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ABSTRACT

This paper presents languages and images as sharing the
fundamental property of self-similarity. The self-similarity
of images, especially those of objects in the natural world
(leaves, clouds, galaxies), has been described by mathe-
maticians like Mandelbrot, and has been used as the ba-
sis for fractal image compression algorithms by Barnsley
and others. Self-similarity in language appears in the guise
of stories within stories, or sentences within sentences (”I
know what I know”), and has been represented in the form
of recursive grammar rules by Chomsky and his followers.
Having observed this common property of language and im-
ages, we present a formal mathematical model for putting
together words and phrases, based on the iterated function
system (IFS) method used in fractal image compression.
Building (literally) on vector-space representations of word
meaning from contemporary cognitive science research, we
show how the meaning of phrases and sentences can like-
wise be represented as points in a vector space of arbitrary
dimension. As in fractal image compression, the key is to
find a set of (linear or non-linear) transforms that map the
vector space into itself in a useful way. We conclude by
describing some advantages of such continuous-valued rep-
resentations of meaning, and potential implications.

NOMENCLATURE
Self-similarity, fractals, language, grammars, iterated function
systems, recurrent neural networks.

INTRODUCTION: SELF-SIMILARITY
Self-similarity is a property by which an object contains

smaller copies of itself at arbitrary scales. As noted by Man-
delbrot (1988), this property is ubiquitous in the natural world,
appearing in objects as diverse as leaves, mountain ranges,
galaxies, and clouds. Figure 1 shows a mathematical abstraction
of this concept, in which the original image is arrived at through
a sequence of zooming operations.2

Self-similarity is also a hallmark of human language.
The following verse, from a poem by Wallace Stevens (Stevens,
Kermode, and Richardson 1997), meanders through a sequence

1Supported by a grant from the Keck Foundation.
2Images reproduced with permission from

http://www.chanceandchoice.com

Figure 1: The Mandelbrot Set at various scales.

of relative clauses, arriving ultimately at self-description:

I know noble accents
And lucid, inescapable rhythms;
But I know, too,
That the blackbird is involved
In what I know.

THE TWO CULTURES
The author and scientist C.P. Snow famously described the

modern rift between the humanities and sciences as representing
“two cultures”, each having its own distinct vocabulary and
methodology, and frequently hostile to the other. (Snow 1964) A
similar, if less dramatic, divide exists between the mathematical
approaches used to understand cognition and language on the
one hand, and most natural phenomena on the other. Cognitive
science, linguistics, artificial intelligence, and formal logic have
traditionally relied on the use of atomic symbols and the graph
structures, grammars, and discrete calculi that operate on them.
Electrical engineering and dynamical systems theory (among
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many other fields) have made use of metric spaces, continuous
vectors, and continuous transforms to describe a broad variety
of natural phenomena, from sounds and images to population
dynamics and the formation of galaxies.

Not surprisingly, the question of how the brain “does”
language has been the focus of attention from both of these two
camps. Neuroscientists, biologists, physicists, and engineers
tend to see the brain as a massively connected signal-processing
device operating on continuous-valued quantities (electrical,
chemical, and acoustic) in a probabilistic manner. Linguists
and cognitive scientists, on the other hand, have typically
rejected this level of description as hopelessly inadequate or
“low-level” for the phenomena that interest them, most notably
the systematic composition of meaning that is the hallmark of
human (versus animal) language (Chomsky 1956).

THE CONNECTIONIST ALTERNATIVE
Research in the field connectionist (“neural”) networks –

the hallmark brain-inspired cognitive systems approach – has
made significant inroads into providing a unified computa-
tional framework for addressing this issue. Strong criticism
of feed-forward network models in the late 1980’s (Fodor and
Pylyshyn 1988), (Pinker and Prince 1988) has helped fuel the
drive for connectionist models that deal adequately with the
issues of systematicity (roughly, grammar) and compositionality
(roughly, structure) in a principled way. The Simple Recurrent
Net (SRN) of Elman has shown impressive abilities in both
inducing semantic structure (Elman 1990) and predicting
long-distance grammatical dependencies (Elman 1991). For
the task of representing explicit compositional structure, the
Holographic Reduced Representation (HRR) model of Plate
(Plate 2003) has yielded significant insights.

The present work is likewise concerned with address-
ing the issues of linguistic systematicity and compositionality
within a connectionist framework. Unlike the approaches taken
by Elman and by Plate, however, our approach is built on
a a view of language as a fundamentally self-similar object.
3 To flesh out this approach, we will therefore need at least
the three following components: (1) a mathematical model of
self-similarity (2) a way of representing primitive linguistic units
(words) as primitives of the model (3) a way of representing the
composition of these units in terms of the operations provided
by the model. Beginning in the next section, we treat each of
these requirements in turn.

ITERATED FUNCTION SYSTEMS
Iterated Function Systems provide perhaps the simplest math-

ematical apparatus for describing self-similar objects. Figure 2
shows a rather lifelike image of a fern plant, where the overall
shape of the plant is replicated at various scales (stem, branch,
leaf); i.e., the image shows a high degree of self-similarity.
This image was generated by the Iterated Function System
(IFS) method: starting with an arbitrary set of points in two-
dimensional space, the following set of equations was applied

3We do not mean to imply that SRNs or HRRs are inadequate for
dealing with self-similar language structures; rather, we wish to high-
light the distinguishing feature of our approach.
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Figure 2: A fern generated by an Iterated Function Sys-
tem. Transforms were applied with the following probabilities:���������
	��� ���������������
	��� ���������������
	��� ��������� �"!��#	$�� �%�
iteratively to its own output, until the image no longer changed:

���'&�()�*�	,+ � ��-��.��/10 +2() 023 + ��40
�"� &5()5* 	 + �� ��� �� ��67 �� ��68�� ���90 +2() 0 3 + ��� /:0
� �;&5()5* 	 + �� < 7 �� <�/�� <�= ��><�<?0 +2() 0 3 + ��� /:0
�"! & ( ) * 	 + 7 ��.�@�A��><B���><B/ ��><C6 0 + ( ) 0 3 + ��� 6�6 0

More generally, a given transform can be represented using the
formula

��D & ( )5* 	 +2E DGF@F E D.F�HE D.HIF E D.HIH40 + ( ) 0 3 +2E DGFE D.H40
where the E are weights or coefficients representing scaling,
rotation, and translation of the input.

From a practical standpoint, an IFS represents a powerful
means of compressing or encoding the digital representation
of an image: instead of representing the entire set of points
comprising the image – the so-called attractor of the IFS – we
can store and transmit only the small number of IFS coefficients
contained in the four IFS equations, or transforms. The actual
image can then be reconstructed using the iterative method
described above. In principle, this method can be used to
encode images of arbitrary dimension – a fact that we will find
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Figure 3: Nonlinear IFS represented as a one-layer neural net-
work. Each output is indexed by the transform applied to obtain
it. Sample weights are labeled and highlighted for illustration.

useful later on. It is only our own inability to visualize higher-
dimensional objects that has restricted most IFS applications to
three or fewer dimensions.

A typical IFS like the one above has transforms that
are linear in their input, and so must also be contractive (i.e., a
given transform must bring two arbitrary points closer together
instead of farther apart); see (Barnsley 1993). By applying a
non-linear ‘squashing” function to the output of the transforms,
however, we can encode images using non-contractive trans-
forms as well. The galaxy-like image in figure 4 was obtained
by applying the standard neural-net logistic sigmoid function���������
	����	����������

to the output of the following transforms:

��������! �#"%$ 	'&)(�*+(', $ 	�& -'.'/�,$10 & /	 0 , $ 	�& -	�-',32 " � � 2 �4" (& /�. 0 ,0 & (5*+(+,62
�879� � �! �#" $10 & :'/'/�, $ (& ,;	=<�,-& <;	=:', $ ,;&)*+/	�,32 "9�� 2 �4" :& ,	=/�,$ :;& :�*+(+,32

As illustrated in Figure 3, this formulation of an IFS corre-
sponds to a one-layer feed-forward neural network with two in-
put and four output units.

IFS FOR STRUCTURE ENCODING
Iterated Function Systems are generally considered interest-

ing because of their ability to encode fractal images as attractors.
There is, however, another interesting property of such systems
that can be exploited to encode non-visual information. Each
point in the vector space of the IFS is either a member of (“on”)
the set of attractor points, or “goes to” the attractor via the ap-
plication of a sequence of one or more transforms. This fact
allows us to map from points to fixed-arity tree structures, using
the following inductive defintion: (1) each point on the attractor
corresponds to a tree of depth zero; (2) each point not on the at-
tractor corresponds to a tree of arity > and depth ? , where > is the
total number of IFS transforms in the system, and ? is the length
of the longest sequence of transforms required to take the point
to the attractor. This process is illustrated in Figure 5, using the
standard parenthesis notation to represent trees.
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Figure 4: Attractor of a nonlinear IFS. The two transforms were
applied with equal probabilities.
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Figure 5: Hypothetical encoding of a depth-two binary tree by a
nonlinear IFS. Dashed lines represent IFS transforms. Asterisk
represents an arbitrary tree of depth zero.
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Figure 6: Trees encoded by the Galaxy IFS. Each grayscale level
represents a unique tree.

As with images, this fractal tree representation supports the
storage of an extremely rich variety of structures in a relatively
small code. Figure 6 shows a mapping between points in the
vector space of the galaxy IFS and the trees encoded at those
points. The figure suggests that this map, like the attractor itself,
may be fractal.

FERN LANGUAGES

Structure by itself is of some interest; however, in order
to provide a foundation for cognitive domains like language,
we must have some way of fleshing out the structure with
meaningful content – i.e., we must find some way of satisfying
the second of our three requirements above. At minimum, we
need a way of associating a depth-zero tree with a symbol, in
order to represent, e.g., the difference among the trees

����� �
,����� �

,
����� �

, and
����� �

, where
�

and
�

are arbitrary symbols of
the sort used in formal language theory (Hopcroft and Ullman
1979). In terms of the fractal tree encoding described here, we
need some way of labeling the attractor points with symbols.
We have essentially two choices: either use the IFS itself to label
the points, or resort to some external, independently motivated,
mechanism. The latter approach is described later in the paper.

Using the former approach, we have shown the ability of
networks like the one in Figure 3 to encode exactly the members
of the (non-regular) context free language

�
	
��	
(Melnik, Levy,

and Pollack 2000). This result agrees with the much more
general result obtained in (Tabor 2000), showing the ability of
neural networks to act as recognizers for context-free and other
formal languages, based on fractally organized computation. We
would like to suggest, informally, that such formal languages
bear a similar relation to real (natural) languages as fractal
ferns and other stereotypical images bear to the general class
of images in the real world. Both sorts of mechanism provide
a means for capturing important formal properties of objects of
interest, but require significant additional mechanisms to “scale

up” to real-world applications.4

THE COLLAGE THEOREM
To show how fractal image compression can be generalized

beyond ferns and the like,, Barnsley (1993) exploits an interest-
ing property of images: although an entire image may not be
self-similar, it is likely to contain regions that are similar to each
other. For example, although a face does not contain an infinite
set of smaller faces, one of the ears may be well approximated by
a reflection and translation of the other. Exploiting this property
can yield dramatic compression ratios for a variety of real-world
images, but it requires the use of many transforms. Each trans-
form is associated with a particular region of the image and map-
ping that region to another, smaller region. Barnsley’s Collage
Theorem proves that the “correct” set of transforms to yield an at-
tractor for a desired image is one that when applied to the image
returns the image itself. Determining the optimal size and shape
of the regions (and hence the transform coefficients) is however
more of a heuristic process, and several methods are described in
the literature (Fisher 1996).

SEMANTIC VECTOR MODELS
Can this approach to compressing real images applied to

modeling the structure of real languages? This question brings
us back to requirement (2) above; i.e., we need a way of
representing primitive linguistic units (words) as primitives of
the model. In image compression, the primitives are given by
the image itself, as pixels with grayscale or RGB values. For
language modeling, we will need some way of associating a
vector or set of vectors (point or region) with a particular word
or symbol.

Current work in cognitive science provides a variety
of vector-based models of word meaning. These models share
an inspiration in the insight of Firth (1957) that “you shall know
a word by the company it keeps”. That is, they build a vector
representation for a word based on its pattern of co-occurrence
with other words. The dimensionality of the vectors varies
from model to model. The Latent Semantic Analysis model
(Landauer and Dumais 1997) represents each word using a
300-dimensional vector built using the Singular Value Decom-
position of the word co-occurrence matrix. Elman’s Simple
Recurrent Network (Elman 1990) uses 150-dimensional hidden-
layer activation vectors generated by training the network on
a next-word prediction task. At the other end of the spectrum,
Farkas and Li (2002) build two-dimensional maps of word
meaning by running higher-dimensional word co-occurrence
vectors through a Kohonen-style Self-Organizing Map (Ritter
and Kohonen 1989).

A SIMPLE EXAMPLE
A simple example should suffice to illustrate how we can

use co-occurrence vectors as the primitives for IFS tree en-
codings. We trained a Simple Recurrent Net with two hidden

4In evaluating the success of a novel approach to language, such as
fractal organization, we should keep in mind that no one has come close
to writing a formal grammar for even a (non-trivial) subset of a language
like English. At best, we can strive for novel approaches that account
for many of the same phenomena as traditional models, while providing
additional insights or biological plausibility.
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Figure 7: Positions of hidden-layer vectors obtained by a word-
prediction tasks.

units on a word prediction task using the following six sentences:

Fred says the woman arrived.
The woman says Fred arrived.
Fred loves the woman.
The woman loves Fred.
The woman arrived.
Fred arrived.

Each of the seven unique symbols (words plus period) was
encoded as a one-in- � vector (one bit on, six bits off). Activa-
tions were not reset between sentences. Training was performed
in on-line mode for 100 epochs with a learning rate of 0.1. Sub-
sequent presentation of the six words on the input layer yielded
the hidden-layer activations plotted in Figure 7. The distribution
of the vectors shows some of the sort of semantic patterning
that Elman found, with nouns (Fred, woman) close together in
one part of the space, and transitive verbs (loves, says) in another.

Having thus obtained the vector corresponding to each sym-
bol in our training set, we can compose the symbols into trees
in a bottom-up manner. Each vector that we wish to make rep-
resent a tree is assigned a set of transforms, each of which maps
that vector to a vector representing a branch of the tree. Just as
determining the location, size and shape of the regions in frac-
tal image compression is a heuristic process involving somewhat
arbitrary choices, the choice of which vector should represent
a tree is arbitrary.(At this stage of our work we have no intu-
ition about how to choose the vectors, so we simply pick them
randomly from the vector space.) Obtaining the transforms for
each tree vector is then a simple matter of solving a set of inde-
pendent linear equations. Figure 8 illustrates this process, using
the semantic vectors from the previous example with the tree
(Fred (loves (the woman))).
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Figure 8: Hypothetical IFS encoding of the tree�������	�
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.

GRAMMAR AS NEURAL COMPRESSION

We have now satisfied the goals set out at the beginning of this
paper: we have (1) a mathematical model of self-similarity (2)
a way of representing primitive linguistic units (words) as prim-
itives of the model (3) a way of representing the composition
of these units in terms of the operations provided by the model.
Nevertheless, our solution as described in the previous section
is unsatisfying in two important ways: first, it is no longer
obvious how the model relates to a brain-inspired cognitive
architecture like a neural-network. Second, by assigning a
unique set of transforms to each tree vector, we have failed
to capture the sort of regularities and generalizations about
languages that are expressed by a more traditional model like
a context-free grammar. In an important sense, our model is
merely a collection of arbitrary transform coefficients.

An important result from neural network theory sug-
gests a principled way out of this situation. It has been known
for some time that neural networks with hidden layers can learn
arbitrary real-valued vector mappings (White 1990). This fact
means that adding one or more hidden layers to the network
shown in Figure 3 would allow the network to learn all of the
transforms mapping tree vectors to the vectors representing their
sub-trees. A hypothetical example of such a network is shown
in Figure 9.

Of course, if the number of network weights (i.e., hid-
den units) required to do this exceeded the number of linear
transforms from the non-network version of the model described
in the previous section, the network model would not represent
any sort of compression, or provide any additional insight. The
fact that we were able to obtain network weights to compress a
simple formal context-free language (Melnik, Levy, and Pollack
2000) shows that such compression is possible for a highly
constrained set of trees over a very small vocabulary. It remains
to be seen what sort of generalization can be represented by a
network like the one in Figure 9 using a richer variety of trees
over many more words.
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Figure 9: Nonlinear IFS represented as a two-layer neural net-
work.

CONCLUSIONS, IMPLICATIONS, AND FUTURE WORK

Describing the linguistic composition of meaning with
fractals instead of grammars allows us to approach a number
of important questions in an entirely new way. For example,
it is generally agreed that the linguistic data to which children
are exposed is of insufficient quality to enable them to induce
general structural patterns without some pre-existing mechanism
for acquiring language (Chomsky 1965). The traditional ap-
proach has been to view this mechanism as a sort of “Universal
Grammar” (more accurately, grammar schema) constraining the
sorts of languages that human beings can acquire.

Under the approach described in this paper – where the
lexicon consists of co-occurrence vectors and the “grammar” is
encoded as a set of IFS neural network weights – this “poverty
of the stimulus” phenomenon can be viewed as follows: Essen-
tially, the problem is to find a set of tree vectors and network
weights such that the frontiers of the trees generated by the IFS
match the sentences (strings) to which the learner is exposed.5

We would like to offer, very tentatively, that the universal
mechanism by which such a process might be constrained could
be something like Barnsley’s Collage Theorem. That is, the
“correct” set of tree-vectors and weights could be those that pro-
duce an IFS whose attractor covers the set of lexical vectors, so
that the IFS effectively maps the lexicon onto itself. The notion
that the child explores a set of “candidate grammar” hypotheses
while learning language could then be seen as an exploration
of the (real-valued) space of network weights. Again, this view
is supported by the work of Tabor (2000), who describes how
fractal encoding of grammars allows accepting machines for
those grammars to be located in a spatial relationship to one
another.

An equally compelling issue raised by our approach is
how to model parsing, and its relationship to the grammatical

5As Elman (1990) notes, obtaining the co-occurrence vectors re-
quires nothing more complicated than predicting the next word from
the current one – a task for which the necessary data are available.

“knowledge” encoded in the IFS network.6 Under a model in
which tree structures are encoded as real-valued vectors, parsing
becomes the problem of mapping from an input string to a
vector encoding the parse tree for that string. Such a process
would presumably involve the massively parallel integration of
a wide variety of semantic, pragmatic, intonational, and other
sorts of information by another neural network (Pollack 1987),
leading to the question of how to “compile” the IFS network
weights into the weights for the parsing network. An intriguing
approach would be to use yet another network to perform (and
perhaps learn) this mapping. The ability of a neural network
to act as a “parser generator” (Aho, Sethi, and Ullman 1987)
of this sort could provide new insights into issues raised by
Steedman (2000) about the way in which on-line language pro-
cessing incorporates knowledge about linguistic structure. As
with the learning issue, the contribution would come not from an
elimination of explicit structure from the model (Marcus 1998).
Rather, it would come from modeling the constraints on this
structure in a completely novel way: to paraphrase (Horgan and
Tienson 1989), preserving the representations while eliminating
the rules.
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