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ABSTRACT 
A new non-linear multi-variable multiple-controller 

incorporating a neural network learning sub-model is proposed. 
The unknown multivariable non-linear plant is represented by 
an equivalent stochastic model consisting of a linear time-
varying sub-model plus a non-linear neural-network based 
learning sub-model. The proposed multiple controller 
methodology provides the designer with a choice of using 
either a conventional Proportional-Integral-Derivative (PID) 
self-tuning controller, a PID based pole-placement controller, 
or a newly proposed PID based pole-zero placement controller 
through simple switching. The novel PID based pole-zero 
placement controller employs an adaptive mechanism, which 
ensures that the closed loop poles and zeros are located at their 
pre-specified positions. The switching decision between the 
different non-linear fixed structure controllers can be done 
either manually or by using Stochastic Learning Automata. 
Simulation results using a non-linear Multiple Input Multiple 
Output (MIMO) plant model demonstrate the effectiveness of 
the proposed multiple controller, with respect to tracking set-
point changes.  The aim is to achieve a desired speed of 
response, whilst penalizing excessive control action, for 
application to non-minimum phase and unstable systems. 
 
INTRODUCTION 

Conventional PID controllers have been proven to be 
robust, easy to implement using analogue or digital hardware, 
and remarkably effective in regulating a wide range of 
processes. For most simple processes, PID control can provide 
satisfactory closed loop performance. However, the problems 
of large time-delays, time-varying processes, large non-
linearities and non-negligible disturbances call for more 
advanced control algorithms. In the last two decades much 
progress has been seen in the theory of self-tuning and other 
adaptive control systems, which automatically adjust controller 
parameters online in response to changes in the process or the 
environment. 

Over a longer period of about three decades, a lot of attention 
was paid to the problem of designing pole-placement 
controllers and self-tuning regulators. Various self-tuning 
controllers based on classical pole-placement ideas were 
developed and employed in real applications, e.g. [1, 2]. 

The popularity of pole-placement techniques may be attributed 
to the following [3]: 

1) In the regulator case they provide mechanisms to 
over-come the restriction to minimum-phase plants of the 
original minimum variance self-tuner of [1]. 

2) In the servo case, they provide the ability to directly 
introduce bandwidth and damping ratio as tuning 
parameters. 

 
In many industrial sectors, machines and processes might be 
improved using optimal control and optimisation (e.g., the steel 
industry, food industry, chemical industry, textile industry). A 
difficult problem in the control of these industrial processes is 
due to the inherent non-linearities of their models and these 
problems cannot be solved by traditional “generalised 
minimum variance control” techniques. The application of 
linear control theory to these problems relies on the key 
assumption of a small range of operation in order for the linear 
model assumption to be valid. When the required operating 
range is large, a linear controller may not be adequate. For this 
reason, it seems appropriate to extend “generalised minimum 
variance” control to plants with non-linear models and with 
plant/model mismatch. A possible way this can be achieved is 
by incorporating the inherent non-linearity of the process into 
the control design process using a so-called learning model. 
 
Over the last decade or so, there has been much progress in the 
modelling and control of non-linear processes, using black-box 
type learning models, such as neural networks [4, 5]. This is 
due to their proven ability to learn arbitrary non-linear 
mappings. Other advantages inherent in neural networks 
include their robustness, parallel architecture and fault tolerant 
capabilities. Neural networks have been shown to be very 
effective for controlling complex non-linear systems, when 
there is no complete model information, or when the controlled 
plant is considered to be a “black box” [5].  
 
In the following a new control algorithm is developed which 
builds on the works of Zayed et al. [3, 6] and Zhu et. al. [7], in 
which the unknown non-linear plant is represented by an 
equivalent model, consisting of a linear sub-model plus a non-
linear sub-model. Models of a similar type have previously 
been shown to be particularly useful in an adaptive pole-
placement based control framework by Zhu et al.[7]. In this 
work, the parameters of the linear sub-model are identified by a 
standard recursive identification algorithm, and in addition a 
conventional multi-layered neural network is utilized as the 
non-linear learning sub-model (see figure (1)). 
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The main contribution of this paper is in the development of a 
new learning sub-model based multiple controller, which 
provides the designer with a choice of using either a 
multivariable PID self-tuning controller, a PID pole-placement 
controller, or a newly proposed multivariable PID pole-zero 
placement controller through switching. All controllers operate 
using the same adaptive procedure. The switching (transition) 
decisions between the different non-linear fixed structure 
controllers can be achieved by using the Stochastic Learning 
Automata of [8]. However, in the present case, a manual 
switching process has been adopted. 

The paper is organized as follows: the derivation of the control 
law of a multiple controller is discussed in section 2. In section 
3, a simulation case study is carried out in order to demonstrate 
the effectiveness of the proposed controller. Finally, some 
concluding remarks are presented in section 4. 

 

2.  DERIVATION OF THE CONTROL LAW 
  
In deriving the multivariable control law for the proposed 
multiple controller it is assumed that the plant can be described 
by the following n  input n  output non-linear Hammerstein 
model [6, 7]: 

),()()()()( ,0
11 UYfuByA ttzktz +=+ −−  (1) 

where T
n tytytyt )](),......,(),([)( 21=y  is the measured output 

vector with dimension )1( ×n  and 
T

n tututut )](),......,(),([)( 21=u  is the control input vector 
)1( ×n  at the sampling instant ,...2,1=t , and k  is the integer-

sample dead time of the process. The term ),(,0 UYf t  is 

potentially a non-linear function and Yy ∈)(t , and Uu ∈)(t . 
The resulting MIMO model is a combination of a linear time 
varying sub-model plus a non-linear sub-model as shown in 

figure (1). The polynomial matrices )( 1−zA  and )( 1−zB  are 

respectively of orders an  and bn . )( 1−zA  and )( 1−zB  are 
)( nn×  polynomial matrices and expressed in terms of 

backwards shift operator, 1−z  
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where 00 ≠iib  and ni ,.......,2,1= . 

The equivalent sub model is originated by assuming that no 
coupling relationship exits. The coupling effects and the other 
non-linear relationships are meanwhile accommodated in 

),(0 UYf  [7].  

In order simplify the analysis, the time delay is taken as 1=k  
[6, 7]. For this case the multivariable non-linear system given 
by (1) can be written as: 

),()()()()( ,0
1111 UYfuByA tztzztz −−−− +=  (3) 

The generalised minimum variance controller of interest 
minimises the following cost function: 
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where )(tw  is the set point and ),( 1−zP  )( 1−zQ , )( 1−zR  

and )( 1−z H  are user-defined transfer functions in the 

backward shift operator 1−z  and {.}E  is the expectation 
operator. 
Now we can define an auxiliary output )1()1( +=+ tyt Pφ , 

where the optimal predictor )/1(* tt +φ  is derived  in [7, 9]: 
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The relation (5) can be obtained by using (6) and multiplying 

(1) by )( 1−′∆ zE .  

The )( nn×  polynomial matrices )( 1−′ zE  and )( 1−′ zF  satisfy 
the following identity [9]: 

)()()()( 11111 −−−−− ′+′∆= zzzzz FEAP  (6) 

where )( 1−′ zE , )( 1−′ zF  and )( 1−zP  are )( nn×  polynomial 

matrices in 1−z . where the orders of the polynomial matrices 

)( 1−′ zE , )( 1−′ zF  and )( 1−zP are specified as follows: 
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Now we can see clearly from (4) and (5) that the solution which 
minimises J  is then found to be: 
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Using (5) and (8), the non-linear control law which minimises 
J  is obtained as: 
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  (9) 

If we assume: ))()(()( 11
0

1 −−− ′+∆= zzz EHH   (10) 

and set the transfer function )( 1−zQ  such that the following 
relation is satisfied: 

)(][))()()(( 11111 −−−−− ′=+′ zzzz qVQBE  (11) 

Then equation (9) becomes: 

(.,.))()()( ,00 tttt fVHyFVVRwuq ∆+′−=′∆   (12) 
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where )( iivdiag=V  is an )( nn×  diagonal gain matrix [2, 10] 

and )( 1−′ zq  is a diagonal polynomial matrix in 1−z  and 
having the following form: 

)..........1()( 1
1

1 q
q

nii
n

ii zqzqdiagz ′
′

−−− ′++′+=′q   (13) 

It can clearly be seen from (11) that the polynomial )( 1−′ zq  
and the gain V  are also user defined parameters since they 

depend on the user transfer function )( 1−zQ . It is clear from 
(10) that 0H  is also a user defined parameter because it depend 

on the transfer function )( 1−zH . 

We can see clearly from (12) that the controller denominator 
has now conveniently been split into two parts: 

1) An integrator action part ( ∆ ) required for PID design. 

2) An arbitrary compensator ( q′ ) that may be used for pole-
placement and pole-zero placement design. 

 

2.1 Multiple Controller Mode 1: Self-tuning PID 
controller  

In this mode, the so-called multiple controller operates as a 
conventional self-tuning PID controller, which can be 
expressed in the most commonly used velocity form [2, 10] as: 

)2()1(]2[
)(][)()(

DDP

DIPI
−−−−−
−++−=∆

tt
ttt

yKyKK
yKKKwKu

  (14) 

If we assume that the degree of )( 1−′ zF  is equal to 2 and set 

Iq =′ − )( 1z  and )1()( 1 FR ′=−z   (15) 

and make use of (14), (15) and (12), a non-linear self-tuning  
controller with PID structure is obtained, where: 
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The polynomial matrix )( 1−′ zF  is computed from (6) by 

selecting suitable user-defined polynomial matrix )( 1−zP  and 
ni ,.......,2,1= . It can also clearly be seen from (7) that the 

order of ),( 1−′ zF  which indicates the type of the controller (PI 

or PID), is governed by the polynomial matrix )( 1−zA . If the 

polynomial matrix )( 1−′ zF  is of first order then a PI controller 
is obtained. A PID controller occurs if the polynomial matrix 

)( 1−′ zF  is of second order. In what follows, the 1−z  notation 
will be omitted from the various polynomials to simplify the 
presentation. 

Substituting for )(tu  given by (12) into the process model 
described by (3) and making use of equations (6) and (18), 
obtain: 
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To eliminate the effect, in the steady state, of the non-linear 
part the transfer function 0H  can then be chosen as: 

)1()1( 11
0

−−′−= BVqH   (19) 

The controller is tuned by a selection of the user-defined 
polynomial matrix P  and the diagonal gain matrix V . 
However, the main disadvantage of many PID self-tuning based 
minimum variance control designs (see for example [2, 10]) is 
that the tuning parameters must be selected using a trial and 
error procedure. Alternatively, these tuning parameters can be 
automatically and implicitly set on line by specifying the 
desired closed loop poles [2, 6, 10].  

 

2.2 Multiple Controller mode 2: PID based Pole 
placement design 

This form of the controller is obtained by setting (see 

equation (11)) )(][))()()(( 11111 −−−−− ′=+′ zzzz qVQBE  
instead and substitute for )(tu  given by (12) into the process 
model described by (3), we obtain  
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If we assume VBB =  and AA ∆= , then  (18) becomes: 
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We can now introduce the identity: 

TBFAq =′+′ − )z( 1  (22) 

where )( 1−zT  is the desired closed loop poles and zeros and 

)( 1−′ zq  is the controller polynomial. For (22) to have a unique 
solution, the order of the regulator polynomials and the number 
of the desired closed loop poles have to be [3, 6]: 
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where ,an  ,bn  and qn ′  are the orders of the polynomials 

,A B  and q′ , respectively, Tn  denotes the number of desired 
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closed loop poles. Also, bb nn =  and .1+= aa nn  By using 

(21) and (22) obtain: 

).,.()()1( 0fBVHqVBRwTy 0+′∆+=+ (t)t  (24) 

If we assume )1(FR ′=  and )1()]1([ 1
0 qVBH ′−= −   (25) 

then (24) becomes:  
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2.3 Multiple Controller mode 3: PID based Pole-zero 
placement design  

In this controller mode, an arbitrary desired zeros 
polynomial can be used to reduce excessive control action 
which can result from set point changes when pole placement is 
used. If we assume 

1
dd )]1()[1( −′= qFqR  (27) 

Then equation (26) becomes: 
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where dq  is the desired closed loop systems.  
In this case: 
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In practice the order of T  and dq  are most of the time selected 
as 1 or 2 [3, 6] 
 
It can be seen from (12) that the polynomial q ′  may be 
considered as an arbitrary compensator that can be used to 
achieve the desired closed loop system poles. Clearly, from 
(28) the closed loop poles and zeros are in their desired 
locations. Clearly from (6), (7), (9), (10), (11) and (12) the 
transfer functions P , Q , R  and H  change at every sampling 
instant in order to satisfy the condition in (19), (22), (23), (25) 
and (27). However, it is not necessary to explicitly calculate 
these design polynomials [4, 6, 10]. This does of course suggest 
the cost index has time varying weightings in this problem. 
As can be seen in figure (1), a recursive least squares algorithm 
is initially used to estimate the parameters A and B (equation 
(1)) of the linear sub-model. Then a Back Propagation (BP) 

network is used to approximate the non-linear part 0f̂ . 

It is clear from equation (3) that the ith measured output 
)(tiy can be obtained as follows: 

),()()()1( ,0 UYfttty ii
T
ii +θϕ=+ , ni ,......,2,1=   (30) 

where T
n tytytyt )](),......,(),([)( 21=y  is the measured output 

vector with dimension )1( ×n  and 
T

n tututut )](),......,(),([)( 21=u  is control input vector. 

where iθ  is the parameter vector and m
i ℜ∈ϕ  is the data 

vector as follows:  
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Equation (3) and (30) can also be presented as: 

(.,.)
~

)(~̂)( ,0 iii ftyty +=  (32) 

It is clear from figure (1) that )(ˆ)()(~̂ ttty i
T
ii θϕ=  is the linear 

sub-model output and )(~̂)((.,.)
~

,0 tytyf iii −=  is the difference 

between the actual output )(tyi  and the linear sub-model 

output )(~̂ tyi . 

From figure (1) we can also see clearly that (.,.)
~

,0 if  can be 

expressed as: 

)(ˆˆ(.,.)
~

,0,0 tff iii ε+=  (33) 

From the above equation and figure (1) the estimation of non-

linear function if ,0
ˆ  is obtained using neural network, whereas 

the identification error )(tei  is used to update the weights and 
thresholds of the learning neural network. The neural networks 
used in the proposed control scheme are three-layered types. 
The schematic diagram of the ith neural network is shown in 

figure (2). The estimated non-linear function tf ,0
ˆ  can be 

detected by respectively using the following equations: 
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where ijw ′1  and j1β  are the weights and thresholds between 

the input layer and the hidden layer, and ljw2  and l2β  are the 
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weights and thresholds between hidden layer and the out put 
layer. 

 

2.3  Non-linear Multiple-Controller Algorithm 
summary: 

The proposed multiple controller algorithm can be 
summarised as:  

Step 1. Select the desired closed-loop system poles and zeros 
polynomials T  and dq .  

Step 2. Select P  and V for conventional PID control. 

Step 3. Read the new values of )(ty  and ).(tw  

Step 4. Estimate the process parameters Â  and B̂  using least 
squares algorithm. 

Step 5. Compute 'F̂  and q̂′  using (22). If we want to switch to 
the conventional PID controller, then use the 
 polynomial P  and V  selected in step 2, set 1=′q , 
compute F′  using equation (6) and then set )1(FR ′= . 

Step 6. Compute R  using (25) for PID pole-placement. In the 
situation of using Pole-zero placement R  is computed 
using (27). 

Step 7. Compute 0H  using (19) for all controllers. 

Step 8. Compute )(~̂)((.,.)
~
0 tt yyf −= , where )(~̂ ty  is the 

output of the linear sub-model. 

Step 9. Apply the BP learning network to obtain (.,.)ˆ
0f  by 

using equations (34-39). 

Step 10. Compute the control input using (12).  

Steps 1 to 10 are to be repeated for every sampling instant.  

 
3.  SIMULATION RESULTS 

The objective of this section is to study the 
performance and the robustness of the closed loop system using 
the techniques proposed in Section 2. A simulation case study 
will be carried out in order to demonstrate the ability of the 
proposed algorithm to locate the closed-loop poles and zeros at 
their desired locations under set point changes.  
 
In chemical process industries one of the commonly occurring 
control problems is the control of fluid levels in storage tanks 
or reaction vessels. In this example the proposed controller was 
applied to a real world system model shown in Fig. 3 and 
described in [3].  
The main objective of the control problem is to adjust the inlet 
flows 1Lf  and 2Lf  as to maintain the levels in the two tanks 

1h  and 2h  as close to a desired set point. The fluid flow rates 
into tank 1 )( 1Lf  and thank 2 )( 2Lf  are supplied by two 
pumps.  
To measure these flow rates, two flow meters are inserted 
between pumps and tanks. The flow of water from tank 2 to the 

reservoir )( 0Lf  is controlled by an adjustable tap. The 
maximum diameter of this tap is 70.0 cm. The depth of fluid is 
measured using parallel track depth sensors which are located 
in tank 1 and 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The non-linear model can be presented as follows: 

)(2 21111
1 hhgaf

dt
dh

A L −σ′−=  

)(2)(2 22221112
2 hhgahhgaf

dt
dh

A L ′−σ′−−σ′+=  

where 1a′  and 2a ′ , are respectively the cross section area of 
orifice 1 and cross section area of orifice 2, and A  is cross-
sectional area of tank 1 and tank 2. 1σ  and 2σ  are the 
discharge coefficient (0.6 for a sharp edged orifice) and 

2/81.9 mNg = . The diameter of orifice 1 is adjusted to 
0.317cm and drain valve is fully open. 
 
This simulation example is performed over 600 samples with 
the set point changing every 100 sampling instants as follows: 
1) )(1 tw  changes from 0.13m to 0.15m and from 0.15m to 
0.13m. 
3)  )(2 tw  changes from 0.08m to 0.1m and from 0.1m to 

0.08m. 
A first-order non-linear model is used. It is clear from equation 
and (10) that a PI control structure is achieved. 
In this simulation only switching from PI pole-placement to PI 
pole-zero placement is considered.  
In order to demonstrate clearly the closed loop performance of 
the multiple controller, we manually arrange the multiple-
controller to work in the following two control modes, namely 
as a PI pole-placement controller and as a PI pole-zero 
placement controller, as described below: 

a) The PI pole placement controller is switched on from 0th to 
250th sampling times. 
b) The PI pole-zero placement controller is switched on from 
251th to 600th sampling times. 
The closed loop poles and zeros are respectively selected as: 
 

2Lf

1h

2h
h′

Pump1 Pump2 

1Lf

2a ′1a ′

0Lf
Figure 3. Coupled tank system.  
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The closed-loop system outputs 1h  and 2h  (in meters) are 
shown in the Fig. 4a, whereas, the control inputs 1Lf  and 2Lf  

in sec)/( 3m  are respectively shown in Fig. 4b and Fig. 4c. 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is clear from these figures (4a), (4b) and (4c) that, the 
transient response is significantly shaped by the choice of the 
polynomial T  when either a PI pole-placement controller or a 
PI zero-pole placement is used. It can also clearly be seen from 
figure (4b) and (4c) that excessive control action, which 
resulted from set-point changes, is tuned most effectively when 
the new PI zero-pole placement controller is on-line (during the 
sampling interval 251-600)  
 
4 Concluding Remarks 

A new robust non-linear self-tuning PID multiple-
controller incorporating a neural network based learning sub-
model for multivariable system has been described. The design, 
which exhibits enhanced robustness over similar techniques, 
overcomes certain limitations exhibited in other self-tuning PID 
control designs. Nonetheless, it retains the simplicity of 
adaptive mechanisms used elsewhere (e.g. [2, 10]). The 
proposed methodology provides the designer with the choice of 
using a conventional PID self-tuning controller, a PID pole 
placement controller or the proposed PID pole-zero placement 
controller. All of these controllers operate using the same 
adaptive procedure. The switching (transition) decision 
between these different fixed structure controllers was achieved 
here manually. In the future it will be implemented by using 
Stochastic Learning Automata of [8]. 

In the proposed design the unknown non-linear plant 
is represented by an equivalent model composed of a simple 
linear sub-model plus a non-linear sub-model. The parameters 
of the linear sub-model are identified by a standard recursive 
least squares algorithm, whereas the non-linear sub-model is 
approximated using a multi-layer BP neural network. The 
results indicate that of the proposed multiple controllers, the 
PID pole-zero placement controller best tracks set point 
changes with the desired speed of response. This penalises the 
excessive control action most effectively, and it can also deal 
with non-minimum phase systems. The controller’s transient 
response is shaped by the choice of the pole polynomial 

)( 1−zT , while the zero polynomial )( 1
d

−zq  can be used to 
reduce the magnitude of control action, or to achieve better set 
point tracking [3, 6], compared to the computationally less 
expensive PID pole-placement and conventional self-tuning 
PID controllers. 
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Figure 1: Non-linear Multiple Controller incorporating artificial neural networks (ANN) based learning sub-model  
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