best results in this 
case, due to its operation in the sub-bands, resulting in more 
effective noise cancellation in the frequency domain, compared 
to the hybrid MMSBA-WBWF scheme (employing wide-band 
WF processing) as well as the conventional non-linear 
MMSBA (without WF). 
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Table 1. Case (A): Comparison of various Non-linear MMSBA 
approaches (all adapted using intermittent SBP only). Relative 
average SNR improvements for all architectures involved (over 
10 runs).Standard deviation values are directly depicted on 
bars. 
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Table 2. Case (B): Comparison of various Non-linear MMSBA 
approaches all employing diverse (intermittent and non-
coherent FW based) SBP. Relative average SNR improvements 
for all architectures involved (over 10 runs). Standard deviation 
values are directly depicted on the bars. 

Note that application of the classical linear wide-band noise 
cancellation approach, namely the MMSBA with number of 
bands set to one and a wideband linear FIR filter order of 256 
(of comparable complexity to the non-linear MMSBA) was 
actually found to degrade the speech quality resulting in a 
negative SNR improvement value, which is hence not shown in 
the Table 1. This finding of the inability of classical wideband 
processing to enhance the speech in real automobile 
environments is consistent with the results reported in [2][3].  

Finally, informal listening tests using random presentation of 
the processed and unprocessed signals to three young male 
adults of normal hearing, also confirmed the MSSBA-WF 
processed speech to be both enhanced in SNR and of 
significantly better perceived quality than that obtained by all 
the other conventional wide-band and sub-band (non-linear 
MMSBA) methods. 

4 Concluding Remarks 

Two new hybrid multi-microphone sub-band adaptive 
(MMSBA) speech enhancement systems incorporating neural 
network based sub-band processing with post-Wiener filtering 

and a human cochlear model function have been presented. 
Preliminary comparative results achieved in simulation 
experiments demonstrate that the proposed hybrid non-linear 
MMSBA processing schemes are capable of improving the 
output SNR of speech signals with no additional distortion 
apparent, compared to the conventional neural network based 
non-linear MMSBA scheme (without WF). The new hybrid 
MMSBA-WF architecture employing sub-band based post-WF 
seems to be the most promising whose superior performance 
can be attributed to the ability of the WF to further reduce the 
residual in-coherent sub-band noise components resulting from 
application of the conventional non-linear MMSBA scheme. A 
detailed theoretical analysis is now proposed to define the 
attainable performance. What is also needed is further extensive 
testing (using formal subjective listening tests) with a variety of 
real data (i.e., acquired through recordings in real 
environment), in order to further assess and quantify the 
relative advantages of the new speech enhancement schemes. 
Further work will also investigate the possibility of including 
cross-processes such as human lateral inhibition effects in the 
multi-band systems. 
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Figure 1: Non-linear MMSBA scheme without WF 
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Figure 3: General structure of the proposed neural-network based adaptive non-linear FIR (NLFIR) 
type Filter used in SBP (Figure 2.b above) 
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Figure 2 (a): New hybrid non-linear MMSBA systems incorporating post-Weiner Filtering (WF) in the form  
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Figure 2 (b):  Sub-band Processing (SBP) configurations 
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