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Abstract— In this paper we show that an unsuper-
vised two-layered oscillatory neural network with intra-
layer connections, and a learning rule based on stimulus
difference can behave as a Dynamic Link Matching
Machine for invariant pattern recognition. We show that
this architecture is robust to affine transformations. We
call this architecture Oscillatory Dynamic Link Matching
(ODLM).

I. INTRODUCTION

Pattern recognition robust to noise, symmetry, ho-
mothety (size change with angle preservation), etc.
has long been a challenging problem in artificial in-
telligence. Many solutions or partial solutions to this
problem have been proposed using expert systems or
neural networks. In general three different approaches
are used to perform invariant pattern recognition:

• Normalization: In this approach the analyzed
object is normalized to a standard position and size
by an internal transformation. The advantages of
this approach are: The coordinate information (the
”where” information) is retrievable at any stage
of the processing and there is a minimum loss of
information. The disadvantage of this approach is
that the network should find the object in the scene
and then normalize it. This task is not as obvious
as it can appear [1] [2].

• Invariant Features: In this approach some fea-
tures that are invariant to the location and the size
of an object are extracted. The disadvantages of
this approach is that the position of the object may
be difficult to extract after recognition and infor-
mation is lost during the process. The advantage is
that the technique doesn’t require to know where
the object is and unlike normalization in which
other techniques should be used after this stage to
recognize patterns, the invariant features approach
already does some pattern recognition by finding
important features [3].

• Invariance Learning from temporal input se-
quences:The assumption is that primary sensory

signals, which in general code for local proper-
ties, vary quickly while the perceived environment
changes slowly. If one succeeds in extracting slow
features from the quickly varying sensory signal,
he/she is likely to obtain an invariant representa-
tion of the environment [4] [5].

Based on theNormalizationapproach, the ”dynamic
link matching” (DLM) has been first proposed by
Konen et al. [2] . This approach consists of two layers
of neurons connected to each other through synaptic
connections constrained to some normalization. The
saved pattern is applied to one of the layers and the
pattern to be recognized to the other. The dynamics
of the neurons are chosen in such a way that ”blobs”
are formed randomly in the layers. If the features
in these two blobs are similar enough, some weight
strengthening and activity similarity will be observed
between the two layers, which can be detected by
correlation computation [2] [6]. These blobs can or
cannot correspond to a segmented region of the visual
scene, since their size is fixed in the whole simu-
lation period and is chosen by some parameters in
the dynamics of the network [2]. The apparition of
blobs in the network has been linked to the attention
process present in the brain by the developers of
the architecture. The dynamics of the neurons used
in the original DLM network is not the well-known
spiking neuron dynamics. In fact, its behavior is based
on rate coding (average neuron activity over time,
for details see section V) and can be shown to be
equivalent to an enhanced dynamic Kohonen Map in its
Fast Dynamic Link Matching (FDLM) form [2]. Here,
we propose the Oscillatory Dynamic Link Matching
algorithm (ODLM), which uses conventional spiking
neurons and is based on phase (place) coding. The
network is capable of doing motion analysis, but neither
it computes optical flow nor it performs additional
signal processing between the layers, unlike in [7]. In a
more general way, our proposed network can solve the
correspondence problem, and at the same time, perform
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the segmentation of the scene, which is in accordance
with the Gestalt theory of perception [8] and it is
very useful when pattern recognition should be done in
multiple-object scenes. In other words the network does
normalization, segmentation, and pattern recognition at
the same time. It is also self-organized. In addition, if
only one object is present in the scene the segmentation
phase can be bypassed, if the speed of convergence
is the only concern (section VI). The application of
this network is not limited to visual scene analysis, it
can be used in sound source segregation problem and
may act as a top-down (schema-driven) processor in the
Computational Auditory Scene Analysis (CASA) [9].

II. T HE OSCILLATORY DYNAMIC LINK MATCHER

The building blocks of this network are oscillatory
neurons [10]. The dynamics of this kind of neurons
is governed by a modified version of the Van der Pol
relaxation oscillator (called the Wang-Terman oscilla-
tor) (for a similar approach with different dynamics see
[11]). There is an active phase when the neuron spikes
and a relaxation phase when the neuron is silent. The
dynamics of the neurons follows the following state-
space equations, wherexi is the membrane potential
(output) of the neuron andyi is the state for channel
activation or inactivation.

dxi,j

dt
= 3xi,j − x3

i,j + 2− yi,j

+ ρ + H(pinput
i,j ) + Si,j (1)

dyi,j

dt
= ε[γ(1 + tanh(xi,j/β))− yi,j ] (2)

ρ denotes the amplitude of a Gaussian noise,pinput
i,j

the external input to the neuron, andSi,j the cou-
pling from other neurons (connections through synaptic
weights). ε, γ, and β are constants. Initial values
are generated by a uniform distribution between the
interval [-2; 2] forxi,j and between [0; 8] foryi,j (these
values correspond to the whole dynamic range of the
equations).

A neighborhood of 4 is chosen in each layer for the
connections. Each neuron in the first layer is connected
to all neurons in the second layer and vice-versa. A
global controller is connected to all neurons in the first
and second layers as in [12]. In a first stage, segmen-
tation is done in the two layers independently (with
no extra-layer connections) as explained in section III,
while dynamic matching is done with both intra-layer
and extra-layer couplings. The intra-layer and extra-
layer connections are defined as follows:

wint
i,j,k,m(t) =

wint
max

Card{N int(i, j) ∪Next(i, j)}
· 1

eλ|p(i,j;t)−p(k,m;t)| (3)

wext
i,j,k,m(t) =

wext
max

Card{Next(i, j) ∪N int(i, j)}
· 1

eλ|p(i,j;t)−p(k,m;t)| (4)

where wint
i,j,k,m(t) are intra-layer connections and

wext
i,j,k,m(t) are extra-layer connections (between the

two layers) andwint
max = 0.2 and wext

max = 0.2
are constants equal to the maximum value of the
synaptic weights.Card{N int(i, j)} is a normalization
factor and is equal to the cardinal number (number of
elements) of the setN int(i, j) containing neighbors
connected to theneuron(i, j) and can be equal to
4, 3 or 2 depending on the location of the neuron
on the map, i.e. center, corner, etc., and the number
of active connections. A connection is active when
H(wi,j,k,m − 0.01) = 1, which is true both for intra-
layer and extra-layer connections.Card{Next(i, j)} is
the cardinal number for extra-layer connections and is
equal to the number of neurons in the second layer with
active connection toneuroni,j in the first layer. Note
that normalization in Eq. 4 is mandatory if someone
wants to correspond similar pictures with different
sizes. If the aim is to match objects with exactly the
same size the normalization factor should be set to a
constant for all neurons. The reason for this is that
with normalization even if the size of the picture in the
second layer was the double of the same object in the
first layer the total influence to theneuroni,j would be
the same as if the pattern was of the same size.

The schematic of the network is shown in Fig. 1.

III. B EHAVIORAL DESCRIPTION OF THE NETWORK

The network has two different behavioral mode:
segmentation and matching.

• Segmentation:In the segmentation stage, there is
no connection between the two layers. The two
layers act independently (unless for the influence
of the global controller) and segment the two
images applied to the two layers respectively. The
global controller forces the segments on the two
layers to have different phases. At the end of this
stage, the two images are segmented but no two
segments have the same phase (Fig. 4). The results
from segmentation are used to create binary masks
that select one object in each layer in multi-object
scenes. In fact a snapshot like the one shown in
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Fig. 10 is used to create the binary maskm(i, j)
for one of the objects as follows:

m(i, j) =
{

1 for xi,j(tsync) = xsync

0 otherwise
(5)

xsync can be the synchronized value that corre-
sponds to either the cross or the rectangle in Fig.
10 at timetsync.
The coupling strengthSi,j for each layer as de-
fined in Eq. 1 is computed by :

Si,j(t) =
∑

k,m∈Nint(i,j)

wint
i,j,k,m(t)H(xint(k,m; t))

− ηG(t) (6)

H(.) is the Heaviside function,G(t) is the influ-
ence of the global controller defined by the follow-
ing equation.η should be set to a value smaller
than the maximum value of synaptic weights, i.e.
0.25 in our case.

G(t) = αH(z − θ) (7)

dz

dt
= σ − ξz (8)

σ is equal to 1 if the global activity of the
network is greater than a predefinedζ and is zero
otherwise.

Fig. 1. The architecture of the oscillatory dynamic link
matcher. The number of neurons in the figure does not cor-
respond to the real number of neurons. The global controller
has bidirectional connections to all neurons in the two layers

• Dynamic Matching: In the matching phase, the
external input to the layers are defined by the
binary masks generated in the segmentation phase.
The input to the layers are defined by:

pmatching
i,j = m(i, j)pinput

i,j (9)

Extra-layer connections (Eq.4) are established. If
there are similar objects in the two layers, these
extra-layer connections will help them synchro-
nize. In other words, these two segments are bound
together through these extra-layer connections
[13]. In order to detect synchronization double-
thresholding can be used [14]. This stage may be
seen as a folded oscillatory texture segmentation

a
 d

bc

T(a) T(d)

T(c) T(b)

Fig. 2. An affine transform T for a four-corner object.

device as the one proposed in [10]. The coupling
strengthSi,j for each layer in the matching phase
is defined as follows :

Si,j(t) =
∑

k,m∈Next(i,j)

{wext
i,j,k,m(t)H(xext(k, m; t))

+ wint
i,j,k,m(t)H(xint(k, m; t))}

− ηG(t) (10)

IV. GEOMETRICAL INTERPRETATION OF THE

ODLM

We know that an object can be represented by a set
of points corresponding to its corners, and any affine
transform is a mapT : R2 → R2 of these points defined
by the following matrix operation

p’ = A ∗ p + t (11)

Where A is a 2x2 non-singular matrix,p ∈ R2 is
a point in the plane, andp’ is its affine transform.
t is the translation vector. The transform is linear if
t = 0. Affine transformation is a combination of several
simple mappings such as rotation, scaling, translation,
and shearing. The similarity transformation is a spe-
cial case of affine transformation. It preserves length
ratios and angles while the affine transformation, in
general does not. In this paragraph we show that the
coupling Si,j is independent of the affine transform
used. We know that any object can be shattered into its
constituent triangles (three corners per triangle). Now
suppose that the set{a, b, c, d} is mapped to the set
{T (a), T (b), T (c), T (d)}, and that the objects formed
by these two sets of points are applied to the two layers
of our neural network. Suppose also that points inside
the triangle{a, b, c} (resp. {T (a), T (b), T (c)}) have
values equal to A (corresponding to the gray-level value
of the image at that points) and points inside{a, b, d}
(resp.{T (a), T (b), T (d)}) have values equal to B.
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We know that for an affine transform (Fig. 2):

∆abc

∆abd
=

∆T (abc)

∆T (abd)
(12)

Where ∆abc is the area of the triangle{a, b, c}
(expressed in number of neurons). Forneuroni,j

belonging to {a, b, c} and neuronk,m belonging to
{T (a), T (b), T (c)}, Eq.4 is equivalent to (neglecting
the effect of intra-layer connections, sinceNext À
N int):

Next = ∆T (abc) + ∆T (abd) (13)

Hence,

wext
i,j,k,m(t) =

f(p(i, j; t)− p(k, m; t))
∆T (abc) + ∆T (abd)

,

with f(x− y) =
wext

max

eλ|x−y| ∀x, y (14)

There are∆T (abc) connections from the region with
gray-level value A (triangle{T (a), T (b), T (c)}) and
∆T (abd) connections from the region with gray-level
value B (triangle{T (a), T (b), T (d)}) to theneuroni,j

belonging to the triangle{a, b, c} with gray-level value
A. Therefore, the external coupling forneuroni,j from
all neuronk,m becomes :

Si,j(t) =
∆T (abc)f(A−A)ψ(t, φ1)

∆T (abc) + ∆T (abd)

+
∆T (abd)f(A−B)ψ(t, φ2)

∆T (abc) + ∆T (abd)
,

with ψ(t, φ) = H(xext
k,m(t)) (15)

Whereψ(t, φ2) andψ(t, φ1) are respectively associ-
ated to spikes with phasesφ2 andφ1 that appear after
segmentation. After factorization and using Eq. 12 we
obtain:

Si,j(t) =
f(0)ψ(t, φ1)

1 + ∆abd

∆abc

+
f(A−B)ψ(t, φ2)

1 + ∆abc

∆abd

(16)

This means that the extra-layer connections are inde-
pendent of the affine transform that maps the model to
the scene (first and second layer objects) and can be
extended to more than 4 points.

Note that if there are several objects in the scene and
we want to match patterns, we can use the results from
the segmentation phase to break the scene into its con-
stituent parts (each synchronized region corresponds to
one of the objects in the scene) and apply the objects
one by one to the network, until all combinations are
tested. This is not possible in the averaged Dynamic
Link Matching case where no segmentation occurs.

V. RATE CODING VS. PHASE CODING

The aim in this paragraph is to show that the original
DLM is a rate coding approximation of the ODLM.
Aoinishi et al. [6] have shown that a canonical form
of rate coding dynamic equations solve the matching
problem in the mathematical sense. The dynamics of
a neuron in one of the layers of the original Dynamic
Link Matcher proposed in [2] is as follows:

dx

dt
= −αx + (k ∗ σ(x)) + Ix (17)

Where k(.) is a neighborhood function,Ix is the
summed value of extra-layer couplings,σ is the sig-
moidal function, x is the output of the rate coded
neuron, and∗ is the convolution. On the other hand, we
know that the Wang-Terman oscillator can be approxi-
mated by the Integrate-and-Fire neuron (for details see
[15]), we can write for a single neuron of our network:

dxtwo

dt
= −xtwo + Σk,m 6=i,jw

int
i,j,k,mH(xtwo

k,m)

+ Σk,mwext
i,j,k,mH(xone

k,m) + H(pinput)
x = 0 x > threshold (18)

Wherextwo stands for neurons in layer two andxone

stands for neurons in layer one. There are synaptic
connections (wint) in layer 2 and synaptic connections
from layer 1 to layer 2 (wext).

If we neglect the influence of intra-layer connections,
therefore Eq. 18 becomes:

dxtwo

dt
= −xtwo + Σk,mwext

i,j,k,mH(xone
k,m) + H(pinput)

x = 0 x > threshold (19)

Note that for an integrate-and-fire neuron the ap-
proximationH(x) = x holds, since the output of an
integrate-and-fire neuron is either 0 or 1 (it emits spikes
or delta functions), therefore Eq. 19 can be further
simplified to :

dxtwo

dt
= −xtwo + Σk,mwext

i,j,k,mxone
k,m + H(pinput) (20)

x = 0 x > threshold

By averaging the two sides of Eq. 20 we get:
(H(pinput) is considered constant overT ) :

dxtwo
a

dt
= −xtwo

a + Σwextxone
a (21)

+ H(pinput)

xa = < x >T =
1
T

∫ T

0

x(t)dt

< x >T , the averaged version ofx over a time window
of lengthT . For the sake of simplicity, the indices are
omitted in Eq. 21.
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From [16], we know that the averaged outputxtwo
a of

an integrate-and-fire neuron is related to the averaged-
over-time inputs of a neuron (Σwextxone

a ) by a contin-
uous function (sigmoidal, etc.). Let name this function
ϕ (note thatβ is a proportionality constant):

< xtwo
i,j >= βϕ(Σwext < xone

k,m >) (22)

Note that in Eq. 21 we need< xone
i,j > in function

of < xtwo
k,m >. Note further that Eq. 22 is a set of linear

equations inwint and we can deducexone
i,j from that

sets of equations:

xone
i,j = Σk,mσ(xtwo

k,m) (23)

Replacing the above result in Eq. 21 gives (note that for
the sake of simplicity we omitted again the indices):

dxtwo
a

dt
= −xtwo

a +ΣΣwextσ(xtwo
a )+H(pinput) (24)

Whereσ(x) = ϕ−1(x).
On the other hand:

ΣΣwintσ(xtwo
a ) = k(xtwo

a ) ∗ σ(xtwo
a ) (25)

Where * is a 2-D convolution. In our case k(.) is a 2-
D rectangular window (in the original DLM k(.) was
chosen to be Mexican hat).

Hence, we have proved that the DLM is an averaged-
over-time approximation of the ODLM.

VI. RESULTS

As stated earlier, this network can be used to solve
the correspondence problem. For example, suppose
that in a factory chain, someone wants to check the
existence of a component on an electronic circuit board.
All he/she has to do is to put an image of the compo-
nent on the first layer and check for synchronization
between the layers. Ideally, any change in the angle
or the location of the camera or even the zoom factor
should not influence the result. One of the signal
processing counterparts of our proposed technique is
the morphological processing. Other partial solutions
such as the Fourier (resp. Mellin) transform could be
used to perform matching robust to translation (resp.
scaling). There is no need to train or configure our
architecture to the stimulus we want to apply. The
network is autonomous and flexible to not previously
seen stimuli. This is in contrast with associative mem-
ory based architectures in which a stimulus must be
applied and saved into memory before retrieval [5]. It
doesn’t require any pre-configured architecture adapted
to the stimulus, like in the hierarchical coding paradigm
[17]. DLM can play an important role in structuring
memory, e.g. finding structural similarities between
stored information during sleep [18].

Fig. 3. A snapshot of the activity the first and second layers of
the neural map. Colors represent relative phase of oscillations.
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Fig. 4. Left: Activity of one of the neurons associated with
the vertical bar in the first layer after segmentation. Right:
Activity of one of the neurons associated with the background
in the same layer.

In this paper, we show the aforementioned capacities
of the network using a prototype that will help us study
the dynamics of the network.

A. Segmentation and Matching for Invariant Pattern
Recognition

A rectangular neuron map is chosen. There are 5x5
neurons in each layer. A vertical bar in a background
is presented in the first layer. The second layer receives
the same object transformed by an affine transformation
(rotation, translation, etc.). Here are some examples:
Figure 3 shows an activity snapshots (instantaneous
values ofx(i, j)) in the two layers after segmentation
(first phase). Note that same- colored neurons have
similar phases in the figure. On the other hand, different
segments on different layers are desynchronized (see
Figures 4 and 5). In the dynamic matching stage,
similar objects among different layers are synchronized
(Figure 7). The thresholded sum (synchronization in-
dex) of the activity of all neurons (

∑
i,j H(x(i, j) −

0.5))) is shown in Figure 6 for the segmentation phase
and in Figure 7 for the dynamic matching phase. Since
there are four different regions in the two layers with
different phases at the end of the segmentation phase,
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Fig. 5. Left: Activity of one of the neurons associated with
the horizontal bar in the first layer after dynamic matching.
Right: Activity of one of the neurons associated with the
vertical bar after dynamic matching in the second layer.

four different synchronization regions can be seen in
Figure 6. In the dynamic matching phase, the similar
objects (and the backgrounds) merge with each other
producing only two distinct regions. In addition, when
a zero-mean Gaussian noise with varianceσ2 = 0.1 is
added to both stimuli (SNR = 10dB) the matching
results remain unchanged.

B. One-object scenes

Note that if only one object is present in each layer of
the scene, then the segmentation phase can be bypassed
and the network could function directly in the matching
mode. This strategy will help us speed up the pattern
recognition process. Fig. 8 and Fig. 9 show the behavior
of a 13x5 network when only one object is present in
each layer. The synchronization time for the matching-
only network is shorter. Note that the matching-only
approach cannot be used, if there are multiple objects in
the scene. In the latter-mentioned case the segmentation
plus matching approach should be used.

VII. C ONCLUSION AND FURTHER WORK

We proposed the oscillatory dynamic link matching
as a mean to segment images and solve the corre-
spondence problem, as a whole system, using a two-
layered oscillatory neural network. We showed that
our network is capable of establishing correspondence
between images and is robust to translation, rotation,
noise and homothetical transforms. More experiments
with complex objects and more general transforms like
shearing, etc. are under investigation. Pattern recogni-
tion of occluded objects is another challenge for this
proposed architecture and will be presented in further
works.

We are investigating the possibility of the inser-
tion of this architecture in our bottom-up sound
segregator [9] [19] as a top-down processor. In




Fig. 6. The evolution of the thresholded activity of network
through time in the segmentation phase. Each vertical rod
represents a synchronized ensemble of neurons and the num-
ber of neurons in that synchronized region is represented on
the vertical axis.

Fig. 7. The evolution of the thresholded activity of the
network through time in the dynamic matching phase.

fact, in this application, visual images will be re-
placed by CAM (Cochleotopic/AMtopic) and CSM
(Cochleotopic/Spectrotopic) Maps proposed in [9]. The
approach could also be used as a separate discrete-word
recognizer.
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