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Abstract— In this paper, we propose a new supervised learning
method whereby information is controlled by the associated
cost in an intermediate layer, and in an output layer, errors
between targets and outputs are minimized. In the intermediate
layer, competition is realized by maximizing mutual information
between input patterns and competitive units with Gaussian
functions. The process of information maximization is controlled
by changing a cost associated with information. Thus, we can
flexibly control the process of information maximization and to
obtain internal representations appropriate to given problems.
The new method is considered to be a hybrid model similar to
the counter-propagation model, in which a competitive layer is
combined with an output layer. In addition, this is considered to
be a new approach to radial-basis function networks in which
the center of classes can be determined by using information
maximization. We applied our method to an artificial data
problem, the prediction of long-term interest rates and yen rates.
In all cases, experimental results showed that the cost can flexibly
change internal representations, and the cost-sensitive method
gave better performance than did the conventional methods.

Keywords: Information maximization, Gaussian, cost, error
minimization, hybrid model, competitive layer, output layer

I. INTRODUCTION

In this paper, we propose a new supervised learning method
in which information is controlled by the associated cost in
the intermediate layer, and in the second layer, errors between
targets and outputs are minimized. In the intermediate layer,
units or neurons compete with each other by maximizing
mutual information. The method is considered to be a new type
of hybrid system or a new approach to radial-basis function
networks. The new method can contribute to neural computing
from four perspectives: (1) this is a new type of information-
theoretic competitive learning; (2) the activation function is
Gaussian; (3) a process of information maximization is con-
trolled by a cost; (4) the new model is a hybrid model in which
information maximization and minimization are combined;
and (5) the method is considered to be a new approach
to the radial-basis function networks, in which information
maximization is used to determine the center of radial basis
function.

First, our method is based upon a new type of information-
theoretic competitive learning. We have so far proposed a
new type of competitive learning based upon information-
theoretic approaches [1], [2], [3], [4]. In the new approaches,

competitive processes have been realized by maximizing mu-
tual information between input patterns and competitive units.
When information is maximized, just one unit is turned on,
while all the others are off. Thus, we can realize competitive
processes by maximizing mutual information. In addition, in
maximizing mutual information, the entropy of competitive
units must be maximized. This means that all competitive units
must equally be used on average. This entropy maximization
can realize equiprobabilistic competitive units without the spe-
cial techniques that have so far been proposed in conventional
competitive learning [5], [6], [7], [8], [9], [10], [11].

Second, we use in this new approach Gaussian activation
functions to produce competitive unit outputs. When we first
introduced information-theoretic competitive learning, we used
the sigmoidal activation function 1=(1 + exp(�u)), where
u is the net input to competitive units [12], [13], [14] [1],
[2], [3]. When we try to increase information, the sigmoidal
approaches produce strongly negative connection weights,
and they can inhibit many competitive units, except some
specific competitive units. Thus, it is relatively easy to increase
information content. However, because strongly negative con-
nection weights are produced almost independently of input
patterns, final representations are not necessarily faithful to
input patterns. Thus, we tried to use the inverse Euclidean
distance between input patterns and connection weights [15].
Though this method produced faithful representations, it was
sometimes very slow in learning. In particular, as problems
become more complex, networks with the inverse Euclidean
distance activation functions showed difficulty in increasing
information to a sufficiently high level. At this point, we try
to replace Euclidean distance functions by Gaussian functions,
because we can easily increase information by decreasing the
Gaussian width.

Third, a process of information maximization is controlled
by a cost associated with information. We have observed that
information maximization is achieved at the expense of simi-
larity to input patterns. As information is increased, connection
weights tend to be away from input patterns. We should say
that information maximization exaggerates some parts of input
patterns. This property is useful to obtaining some important
features in input patterns. However, it sometime happened that
obtained features did not represent faithfully input patterns.
Thus, we introduce a cost that is defined as difference between
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input patterns and connection weights. Then, by controlling
the cost, we can control internal representations obtained by
information maximization.

Fourth, our new model is a hybrid model in which infor-
mation maximization and minimization are combined with
each other. There have been many attempts to model su-
pervised learning based upon competitive learning. For ex-
ample, Rumelhart and Zipser [16] tried to include teacher
information in competitive learning. They called this method
the ”correlated teacher learning” method, in which teacher
information is included in input patterns. However, one of
the main shortcomings of this method is that we sometimes
need an overwhelmingly number of large correlated teachers
to supervise learning. On the other hand, Hechet-Nielsen tried
to combine competitive learning directly with error minimiza-
tion procedures [17], [18] [19] in what are called ”counter-
propagation networks.” However, error minimization proce-
dures are realized by the gradient descent, and usually a large
number of competitive units are needed. In our method, we can
use the pseudo-inverse matrix operation to produce outputs,
and learning is much faster than with counter-propagation.

Fifth, the new method is also considered to be a radial-basis
function network approach in which the center of radial-basis
function is determined by maximizing information content.
The radial basis function approach has been applied to many
problems, such as function approximation, speech recognition
and so on, because of rapid convergence and generality [20],
[21], [22]. In this paper, we use Gaussian functions, and
we can consider this computational method a new approach
to radial-basis function networks. One of the problems of
this approach is that it is difficult to determine the center
of radial-basis functions. The center has been determined by
unsupervised learning methods such as K-means, competitive
learning, vector quantization [23], [20], [22], [24]. Thus, our
method is considered to be a new approach to the radial-
basis function, in which information maximization is used to
determine the center of radial-basis functions.

II. INFORMATION ACQUISITION

A. General Cost-Sensitive Information Maximization

We suppose that information on the outer environment can
be obtained only at the expense of the cost associated with
the acquisition process. For example, if we want to obtain
some information on an object, we should illuminate it by
using some energy that corresponds to the cost in information
acquisition. Though information can surely be obtained with
the associated cost, there have been no attempts to take into
account the cost in information-theoretic approaches to neural
computing. As naturally inferred, one of the most favorable
situations is one in which much information is obtained
with relatively small cost. Thus, our problem is to maximize
information, and at the same time the associated cost should
be minimized. We define this concept by the equation:

I = �

X
8j

p(j) log p(j)

+
X
8s

X
8j

p(s)p(j j s) log p(j j s)� C; (1)
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Fig. 1. A network architecture to control information content.

where p(j), p(s) and p(jjs) denote the probability of firing
of the jth unit, the probability of the sth input pattern and
the conditional probability of the jth unit, given the sth input
pattern, respectively. And C denotes the associate cost. This
equation means that information is maximized, and at the same
time the associated cost must be minimized.

B. Competition by Information Maximization

Let us present update rules to maximize information content.
As shown in Figure 1, a network is composed of input units
xsk and competitive units vsj . The jth competitive unit receives
a net input from input units, and an output from the jth
competitive unit can be computed by

vsj = exp

 
�

PL

k=1(x
s
k � wjk)

2

2�2

!
; (2)

where L is the number of input units, wjk denote connections
from the kth input unit to the jth competitive unit, and �
controls the width of the Gaussian function. The output is
increased as connection weights come closer to input patterns.
The conditional probability p(j j s) is computed by

p(j j s) =
vsjPM

m=1 v
s
m

; (3)

where M denotes the number of competitive units. Since input
patterns are supposed to be given uniformly to networks, the
probability of the jth competitive unit is computed by

p(j) =
1

S

SX
s=1

p(j j s); (4)

where S is the number of input patterns. Information I is
computed by

I = �

MX
j=1

p(j) log p(j)

+
1

S

SX
s=1

MX
j=1

p(j j s) log p(j j s): (5)
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To maximize mutual information, entropy must be max-
imized, and at the same time conditional entropy must be
minimized. When conditional entropy is minimized, each
competitive unit responds to a specific input pattern. On the
other hand, when entropy is maximized, all competitive units
are equally activated on average.

C. Cost-Sensitive Information Maximization

In this paper, a cost is considered to be one representing
the difference between input patterns and connection weights.
Thus, a cost function is defined by

C =
1

2S

SX
s=1

MX
j=1

p(j j s)

LX
k=1

(xsk � wjk)
2: (6)

Thus, we must maximize the following function:

I = �

MX
j=1

p(j) log p(j) +
1

S

SX
s=1

MX
j=1

p(j j s) log p(j j s)

�

1

2S

SX
s=1

MX
j=1

p(j j s)

LX
k=1

(xsk � wjk)
2: (7)

As information becomes larger, specific pairs of input patterns
and competitive units become strongly correlated. Differentiat-
ing information with respect to input-competitive connections
wjk , we have

�wjk = ��

SX
s=1

 
log p(j)�

MX
m=1

p(m j s) log p(m)

!
Qs
jk

+�
SX
s=1

 
log p(j j s)�

MX
m=1

p(m j s) log p(m j s)

!

�Qs
jk +



S

SX
s=1

p(j j s)(xsk � wjk); (8)

where �, � and  are the learning parameters, and

Qs
jk =

(xsk � wjk)p(j j s)

S�2
: (9)

D. Error Minimization

In the output layer, errors between targets and outputs are
minimized. The outputs from the output layer are computed
by

Osi =

MX
j=1

Wijp(jjs); (10)

where Wij denote connection weights from the jth competitive
unit to the ith output unit. Errors between targets and outputs
can be computed by

E =
1

2

SX
s=1

NX
i=1

(T si �Osi )
2

; (11)

where T si denote targets for output units Os
i and N is the

number of output units. This linear equation is directly solved
by using the pseudo-inverse of the matrices of competitive unit
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Fig. 2. Information, cost as a function of the number of epochs and
connection weights: (a)  = 0 (pure information maximization), (b)  =

0:005, (c)  = 0:05 and (d)  = 0:5.

outputs. Following the standard matrix notation, we suppose
that W and T denote the matrices of connection weights
and targets and Py shows the pseudo-inverse of the matrix
of competitive unit activations. Then, we can obtain final
connection weights by W = Py

T:

III. EXPERIMENT NO.1: ARTIFICIAL DATA PROBLEM

In this section, we try to show how the cost changes final
representations obtained by information maximization. The
first example is a classification problem in which six patterns
must be classified into three classes, as shown on the right
hand side of Figure 2. Figure 2(a) shows final results by using
pure information maximization. As information is increased,
the associated cost is also increased. Though final connection
weights classify input patterns into three classes, the weights
are away from input patterns. When  is increased to 0.005,
the cost is slightly decreased, and final connection weights
are also slightly close to input patterns. When  is further
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increased to 0.05, the cost is apparently decreased, and final
connection weights are much closer to input patterns. Finally,
when  is 0.5, information is immediately increased to almost
a maximum point, and then fluctuates in the later stages of
learning. The cost is decreased significantly to a smaller point,
and connection weights are located in the middle of each class.
These results seem to show that cost-sensitive information
maximization is much better than the pure information maxi-
mization. However, the next example will explicitly show the
utility of the cost as well as information maximization.

The second example is concerned with artificial data com-
posed of common and distinctive features. We can see five
input patterns given into networks in Figure 4(e). As shown
in the figure, the figures are composed of distinctive features
(horizontal lines) and common features (vertical lines). Figure
3 (a) shows information and cost as a function of the number of
epochs. Information is rapidly increased to a maximum point
with less than 10 epochs, but the associated cost decreases
more slowly than the other cases. As the parameter  is
increased from 0.0001 (Figure 3(b)) to 0.1 (Figure 3(e)),
information is more slowly increased, but the cost is more
rapidly decreased. Figure 4 shows connection weights obtained
by changing the parameter . When the parameter  is zero,
distinctive features can be obtained (Figure 4(a)). As the
parameter is increased, networks tend to capture input patterns
themselves. Thus, by changing the parameter , the properties
of obtained features can flexibly be controlled.

IV. EXPERIMENT NO. 2: LONG TERM INTEREST RATE

AND YEN RATE PREDICTION

In this problem, we predict Japanese long-term interest
rates and yen-to-dollar rates during 1990 and 2002. Figure 5
shows a network architecture for the prediction. The number of
input units is six, representing the previous six months’ rates,
and the number of output unit is one, representing a rate at
the current state. The number of input and competitive units
were experimentally determined so as to maximize prediction
performance. For example, even if we took into account more
than the previous six months’ rates, no improvement could
been seen. We reduced the number of training patterns as much
as possible. By extensive experiments, we found that 20 input
patterns were the minimum number of patterns required to
estimate rates by our method. Even if we increased the number
of training patterns, we could not obtain better performance.
On the other hand, if we decreased the number of training
patterns below 20 input patterns, performance significantly
degraded.

Figure 6(a) shows original long-term interest rates during
1990-2002. When the parameter  is 0.011, networks could
predict the long-term interest rates quite well, as shown in
Figure 6(b). When the parameter  is decreased to zero (Figure
6(c)), that is, pure information maximization is used, some
fluctuations could be seen. However, we can say that networks
still predict the long-term interest rates well. On the other
hand, by using two different kinds of the radial-basis function
networks (Figure 6(d) and (e)), networks failed to predict the

1The parameter � and � were always set to 0.1.
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Fig. 3. Information and cost as a function of the number of epochs by
four different values of the parameter : (a)  = 0, (b)  = 0:0001, (c)
 = 0:001, (d)  = 0:01, and (e)  = 0:1.

rates. Figure 7(a) and (b) shows relations between targets and
actual outputs when the parameter  is 0.05 and zero. The
regression lines are close to lines with which outputs becomes
equal to targets. However, a slightly better regression line can
be obtained by the cost-sensitive method. Figure 7(c) and (d)
shows regression lines by the exact and the incremental radial-
basis function networks. The regression lines are far from the
target lines.

Figure 8(a) shows original yen rates during 1990-2002.
When the parameter  is 0.01, networks could predict the yen
rates quite well, as shown in Figure 8(b). When the parameter
 is decreased to zero (Figure 8), with some fluctuations,
networks still predict the yen rates well. On the other hand,
by using the radial-basis function networks (Figure 8(d) and
(e)), networks failed to predict the rates. Figure 9(a) and (b)
shows relations between targets and actual outputs when the
parameter  is 0.05 and zero. Though two networks can predict
targets well, networks with the cost-sensitive method shows
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Fig. 4. Connection weights by five different parameter values: (a)  = 0,
(b)  = 0:0001, (c)  = 0:001, (d)  = 0:01, and (e)  = 0:1.
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Fig. 6. Original long-term interest rates (a), estimated interest rates by the
new method with  = 0:05 (b), with  = 0 (c), by the conventional radial
basis network (exact method, � = 0:5) (d) and the conventional radial basis
method with an incremental method � = 1 (e).

slightly better performance. Figure 9(c) shows a regression
line by the exact radial-basis function networks. The regression
line is far from the target line. Figure 9(d) shows a regression
line by the incremental radial-basis function networks. The
regression line is close to the target line, but the variation of
outputs is larger.

V. CONCLUSION

In this paper, we have tried to control information-theoretic
competitive learning by introducing the associated cost. In our
networks, we have a competitive layer, a normalization layer
and an output layer. In the competitive layer, information is in-
creased to realize competitive processes. In the normalization
layer, competitive unit outputs are normalized to produce the
probabilities. Then, in the output layer, errors between targets
and outputs are minimized by using the least square method.
In the paradigm of competitive learning, this is a hybrid model
in which unsupervised and supervised learning are combined
with each other, which is close to the counter-propagation
networks. The difference is that in our method competitive unit
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outputs are computed by using the Gaussian functions, and in
the output layer, the least square method is used. Thus, in the
paradigm of the radial-basis function networks, this is a new
approach to the radial-basis function to determine the center of
classes. We have applied competitive learning with Gaussian
functions to an artificial data problem and the prediction of
long-term interest rates and yen rates. In these problems, we
have shown that the new method can possibly predict future
rates with a small number of past data. Finally, though some
problems remain unsolved, I think that the approach outlined
here is a step toward a new information-theoretic approach to
neurocomputing.
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